
Paper Review
Naiad: A Timely Dataflow

System1

Theo Long
19th October 2022

1All figures and information from Murray et. al (2013), unless otherwise specified

Naiad: High Performance Parallel Processing

Naiad: A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs
Michael Isard Paul Barham Martı́n Abadi

Microsoft Research Silicon Valley
{derekmur,mcsherry,risaacs,misard,pbar,abadi}@microsoft.com

Abstract

Naiad is a distributed system for executing data parallel,
cyclic dataflow programs. It offers the high throughput
of batch processors, the low latency of stream proces-
sors, and the ability to perform iterative and incremental
computations. Although existing systems offer some of
these features, applications that require all three have re-
lied on multiple platforms, at the expense of efficiency,
maintainability, and simplicity. Naiad resolves the com-
plexities of combining these features in one framework.

A new computational model, timely dataflow, under-
lies Naiad and captures opportunities for parallelism
across a wide class of algorithms. This model enriches
dataflow computation with timestamps that represent
logical points in the computation and provide the basis
for an efficient, lightweight coordination mechanism.

We show that many powerful high-level programming
models can be built on Naiad’s low-level primitives, en-
abling such diverse tasks as streaming data analysis, it-
erative machine learning, and interactive graph mining.
Naiad outperforms specialized systems in their target ap-
plication domains, and its unique features enable the de-
velopment of new high-performance applications.

1 Introduction

Many data processing tasks require low-latency inter-
active access to results, iterative sub-computations, and
consistent intermediate outputs so that sub-computations
can be nested and composed. Figure 1 exemplifies these

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522738

Low-latency query
responses are delivered

Updates to
data arrive

Complex processing
incrementally re-

executes to reflect
changed data

User queries
are received

Queries are
joined with

processed data

Figure 1: A Naiad application that supports real-
time queries on continually updated data. The
dashed rectangle represents iterative processing that
incrementally updates as new data arrive.

requirements: the application performs iterative process-
ing on a real-time data stream, and supports interac-
tive queries on a fresh, consistent view of the results.
However, no existing system satisfies all three require-
ments: stream processors can produce low-latency re-
sults for non-iterative algorithms [3, 5, 9, 38], batch
systems can iterate synchronously at the expense of la-
tency [27, 30, 43, 45], and trigger-based approaches
support iteration with only weak consistency guaran-
tees [29, 36, 46]. While it might be possible to assemble
the application in Figure 1 by combining multiple exist-
ing systems, applications built on a single platform are
typically more efficient, succinct, and maintainable.

Our goal is to develop a general-purpose system that
fulfills all of these requirements and supports a wide va-
riety of high-level programming models, while achiev-
ing the same performance as a specialized system. To
this end, we have developed a new computational model,
timely dataflow, that supports the following features:

1. structured loops allowing feedback in the dataflow,

2. stateful dataflow vertices capable of consuming and
producing records without global coordination, and

3. notifications for vertices once they have received all
records for a given round of input or loop iteration.

439

Naiad: High Performance Parallel Processing

1. High throughput (like batch

processing)

Naiad: A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs
Michael Isard Paul Barham Martı́n Abadi

Microsoft Research Silicon Valley
{derekmur,mcsherry,risaacs,misard,pbar,abadi}@microsoft.com

Abstract

Naiad is a distributed system for executing data parallel,
cyclic dataflow programs. It offers the high throughput
of batch processors, the low latency of stream proces-
sors, and the ability to perform iterative and incremental
computations. Although existing systems offer some of
these features, applications that require all three have re-
lied on multiple platforms, at the expense of efficiency,
maintainability, and simplicity. Naiad resolves the com-
plexities of combining these features in one framework.

A new computational model, timely dataflow, under-
lies Naiad and captures opportunities for parallelism
across a wide class of algorithms. This model enriches
dataflow computation with timestamps that represent
logical points in the computation and provide the basis
for an efficient, lightweight coordination mechanism.

We show that many powerful high-level programming
models can be built on Naiad’s low-level primitives, en-
abling such diverse tasks as streaming data analysis, it-
erative machine learning, and interactive graph mining.
Naiad outperforms specialized systems in their target ap-
plication domains, and its unique features enable the de-
velopment of new high-performance applications.

1 Introduction

Many data processing tasks require low-latency inter-
active access to results, iterative sub-computations, and
consistent intermediate outputs so that sub-computations
can be nested and composed. Figure 1 exemplifies these

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522738

Low-latency query
responses are delivered

Updates to
data arrive

Complex processing
incrementally re-

executes to reflect
changed data

User queries
are received

Queries are
joined with

processed data

Figure 1: A Naiad application that supports real-
time queries on continually updated data. The
dashed rectangle represents iterative processing that
incrementally updates as new data arrive.

requirements: the application performs iterative process-
ing on a real-time data stream, and supports interac-
tive queries on a fresh, consistent view of the results.
However, no existing system satisfies all three require-
ments: stream processors can produce low-latency re-
sults for non-iterative algorithms [3, 5, 9, 38], batch
systems can iterate synchronously at the expense of la-
tency [27, 30, 43, 45], and trigger-based approaches
support iteration with only weak consistency guaran-
tees [29, 36, 46]. While it might be possible to assemble
the application in Figure 1 by combining multiple exist-
ing systems, applications built on a single platform are
typically more efficient, succinct, and maintainable.

Our goal is to develop a general-purpose system that
fulfills all of these requirements and supports a wide va-
riety of high-level programming models, while achiev-
ing the same performance as a specialized system. To
this end, we have developed a new computational model,
timely dataflow, that supports the following features:

1. structured loops allowing feedback in the dataflow,

2. stateful dataflow vertices capable of consuming and
producing records without global coordination, and

3. notifications for vertices once they have received all
records for a given round of input or loop iteration.

439

Naiad: High Performance Parallel Processing

1. High throughput (like batch

processing)

2. Low latency (like stream

processing)

Naiad: A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs
Michael Isard Paul Barham Martı́n Abadi

Microsoft Research Silicon Valley
{derekmur,mcsherry,risaacs,misard,pbar,abadi}@microsoft.com

Abstract

Naiad is a distributed system for executing data parallel,
cyclic dataflow programs. It offers the high throughput
of batch processors, the low latency of stream proces-
sors, and the ability to perform iterative and incremental
computations. Although existing systems offer some of
these features, applications that require all three have re-
lied on multiple platforms, at the expense of efficiency,
maintainability, and simplicity. Naiad resolves the com-
plexities of combining these features in one framework.

A new computational model, timely dataflow, under-
lies Naiad and captures opportunities for parallelism
across a wide class of algorithms. This model enriches
dataflow computation with timestamps that represent
logical points in the computation and provide the basis
for an efficient, lightweight coordination mechanism.

We show that many powerful high-level programming
models can be built on Naiad’s low-level primitives, en-
abling such diverse tasks as streaming data analysis, it-
erative machine learning, and interactive graph mining.
Naiad outperforms specialized systems in their target ap-
plication domains, and its unique features enable the de-
velopment of new high-performance applications.

