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3. Iterative Computation —i.e. loops

4. Strong Consistency Guarantees
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What is Timely Dataflow?

* Directed Graph of stateful vertices
* Allows for nested cycles

* Vertices send and receive timestamped messages allowing for a
partial ordering of computations that includes time

* This allows for parallel computation across epochs

* Global notification when all messages of given timestamp received ->
Allows us to reason about result ‘as of’ a certain time



Key Abstraction: Timestamps
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Achieving Timely Dataflow with Timestamps

e Dataflow through the graph is done by events (messages or
notification requests between nodes)

* Time always increases, so for an event e, only events with time t = te
can depend on e

e Scheduler a list of pointstamps = time + location of unprocessed
events
* Each pointstamp has an occurrence count and predecessor count

* When a pointstamp no longer has any predecessors (it is on the
frontier), all corresponding events can be released
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* Naiad implements data parallelism —
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Making Timely Dataflow Distributed

* Naiad implements data parallelism —
operating on multiple parts of the data at
once