1 Introduction

Many data processing tasks require low-latency inter-
active access to results, iterative sub-computations, and
consistent intermediate outputs so that sub-computations
can be nested and composed. Figure 1 exemplifies these

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522738

Low-latency query
responses are delivered

Updates to
data arrive

Complex processing
incrementally re-

executes to reflect
changed data

User queries
are received

Queries are
joined with

processed data

Figure 1: A Naiad application that supports real-
time queries on continually updated data. The
dashed rectangle represents iterative processing that
incrementally updates as new data arrive.

requirements: the application performs iterative process-
ing on a real-time data stream, and supports interac-
tive queries on a fresh, consistent view of the results.
However, no existing system satisfies all three require-
ments: stream processors can produce low-latency re-
sults for non-iterative algorithms [3, 5, 9, 38], batch
systems can iterate synchronously at the expense of la-
tency [27, 30, 43, 45], and trigger-based approaches
support iteration with only weak consistency guaran-
tees [29, 36, 46]. While it might be possible to assemble
the application in Figure 1 by combining multiple exist-
ing systems, applications built on a single platform are
typically more efficient, succinct, and maintainable.

Our goal is to develop a general-purpose system that
fulfills all of these requirements and supports a wide va-
riety of high-level programming models, while achiev-
ing the same performance as a specialized system. To
this end, we have developed a new computational model,
timely dataflow, that supports the following features:

1. structured loops allowing feedback in the dataflow,

2. stateful dataflow vertices capable of consuming and
producing records without global coordination, and

3. notifications for vertices once they have received all
records for a given round of input or loop iteration.

439

Naiad: High Performance Parallel Processing

1. High throughput (like batch

processing)

2. Low latency (like stream

processing)

3. Iterative Computation – i.e. loops

Naiad: A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs
Michael Isard Paul Barham Martı́n Abadi

Microsoft Research Silicon Valley
{derekmur,mcsherry,risaacs,misard,pbar,abadi}@microsoft.com

Abstract

Naiad is a distributed system for executing data parallel,
cyclic dataflow programs. It offers the high throughput
of batch processors, the low latency of stream proces-
sors, and the ability to perform iterative and incremental
computations. Although existing systems offer some of
these features, applications that require all three have re-
lied on multiple platforms, at the expense of efficiency,
maintainability, and simplicity. Naiad resolves the com-
plexities of combining these features in one framework.

A new computational model, timely dataflow, under-
lies Naiad and captures opportunities for parallelism
across a wide class of algorithms. This model enriches
dataflow computation with timestamps that represent
logical points in the computation and provide the basis
for an efficient, lightweight coordination mechanism.

We show that many powerful high-level programming
models can be built on Naiad’s low-level primitives, en-
abling such diverse tasks as streaming data analysis, it-
erative machine learning, and interactive graph mining.
Naiad outperforms specialized systems in their target ap-
plication domains, and its unique features enable the de-
velopment of new high-performance applications.

1 Introduction

Many data processing tasks require low-latency inter-
active access to results, iterative sub-computations, and
consistent intermediate outputs so that sub-computations
can be nested and composed. Figure 1 exemplifies these

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522738

Low-latency query
responses are delivered

Updates to
data arrive

Complex processing
incrementally re-

executes to reflect
changed data

User queries
are received

Queries are
joined with

processed data

Figure 1: A Naiad application that supports real-
time queries on continually updated data. The
dashed rectangle represents iterative processing that
incrementally updates as new data arrive.

requirements: the application performs iterative process-
ing on a real-time data stream, and supports interac-
tive queries on a fresh, consistent view of the results.
However, no existing system satisfies all three require-
ments: stream processors can produce low-latency re-
sults for non-iterative algorithms [3, 5, 9, 38], batch
systems can iterate synchronously at the expense of la-
tency [27, 30, 43, 45], and trigger-based approaches
support iteration with only weak consistency guaran-
tees [29, 36, 46]. While it might be possible to assemble
the application in Figure 1 by combining multiple exist-
ing systems, applications built on a single platform are
typically more efficient, succinct, and maintainable.

Our goal is to develop a general-purpose system that
fulfills all of these requirements and supports a wide va-
riety of high-level programming models, while achiev-
ing the same performance as a specialized system. To
this end, we have developed a new computational model,
timely dataflow, that supports the following features:

1. structured loops allowing feedback in the dataflow,

2. stateful dataflow vertices capable of consuming and
producing records without global coordination, and

3. notifications for vertices once they have received all
records for a given round of input or loop iteration.

439

Naiad: High Performance Parallel Processing

1. High throughput (like batch

processing)

2. Low latency (like stream

processing)

3. Iterative Computation – i.e. loops

4. Strong Consistency Guarantees

Naiad: A Timely Dataflow System

Derek G. Murray Frank McSherry Rebecca Isaacs
Michael Isard Paul Barham Martı́n Abadi

Microsoft Research Silicon Valley
{derekmur,mcsherry,risaacs,misard,pbar,abadi}@microsoft.com

Abstract

Naiad is a distributed system for executing data parallel,
cyclic dataflow programs. It offers the high throughput
of batch processors, the low latency of stream proces-
sors, and the ability to perform iterative and incremental
computations. Although existing systems offer some of
these features, applications that require all three have re-
lied on multiple platforms, at the expense of efficiency,
maintainability, and simplicity. Naiad resolves the com-
plexities of combining these features in one framework.

A new computational model, timely dataflow, under-
lies Naiad and captures opportunities for parallelism
across a wide class of algorithms. This model enriches
dataflow computation with timestamps that represent
logical points in the computation and provide the basis
for an efficient, lightweight coordination mechanism.

We show that many powerful high-level programming
models can be built on Naiad’s low-level primitives, en-
abling such diverse tasks as streaming data analysis, it-
erative machine learning, and interactive graph mining.
Naiad outperforms specialized systems in their target ap-
plication domains, and its unique features enable the de-
velopment of new high-performance applications.

1 Introduction

Many data processing tasks require low-latency inter-
active access to results, iterative sub-computations, and
consistent intermediate outputs so that sub-computations
can be nested and composed. Figure 1 exemplifies these

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.

Copyright is held by the Owner/Author(s).
SOSP’13, Nov. 3–6, 2013, Farmington, Pennsylvania, USA.
ACM 978-1-4503-2388-8/13/11.
http://dx.doi.org/10.1145/2517349.2522738

Low-latency query
responses are delivered

Updates to
data arrive

Complex processing
incrementally re-

executes to reflect
changed data

User queries
are received

Queries are
joined with

processed data

Figure 1: A Naiad application that supports real-
time queries on continually updated data. The
dashed rectangle represents iterative processing that
incrementally updates as new data arrive.

requirements: the application performs iterative process-
ing on a real-time data stream, and supports interac-
tive queries on a fresh, consistent view of the results.
However, no existing system satisfies all three require-
ments: stream processors can produce low-latency re-
sults for non-iterative algorithms [3, 5, 9, 38], batch
systems can iterate synchronously at the expense of la-
tency [27, 30, 43, 45], and trigger-based approaches
support iteration with only weak consistency guaran-
tees [29, 36, 46]. While it might be possible to assemble
the application in Figure 1 by combining multiple exist-
ing systems, applications built on a single platform are
typically more efficient, succinct, and maintainable.

Our goal is to develop a general-purpose system that
fulfills all of these requirements and supports a wide va-
riety of high-level programming models, while achiev-
ing the same performance as a specialized system. To
this end, we have developed a new computational model,
timely dataflow, that supports the following features:

1. structured loops allowing feedback in the dataflow,

2. stateful dataflow vertices capable of consuming and
producing records without global coordination, and

3. notifications for vertices once they have received all
records for a given round of input or loop iteration.

439

What is Timely Dataflow?

What is Timely Dataflow?

• Directed Graph of stateful vertices

What is Timely Dataflow?

• Directed Graph of stateful vertices
• Allows for nested cycles

What is Timely Dataflow?

• Directed Graph of stateful vertices
• Allows for nested cycles
• Vertices send and receive timestamped messages allowing for a

partial ordering of computations that includes time

What is Timely Dataflow?

• Directed Graph of stateful vertices
• Allows for nested cycles
• Vertices send and receive timestamped messages allowing for a

partial ordering of computations that includes time
• This allows for parallel computation across epochs

What is Timely Dataflow?

• Directed Graph of stateful vertices
• Allows for nested cycles
• Vertices send and receive timestamped messages allowing for a

partial ordering of computations that includes time
• This allows for parallel computation across epochs
• Global notification when all messages of given timestamp received ->

Allows us to reason about result ‘as of’ a certain time

Key Abstraction: Timestamps
This restricted looping structure allows us to design

logical timestamps based on the dataflow graph struc-
ture. Every message bears a logical timestamp of type

Timestamp : (

epoch
︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)

where there is one loop counter for each of the k loop
contexts that contain the associated edge. These loop
counters explicitly distinguish different iterations, and
allow a system to track forward progress as messages
circulate around the dataflow graph.

The ingress, egress, and feedback vertices act only on
the timestamps of messages passing through them. The
vertices adjust incoming timestamps as follows:

Vertex Input timestamp Output timestamp
Ingress (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck,0〉)

Egress (e,〈c1, . . . ,ck,ck+1〉) (e,〈c1, . . . ,ck〉)

Feedback (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck +1〉)

For two timestamps t1 = (x1,!c1) and t2 = (x2,!c2)
within the same loop context, we order t1 ≤ t2 if and
only if both x1 ≤ x2 and!c1 ≤!c2, where the latter uses the
lexicographic ordering on integer sequences. This order
corresponds to the constraint on future times at which
one message could result in another, a concept that we
formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped
messages, and may request and receive notification that
they have received all messages bearing a specific time-
stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in
the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-
ing invocation of v.ONRECV(e,m, t), where e is an
edge from u to v, and each call to v.NOTIFYAT(t) re-
sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are
queued, and for the most part the model is flex-
ible about the order in which they may be deliv-
ered. However, a timely dataflow system must guar-
antee that v.ONNOTIFY(t) is invoked only after no
further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,
will occur. v.ONNOTIFY(t) is an indication that all
v.ONRECV(e,m, t) invocations have been delivered to

class DistinctCount<S,T> : Vertex<T>

{

Dictionary<T, Dictionary<S,int>> counts;

void OnRecv(Edge e, S msg, T time)

{

if (!counts.ContainsKey(time)) {

counts[time] = new Dictionary<S,int>();

this.NotifyAt(time);

}

if (!counts[time].ContainsKey(msg)) {

counts[time][msg] = 0;

this.SendBy(output1, msg, time);

}

counts[time][msg]++;

}

void OnNotify(T time)

{

foreach (var pair in counts[time])

this.SendBy(output2, pair, time);

counts.Remove(time);

}

}

Figure 4: An example vertex with one input and
two outputs, producing the distinct input records on
output1, and a count for each one on output2.
The distinct records may be sent as soon as they are
seen, but the counts must wait until all records bear-
ing that time have been received.

the vertex, and is an opportunity for the vertex to finish
any work associated with time t.

The ONRECV and ONNOTIFY methods may contain
arbitrary code and modify arbitrary per-vertex state, but
do have an important constraint on their execution: when
invoked with a timestamp t, the methods may only call
SENDBY or NOTIFYAT with times t ′ ≥ t. This rule guar-
antees that messages are not sent “backwards in time”
and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex
with one input and two outputs. The first output is the
set, at each time, of distinct elements observed in the in-
put, and the second output counts how often each distinct
input is observed at that time. The ONRECV method
may send elements on the first output as soon as they
are first observed, allowing for low latency, but to en-
sure correctness the vertex must use ONNOTIFY to delay
sending the counts until all inputs have been observed.

2.3 Achieving timely dataflow

In order to deliver notifications correctly, a timely
dataflow system must reason about the impossibility of
future messages bearing a given timestamp. In this sub-
section we lay a foundation for reasoning about the safe

441

Applications

Timely Dataflow

Distributed Runtime

Graph assembly
Libraries
DSLs

(Sec 4)

(Sec 2)

(Sec 3)

(Sec 6)

Figure 2: The Naiad software stack exposes a low-
level graph assembly interface, upon which high-
level libraries, DSLs, and applications can be built.

Together, the first two features are needed to execute it-
erative and incremental computations with low latency.
The third feature makes it possible to produce consistent
results, at both outputs and intermediate stages of com-
putations, in the presence of streaming or iteration.

Timely dataflow exposes a principled set of low-level
primitives to the programmer, who can use those prim-
itives to build higher-level programming abstractions.
Timely dataflow graphs are directed and may include cy-
cles. Stateful vertices asynchronously receive messages
and notifications of global progress. Edges carry records
with logical timestamps that enable global progress to be
measured. Unlike the timestamps used in previous sys-
tems [3, 5, 9], these logical timestamps reflect structure
in the graph topology such as loops, and make the model
suitable for tracking progress in iterative algorithms. We
show that these primitives are sufficient to express exist-
ing frameworks as composable and efficient libraries.

Naiad is our prototype implementation of timely
dataflow for data parallel computation in a distributed
cluster. Like others [16, 42, 43] we target problems
for which the working set fits in the aggregate RAM of
the cluster, in line with our goal of a low-latency sys-
tem. Practical challenges arise when supporting appli-
cations that demand a mix of high-throughput and low-
latency computation. These challenges include coor-
dinating distributed processes with low overhead, and
engineering the system to avoid stalls—from diverse
sources such as lock contention, dropped packets, and
garbage collection—that disproportionately affect com-
putations that coordinate frequently.

We evaluate Naiad against several batch and incre-
mental workloads, and use microbenchmarks to investi-
gate the performance of its underlying mechanisms. Our
prototype implementation outperforms general-purpose
batch processors, and often outperforms state-of-the-
art asynchronous systems which provide few semantic
guarantees. To demonstrate the expressiveness of the
model and the power of our high-level libraries, we build
a complex application based on the dataflow in Figure 1
using tens of lines of code (see §6.4). The resulting ap-
plication responds to queries with 4–100 ms latency.

B C

F

A D

Loop context

Streaming context

In OutEI

Figure 3: This simple timely dataflow graph (§2.1)
shows how a loop context nests within the top-level
streaming context.

2 Timely dataflow

Timely dataflow is a computational model based on a di-
rected graph in which stateful vertices send and receive
logically timestamped messages along directed edges.
The dataflow graph may contain nested cycles, and the
timestamps reflect this structure in order to distinguish
data that arise in different input epochs and loop itera-
tions. The resulting model supports concurrent execu-
tion of different epochs and iterations, and explicit ver-
tex notification after all messages with a specified time-
stamp have been delivered. In this section we define the
structure of timely dataflow graphs, introduce the low-
level vertex programming model, and explain how to ef-
ficiently reason about the delivery of vertex notifications.

2.1 Graph structure

A timely dataflow graph has input vertices and output
vertices, where each input receives a sequence of mes-
sages from an external producer, and each output emits a
sequence of messages back to an external consumer. The
external producer labels each message with an integer
epoch, and notifies the input vertex when it will not re-
ceive any more messages with a given epoch label. The
producer may also “close” an input vertex to indicate
that it will receive no more messages from any epoch.
Each output message is labeled with its epoch, and the
output vertex signals the external consumer when it will
not output any more messages from a given epoch, and
when all output is complete.

Timely dataflow graphs are directed graphs with the
constraint that the vertices are organized into possi-
bly nested loop contexts, with three associated system-
provided vertices. Edges entering a loop context must
pass through an ingress vertex and edges leaving a loop
context must pass through an egress vertex. Addition-
ally, every cycle in the graph must be contained entirely
within some loop context, and include at least one feed-

back vertex that is not nested within any inner loop con-
texts. Figure 3 shows a single loop context with ingress
(‘I’), egress (‘E’), and feedback (‘F’) vertices labeled.

440

This restricted looping structure allows us to design
logical timestamps based on the dataflow graph struc-
ture. Every message bears a logical timestamp of type

Timestamp : (

epoch
︷ ︸︸ ︷

e ∈ N,

loop counters
︷ ︸︸ ︷

〈c1, . . . ,ck〉 ∈ N
k)

where there is one loop counter for each of the k loop
contexts that contain the associated edge. These loop
counters explicitly distinguish different iterations, and
allow a system to track forward progress as messages
circulate around the dataflow graph.

The ingress, egress, and feedback vertices act only on
the timestamps of messages passing through them. The
vertices adjust incoming timestamps as follows:

Vertex Input timestamp Output timestamp
Ingress (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck,0〉)

Egress (e,〈c1, . . . ,ck,ck+1〉) (e,〈c1, . . . ,ck〉)

Feedback (e,〈c1, . . . ,ck〉) (e,〈c1, . . . ,ck +1〉)

For two timestamps t1 = (x1,!c1) and t2 = (x2,!c2)
within the same loop context, we order t1 ≤ t2 if and
only if both x1 ≤ x2 and!c1 ≤!c2, where the latter uses the
lexicographic ordering on integer sequences. This order
corresponds to the constraint on future times at which
one message could result in another, a concept that we
formalize in the following subsections.

2.2 Vertex computation

Timely dataflow vertices send and receive timestamped
messages, and may request and receive notification that
they have received all messages bearing a specific time-
stamp. Each vertex v implements two callbacks:

v.ONRECV(e : Edge, m : Message, t : Timestamp)
v.ONNOTIFY(t : Timestamp).

A vertex may invoke two system-provided methods in
the context of these callbacks:

this.SENDBY(e : Edge, m : Message, t : Timestamp)
this.NOTIFYAT(t : Timestamp).

Each call to u.SENDBY(e,m, t) results in a correspond-
ing invocation of v.ONRECV(e,m, t), where e is an
edge from u to v, and each call to v.NOTIFYAT(t) re-
sults in a corresponding invocation of v.ONNOTIFY(t).
The invocations of ONRECV and ONNOTIFY are
queued, and for the most part the model is flex-
ible about the order in which they may be deliv-
ered. However, a timely dataflow system must guar-
antee that v.ONNOTIFY(t) is invoked only after no
further invocations of v.ONRECV(e,m, t ′), for t ′ ≤ t,
will occur. v.ONNOTIFY(t) is an indication that all
v.ONRECV(e,m, t) invocations have been delivered to

class DistinctCount<S,T> : Vertex<T>

{

Dictionary<T, Dictionary<S,int>> counts;

void OnRecv(Edge e, S msg, T time)

{

if (!counts.ContainsKey(time)) {

counts[time] = new Dictionary<S,int>();

this.NotifyAt(time);

}

if (!counts[time].ContainsKey(msg)) {

counts[time][msg] = 0;

this.SendBy(output1, msg, time);

}

counts[time][msg]++;

}

void OnNotify(T time)

{

foreach (var pair in counts[time])

this.SendBy(output2, pair, time);

counts.Remove(time);

}

}

Figure 4: An example vertex with one input and
two outputs, producing the distinct input records on
output1, and a count for each one on output2.
The distinct records may be sent as soon as they are
seen, but the counts must wait until all records bear-
ing that time have been received.

the vertex, and is an opportunity for the vertex to finish
any work associated with time t.

The ONRECV and ONNOTIFY methods may contain
arbitrary code and modify arbitrary per-vertex state, but
do have an important constraint on their execution: when
invoked with a timestamp t, the methods may only call
SENDBY or NOTIFYAT with times t ′ ≥ t. This rule guar-
antees that messages are not sent “backwards in time”
and is crucial to support notification as described above.

As an example, Figure 4 contains code for a vertex
with one input and two outputs. The first output is the
set, at each time, of distinct elements observed in the in-
put, and the second output counts how often each distinct
input is observed at that time. The ONRECV method
may send elements on the first output as soon as they
are first observed, allowing for low latency, but to en-
sure correctness the vertex must use ONNOTIFY to delay
sending the counts until all inputs have been observed.

2.3 Achieving timely dataflow

In order to deliver notifications correctly, a timely
dataflow system must reason about the impossibility of
future messages bearing a given timestamp. In this sub-
section we lay a foundation for reasoning about the safe

441

Achieving Timely Dataflow with Timestamps

• Dataflow through the graph is done by events (messages or
notification requests between nodes)

Achieving Timely Dataflow with Timestamps

• Dataflow through the graph is done by events (messages or
notification requests between nodes)
• Time always increases, so for an event 𝒆, only events with time 𝒕 ≥ 𝒕𝒆

can depend on 𝒆

Achieving Timely Dataflow with Timestamps

• Dataflow through the graph is done by events (messages or
notification requests between nodes)
• Time always increases, so for an event 𝒆, only events with time 𝒕 ≥ 𝒕𝒆

can depend on 𝒆
• Scheduler a list of pointstamps = time + location of unprocessed

events
• Each pointstamp has an occurrence count and predecessor count

Achieving Timely Dataflow with Timestamps

• Dataflow through the graph is done by events (messages or
notification requests between nodes)
• Time always increases, so for an event 𝒆, only events with time 𝒕 ≥ 𝒕𝒆

can depend on 𝒆
• Scheduler a list of pointstamps = time + location of unprocessed

events
• Each pointstamp has an occurrence count and predecessor count

• When a pointstamp no longer has any predecessors (it is on the
frontier), all corresponding events can be released

Making Timely Dataflow Distributed

SchedulerWorker

A2

A1

B2

B1

C2

C1

Progress tracking
protocol

Process

TCP/IP network

A4

A3

B4

B3

C4

C3

A B CH(m)Logical graph

Figure 5: The mapping of a logical dataflow graph
onto the distributed Naiad system architecture.

sub-computation. Timely dataflow makes it easy to com-
bine both styles of implementation in a single program.

As described, a notification in timely dataflow is guar-
anteed not to be delivered before a time t, and has the ca-
pability to send messages at times greater or equal to t.
We can decouple these two properties of a notification
into a guarantee time tg and capability time tc, which
may be distinct. This generalization for example allows
“state purging” notifications [22] that free resources as-
sociated with tg, but do not generate other events and so
can set tc to ! (i.e., after all processing). Since tc = !,
the notification does not prevent other notifications from
being delivered, and need not introduce any coordina-
tion. Notifications with tg < tc can also be useful to con-
strain otherwise asynchronous execution, for example
by providing “bounded staleness” [11], which guaran-
tees that the system does not proceed more than a defined
number of iterations beyond any incomplete iteration.

3 Distributed implementation

Naiad is our high-performance distributed implementa-
tion of timely dataflow. Figure 5 shows the schematic
architecture of a Naiad cluster: a group of processes
hosting workers that manage a partition of the timely
dataflow vertices. Workers exchange messages locally
using shared memory, and remotely using TCP connec-
tions between each pair of processes. Each process par-
ticipates in a distributed progress tracking protocol, in
order to coordinate the delivery of notifications. We im-
plemented the core Naiad runtime as a C# library, in
22,700 lines of code. In this section, we describe the
techniques that Naiad uses to achieve high performance.

3.1 Data parallelism

Like other dataflow systems [15, 41, 42] Naiad relies on
data parallelism to increase the aggregate computation,
memory, and bandwidth available to applications. A
program specifies its timely dataflow graph as a logical

graph of stages linked by typed connectors. Each con-
nector optionally has a partitioning function to control
the exchange of data between stages. At execution time,
Naiad expands the logical graph into a physical graph

where each stage is replaced by a set of vertices and
each connector by a set of edges. Figure 5 shows a logi-
cal graph and a corresponding physical graph, where the
connector from A to B has partitioning function H(m)
on typed messages m.

The regular structure of data parallel dataflow graphs
simplifies vertex implementations, which can be agnos-
tic to the degree of parallelism in a stage. When a vertex
sends a message on a connector, the system automati-
cally routes the message to the appropriate destination
vertex using the partitioning function. Specifically, the
partitioning function maps a message to an integer, and
the system routes all messages that map to the same inte-
ger to the same downstream vertex. A programmer can
use partitioning functions to hash or range partition in-
coming messages by a key, in order to implement “group
by” or “reduce” functionality [15, 41]. When no par-
titioning function is supplied, the system delivers mes-
sages to a local vertex (e.g., Bi to Ci in Figure 5).

Regular structure also allows Naiad to simplify its
reasoning about the could-result-in relation. Naiad
projects each pointstamp p from the physical graph to
a pointstamp p̂ in the logical graph, and evaluates the
could-result-in relation on the projected pointstamps.
This projection leads to a loss of resolution, since there
are cases where p1 cannot-result-in p2 but p̂1 could-
result-in p̂2. However, using the logical graph ensures
that the size of the data structures used to compute the
relation depends only on the logical graph and not the
much larger physical graph. As we explain in §3.3, using
projected pointstamps also reduces the amount of com-
munication needed for coordination between workers.

3.2 Workers

Each Naiad worker is responsible for delivering mes-
sages and notifications to vertices in its partition of
the timely dataflow graph. When faced with multiple
runnable actions (messages and notifications to deliver)
workers break ties by delivering messages before noti-
fications, in order to reduce the amount of queued data.
Different policies could be used, such as prioritizing the
delivery of messages and notifications with the earliest
pointstamp to reduce end-to-end latency.

443

Making Timely Dataflow Distributed

• Naiad implements data parallelism –
operating on multiple parts of the data at
once

SchedulerWorker

A2

A1

B2

B1

C2

C1

Progress tracking
protocol

Process

TCP/IP network

A4

A3

B4

B3

C4

C3

A B CH(m)Logical graph

Figure 5: The mapping of a logical dataflow graph
onto the distributed Naiad system architecture.

sub-computation. Timely dataflow makes it easy to com-
bine both styles of implementation in a single program.

As described, a notification in timely dataflow is guar-
anteed not to be delivered before a time t, and has the ca-
pability to send messages at times greater or equal to t.
We can decouple these two properties of a notification
into a guarantee time tg and capability time tc, which
may be distinct. This generalization for example allows
“state purging” notifications [22] that free resources as-
sociated with tg, but do not generate other events and so
can set tc to ! (i.e., after all processing). Since tc = !,
the notification does not prevent other notifications from
being delivered, and need not introduce any coordina-
tion. Notifications with tg < tc can also be useful to con-
strain otherwise asynchronous execution, for example
by providing “bounded staleness” [11], which guaran-
tees that the system does not proceed more than a defined
number of iterations beyond any incomplete iteration.

3 Distributed implementation

Naiad is our high-performance distributed implementa-
tion of timely dataflow. Figure 5 shows the schematic
architecture of a Naiad cluster: a group of processes
hosting workers that manage a partition of the timely
dataflow vertices. Workers exchange messages locally
using shared memory, and remotely using TCP connec-
tions between each pair of processes. Each process par-
ticipates in a distributed progress tracking protocol, in
order to coordinate the delivery of notifications. We im-
plemented the core Naiad runtime as a C# library, in
22,700 lines of code. In this section, we describe the
techniques that Naiad uses to achieve high performance.

3.1 Data parallelism

Like other dataflow systems [15, 41, 42] Naiad relies on
data parallelism to increase the aggregate computation,
memory, and bandwidth available to applications. A
program specifies its timely dataflow graph as a logical

graph of stages linked by typed connectors. Each con-
nector optionally has a partitioning function to control
the exchange of data between stages. At execution time,
Naiad expands the logical graph into a physical graph

where each stage is replaced by a set of vertices and
each connector by a set of edges. Figure 5 shows a logi-
cal graph and a corresponding physical graph, where the
connector from A to B has partitioning function H(m)
on typed messages m.

The regular structure of data parallel dataflow graphs
simplifies vertex implementations, which can be agnos-
tic to the degree of parallelism in a stage. When a vertex
sends a message on a connector, the system automati-
cally routes the message to the appropriate destination
vertex using the partitioning function. Specifically, the
partitioning function maps a message to an integer, and
the system routes all messages that map to the same inte-
ger to the same downstream vertex. A programmer can
use partitioning functions to hash or range partition in-
coming messages by a key, in order to implement “group
by” or “reduce” functionality [15, 41]. When no par-
titioning function is supplied, the system delivers mes-
sages to a local vertex (e.g., Bi to Ci in Figure 5).

Regular structure also allows Naiad to simplify its
reasoning about the could-result-in relation. Naiad
projects each pointstamp p from the physical graph to
a pointstamp p̂ in the logical graph, and evaluates the
could-result-in relation on the projected pointstamps.
This projection leads to a loss of resolution, since there
are cases where p1 cannot-result-in p2 but p̂1 could-
result-in p̂2. However, using the logical graph ensures
that the size of the data structures used to compute the
relation depends only on the logical graph and not the
much larger physical graph. As we explain in §3.3, using
projected pointstamps also reduces the amount of com-
munication needed for coordination between workers.

3.2 Workers

Each Naiad worker is responsible for delivering mes-
sages and notifications to vertices in its partition of
the timely dataflow graph. When faced with multiple
runnable actions (messages and notifications to deliver)
workers break ties by delivering messages before noti-
fications, in order to reduce the amount of queued data.
Different policies could be used, such as prioritizing the
delivery of messages and notifications with the earliest
pointstamp to reduce end-to-end latency.

443

Making Timely Dataflow Distributed

• Naiad implements data parallelism –
operating on multiple parts of the data at
once
• Logical computation graph translated into

physical graph

SchedulerWorker

A2

A1

B2

B1

C2

C1

Progress tracking
protocol

Process

TCP/IP network

A4

A3

B4

B3

C4

C3

A B CH(m)Logical graph

Figure 5: The mapping of a logical dataflow graph
onto the distributed Naiad system architecture.

sub-computation. Timely dataflow makes it easy to com-
bine both styles of implementation in a single program.

As described, a notification in timely dataflow is guar-
anteed not to be delivered before a time t, and has the ca-
pability to send messages at times greater or equal to t.
We can decouple these two properties of a notification
into a guarantee time tg and capability time tc, which
may be distinct. This generalization for example allows
“state purging” notifications [22] that free resources as-
sociated with tg, but do not generate other events and so
can set tc to ! (i.e., after all processing). Since tc = !,
the notification does not prevent other notifications from
being delivered, and need not introduce any coordina-
tion. Notifications with tg < tc can also be useful to con-
strain otherwise asynchronous execution, for example
by providing “bounded staleness” [11], which guaran-
tees that the system does not proceed more than a defined
number of iterations beyond any incomplete iteration.

3 Distributed implementation

Naiad is our high-performance distributed implementa-
tion of timely dataflow. Figure 5 shows the schematic
architecture of a Naiad cluster: a group of processes
hosting workers that manage a partition of the timely
dataflow vertices. Workers exchange messages locally
using shared memory, and remotely using TCP connec-
tions between each pair of processes. Each process par-
ticipates in a distributed progress tracking protocol, in
order to coordinate the delivery of notifications. We im-
plemented the core Naiad runtime as a C# library, in
22,700 lines of code. In this section, we describe the
techniques that Naiad uses to achieve high performance.

3.1 Data parallelism

Like other dataflow systems [15, 41, 42] Naiad relies on
data parallelism to increase the aggregate computation,
memory, and bandwidth available to applications. A
program specifies its timely dataflow graph as a logical

graph of stages linked by typed connectors. Each con-
nector optionally has a partitioning function to control
the exchange of data between stages. At execution time,
Naiad expands the logical graph into a physical graph

where each stage is replaced by a set of vertices and
each connector by a set of edges. Figure 5 shows a logi-
cal graph and a corresponding physical graph, where the
connector from A to B has partitioning function H(m)
on typed messages m.

The regular structure of data parallel dataflow graphs
simplifies vertex implementations, which can be agnos-
tic to the degree of parallelism in a stage. When a vertex
sends a message on a connector, the system automati-
cally routes the message to the appropriate destination
vertex using the partitioning function. Specifically, the
partitioning function maps a message to an integer, and
the system routes all messages that map to the same inte-
ger to the same downstream vertex. A programmer can
use partitioning functions to hash or range partition in-
coming messages by a key, in order to implement “group
by” or “reduce” functionality [15, 41]. When no par-
titioning function is supplied, the system delivers mes-
sages to a local vertex (e.g., Bi to Ci in Figure 5).

Regular structure also allows Naiad to simplify its
reasoning about the could-result-in relation. Naiad
projects each pointstamp p from the physical graph to
a pointstamp p̂ in the logical graph, and evaluates the
could-result-in relation on the projected pointstamps.
This projection leads to a loss of resolution, since there
are cases where p1 cannot-result-in p2 but p̂1 could-
result-in p̂2. However, using the logical graph ensures
that the size of the data structures used to compute the
relation depends only on the logical graph and not the
much larger physical graph. As we explain in §3.3, using
projected pointstamps also reduces the amount of com-
munication needed for coordination between workers.

3.2 Workers

Each Naiad worker is responsible for delivering mes-
sages and notifications to vertices in its partition of
the timely dataflow graph. When faced with multiple
runnable actions (messages and notifications to deliver)
workers break ties by delivering messages before noti-
fications, in order to reduce the amount of queued data.
Different policies could be used, such as prioritizing the
delivery of messages and notifications with the earliest
pointstamp to reduce end-to-end latency.

443

Making Timely Dataflow Distributed

• Naiad implements data parallelism –
operating on multiple parts of the data at
once
• Logical computation graph translated into

physical graph
• Dependencies are always measured in the

logical graph – this is not always optimal,
but guarantees correctness

SchedulerWorker

A2

A1

B2

B1

C2

C1

Progress tracking
protocol

Process

TCP/IP network

A4

A3

B4

B3

C4

C3

A B CH(m)Logical graph

Figure 5: The mapping of a logical dataflow graph
onto the distributed Naiad system architecture.

sub-computation. Timely dataflow makes it easy to com-
bine both styles of implementation in a single program.

As described, a notification in timely dataflow is guar-
anteed not to be delivered before a time t, and has the ca-
pability to send messages at times greater or equal to t.
We can decouple these two properties of a notification
into a guarantee time tg and capability time tc, which
may be distinct. This generalization for example allows
“state purging” notifications [22] that free resources as-
sociated with tg, but do not generate other events and so
can set tc to ! (i.e., after all processing). Since tc = !,
the notification does not prevent other notifications from
being delivered, and need not introduce any coordina-
tion. Notifications with tg < tc can also be useful to con-
strain otherwise asynchronous execution, for example
by providing “bounded staleness” [11], which guaran-
tees that the system does not proceed more than a defined
number of iterations beyond any incomplete iteration.

3 Distributed implementation

Naiad is our high-performance distributed implementa-
tion of timely dataflow. Figure 5 shows the schematic
architecture of a Naiad cluster: a group of processes
hosting workers that manage a partition of the timely
dataflow vertices. Workers exchange messages locally
using shared memory, and remotely using TCP connec-
tions between each pair of processes. Each process par-
ticipates in a distributed progress tracking protocol, in
order to coordinate the delivery of notifications. We im-
plemented the core Naiad runtime as a C# library, in
22,700 lines of code. In this section, we describe the
techniques that Naiad uses to achieve high performance.

3.1 Data parallelism

Like other dataflow systems [15, 41, 42] Naiad relies on
data parallelism to increase the aggregate computation,
memory, and bandwidth available to applications. A
program specifies its timely dataflow graph as a logical

graph of stages linked by typed connectors. Each con-
nector optionally has a partitioning function to control
the exchange of data between stages. At execution time,
Naiad expands the logical graph into a physical graph

where each stage is replaced by a set of vertices and
each connector by a set of edges. Figure 5 shows a logi-
cal graph and a corresponding physical graph, where the
connector from A to B has partitioning function H(m)
on typed messages m.

The regular structure of data parallel dataflow graphs
simplifies vertex implementations, which can be agnos-
tic to the degree of parallelism in a stage. When a vertex
sends a message on a connector, the system automati-
cally routes the message to the appropriate destination
vertex using the partitioning function. Specifically, the
partitioning function maps a message to an integer, and
the system routes all messages that map to the same inte-
ger to the same downstream vertex. A programmer can
use partitioning functions to hash or range partition in-
coming messages by a key, in order to implement “group
by” or “reduce” functionality [15, 41]. When no par-
titioning function is supplied, the system delivers mes-
sages to a local vertex (e.g., Bi to Ci in Figure 5).

Regular structure also allows Naiad to simplify its
reasoning about the could-result-in relation. Naiad
projects each pointstamp p from the physical graph to
a pointstamp p̂ in the logical graph, and evaluates the
could-result-in relation on the projected pointstamps.
This projection leads to a loss of resolution, since there
are cases where p1 cannot-result-in p2 but p̂1 could-
result-in p̂2. However, using the logical graph ensures
that the size of the data structures used to compute the
relation depends only on the logical graph and not the
much larger physical graph. As we explain in §3.3, using
projected pointstamps also reduces the amount of com-
munication needed for coordination between workers.

3.2 Workers

Each Naiad worker is responsible for delivering mes-
sages and notifications to vertices in its partition of
the timely dataflow graph. When faced with multiple
runnable actions (messages and notifications to deliver)
workers break ties by delivering messages before noti-
fications, in order to reduce the amount of queued data.
Different policies could be used, such as prioritizing the
delivery of messages and notifications with the earliest
pointstamp to reduce end-to-end latency.

443

• Each worker maintains a local view of global occurrence and
precedence counts

Making Timely Dataflow Distributed

• Each worker maintains a local view of global occurrence and
precedence counts
• When an event is dispatched by a worker, it broadcasts update to all

other workers

Making Timely Dataflow Distributed

• Each worker maintains a local view of global occurrence and
precedence counts
• When an event is dispatched by a worker, it broadcasts update to all

other workers
• By processing incoming updates from a given worker in FIFO order, we

guarantee that the local frontier is always a subset of the global
frontier

Making Timely Dataflow Distributed

1. Progress tracking is done on logical graph, which is much smaller
than physical graph

2. Updates are accumulated in a local buffer – updates with the same
pointstamp are combined into one update

Optimizing Broadcasts

What do Naiad programs look like?

gates messages at the application level, it can maintain
high throughput despite these options.

Our evaluation cluster has a switched Gigabit Ethernet
network with a simple topology: one core switch, and
two top-of-rack switches with 32 ports each. Despite
over-provisioning the inter-switch links with a 40 Gbps
uplink and enabling 802.3x flow control, we observe
packet loss at the NIC receive queues during incast traf-
fic patterns [31]. It is likely that Datacenter TCP [6]
would be beneficial for our workload, but the rack
switches in our cluster lack necessary support for ex-
plicit congestion notification.

Since Naiad controls all aspects of data exchange, it
is likely that a specialized transport protocol would pro-
vide better performance than TCP over Ethernet. We
are investigating the use of RDMA over InfiniBand,
which has the potential to reduce micro-stragglers using
mechanisms such as microsecond message latency, reli-
able multicast, and user-space access to message buffers.
These mechanisms will avoid TCP-related timers in the
operating system, but achieving optimal performance
will require attention to quality of service [35].

Data structure contention To scale out within a sin-
gle machine, most data structures in Naiad—in par-
ticular the vertex state—are accessed from a single
worker thread. Nevertheless, coordination is required
to exchange messages between workers, and Naiad uses
.NET concurrent queues and lightweight spinlocks for
this purpose. These primitives back off by sleeping for
1 ms when contention is detected. Since the default
timer granularity on Windows is 15.6 ms, with typical
scheduling quanta of 100 ms or more, backing off can
result in very high latency for concurrent access to a
contended shared data structure. Decreasing the clock
granularity to 1 ms reduces the impact of these stalls.

Garbage collection The .NET runtime, on which we
implemented Naiad, uses a mark-and-sweep garbage
collector (GC) to reclaim memory. While the .NET GC
is concurrent, it can suspend thread execution during
some allocations and lead to micro-stragglers.

To lower the cost of garbage collection, we engineered
the system to trigger the GC less frequently, and shorten
pauses due to collection. The Naiad runtime and the li-
braries that we have built on top of it avoid object al-
location wherever possible, using buffer pools to recy-
cle message buffers and transient operator state (such as
queues). We use value types extensively, because an ar-
ray of value-typed objects can be allocated as a single
region of memory with a single pointer, and the GC cost
is proportional to the number of pointers (rather than
objects). The .NET runtime supports structured value
types, enabling their use for many Naiad data structures.

4 Writing programs with Naiad

Although one can write Naiad programs directly against
its timely dataflow abstraction, many users find simpler,
higher-level interfaces easier to use. Examples include
SQL, MapReduce [15], LINQ [41], Pregel’s vertex-
program abstraction [27], and PowerGraph’s GAS ab-
straction [16]. We designed Naiad so that common
timely dataflow patterns can be collected into libraries,
allowing users to draw from these libraries when they
meet their needs and to construct new timely dataflow
vertices when they do not, all within the same pro-
gram. This section first shows a simple Naiad program
to highlight the common structure of applications built
on Naiad, then discusses some of the libraries we have
built, and finally sketches the process of writing libraries
and custom vertices using the low-level Naiad API.

4.1 A prototypical Naiad program

All Naiad programs follow a common pattern: first de-
fine a dataflow graph, consisting of input stages, com-
putational stages, and output stages; and then repeat-
edly supply the input stages with data. Input and output
stages follow a push-based model, in which the user sup-
plies new data for each input epoch, and Naiad invokes
a user-supplied callback for each epoch of output data.
The following example fragment uses our library for in-
cremental computation [28], which allows the program-
mer to use patterns familiar from LINQ to implement an
incrementally updatable MapReduce computation:

// 1a. Define input stages for the dataflow.

var input = controller.NewInput<string>();

// 1b. Define the timely dataflow graph.

// Here, we use LINQ to implement MapReduce.

var result = input.SelectMany(y => map(y))

.GroupBy(y => key(y),

(k, vs) => reduce(k, vs));

// 1c. Define output callbacks for each epoch

result.Subscribe(result => { ... });

// 2. Supply input data to the query.

input.OnNext(/* 1st epoch data */);

input.OnNext(/* 2nd epoch data */);

input.OnNext(/* 3rd epoch data */);

input.OnCompleted();

Step 1a defines the source of data, and Step 1c defines
what to do with output data when produced. Step 1b
constructs a timely dataflow graph using SelectMany
and GroupBy library calls, which assemble stages of
pre-defined vertices and behave as their LINQ counter-
parts: SelectMany applies its argument function to
each message, and GroupBy collates the results by a
key function before applying its reduction function.

446

Naiad is Fast for Iterative Graph Computation

• Want to perform connected components on twitter mention graph
• Also want to show top hashtag in each component

• One input stream of incoming tweets – 32k per second
• One query stream of usernames – 1 every 100ms

parallel variant is better suited to small clusters where
the switches have full bisection bandwidth. The tree-
based algorithm is inherently more susceptible to strag-
glers, and does not optimize communication between
processes on the same computer, adding unnecessary
network traffic. We wrote a tree-based AllReduce in
Naiad for comparison, and verified that it has the same
performance as the native VW implementation.

The experiment shows that Naiad is competitive with
a state-of-the-art custom implementation for distributed
machine learning, and that it is straightforward to build
communication libraries for existing applications using
Naiad’s API. Our AllReduce implementation requires
300 lines of code, around half as many as VW’s AllRe-
duce, and the Naiad code is at a much higher level, ab-
stracting the network sockets and threads being used.

6.3 Streaming acyclic computation

Kineograph ingests continually arriving graph data,
takes regular snapshots of the graph for data parallel
computation, and produces consistent results as new data
arrive [10]. The system is partitioned into ingest nodes
and compute nodes, making direct performance compar-
isons complex. When computing the k-exposure metric
for identifying controversial topics on Twitter, Kineo-
graph processes up to 185,000 tweets per second (t/s) on
32 computers with comparable hardware to ours, taking
an average of 90 s to reflect the input in its output. Re-
ducing the ingestion rate can shrink this delay to 10 s.

We implement k-exposure in 26 lines of code using
standard data parallel operators of Distinct, Join,
and Count. When run on the same Twitter stream as
Kineograph, using 32 computers and ingesting 1,000
tweets per epoch on each machine, the average through-
put over five runs is 482,988 t/s with no fault-tolerance,
322,439 t/s with checkpoints every 100 epochs, and
273,741 t/s with continual logging. Figure 7c presents
the distributions of latencies for the three approaches:
continual logging imposes overhead on each batch, but
the overhead of periodic snapshots is visible only in the
tail when some batches are delayed by up to 10 s. In
each case, all responses return within a few seconds, and
the respective median latencies are 40 ms, 40 ms, and
85 ms. The difference in latency arises in part because
Kineograph synchronously replicates input data before
computation begins, whereas Naiad has the flexibility to
report outputs before it has made its state durable.

6.4 Streaming iterative graph analytics

Finally, we bring together several of the programming
patterns that Naiad handles well, returning to the anal-
ysis task motivated in Figure 1. The goal is to ingest

 1

 10

 100

 1000

 30 35 40 45 50

R
e
s
p
o
n
s
e
 t
im

e
 (

m
s
)

Time from start of trace (s)

Fresh 1s delay

Figure 8: Time series of response times for interac-
tive queries on a streaming iterative graph analysis
(§6.4). The computation receives 32,000 tweets/s, and
10 queries/s. “Fresh” shows queries being delayed
behind tweet processing; “1 s delay” shows the bene-
fit of querying stale but consistent data.

a continually arriving stream of tweets, extract hashtags
and mentions of other users, compute the most popular
hashtag in each connected component of the graph of
users mentioning other users, and provide interactive ac-
cess to the top hashtag in a user’s connected component.

The dataflow graph follows the outline in Figure 1.
There are two input stages: one for the stream of tweets
(each containing a user name and the raw tweet text)
and the other for requests, specified by a user name and
query identifier. The tweets feed in to an incremental
connected components computation [28]. To produce
the top hashtag for each component, the computation ex-
tracts the hashtags from each tweet, joins each hashtag
with the component ID (CID) for the user who tweeted
it, and groups the results by CID. Incoming queries are
joined with the CIDs to get the user’s CID, and then
with the top hashtags to produce the top hashtag from
that component. The logic of the program, not including
standard operators and an implementation of connected
components [28], requires 27 lines of code.

We add a new query once every 100 ms, and assess
the latency before Naiad returns the result to the external
program. To generate a constant volume of input data,
we introduce 32,000 tweets per second, which is higher
than the approximate rate of 10,000 tweets per second
in our dataset. We schedule data input according to real
time rather than processing the trace as quickly as possi-
ble, in order to analyze the effect on latency of updates
and queries arriving at different rates.

Figure 8 plots two time series of responses. In the
first (“Fresh”) all responses are produced in less than
one second, but the “shark fin” motif indicates that
queries are queued behind the work to update the com-
ponent structure and popular hashtags, which takes 500–
900 ms, because a correct answer cannot be provided
until this work completes. We can exploit Naiad’s sup-

451

Naiad is fast for iterative graph computation

Source: ‘Introducing Project Naiad and Differential Dataflow‘, https://www.youtube.com/watch?v=nRp3EQy6ccw

Thoughts, Comments, and Further Questions

• Is this kind of real-time querying useful?
• Many analytics workloads can be performed in batch mode

Thoughts, Comments, and Further Questions

• Is this kind of real-time querying useful?
• Many analytics workloads can be performed in batch mode

• Extremely sensitive to ‘micro-stragglers’ – single worker stalls
• Requires significant system optimization and tuning, not an easy ‘run

anywhere’ system

Thoughts, Comments, and Further Questions

• Is this kind of real-time querying useful?
• Many analytics workloads can be performed in batch mode

• Extremely sensitive to ‘micro-stragglers’ – single worker stalls
• Requires significant system optimization and tuning, not an easy ‘run

anywhere’ system

• Requires good partitions for good parallelism – relies on developer

Thoughts, Comments, and Further Questions

• Is this kind of real-time querying useful?
• Many analytics workloads can be performed in batch mode

• Extremely sensitive to ‘micro-stragglers’ – single worker stalls
• Requires significant system optimization and tuning, not an easy ‘run

anywhere’ system

• Requires good partitions for good parallelism – relies on developer
• Cannot support dynamic computation graphs

Thoughts, Comments, and Further Questions

• Timely Dataflow allows for Differential Dataflow – rather than
recompute on all the data, just recompute on the part that changed

Thoughts, Comments, and Further Questions

• Timely Dataflow allows for Differential Dataflow – rather than
recompute on all the data, just recompute on the part that changed
• Very well suited to real-time graph computation where number of

iterations might be dynamic (e.g. BFS)

Thoughts, Comments, and Further Questions

• Timely Dataflow allows for Differential Dataflow – rather than
recompute on all the data, just recompute on the part that changed
• Very well suited to real-time graph computation where number of

iterations might be dynamic (e.g. BFS)
• Matches performance of many specialized systems of the time

Questions?

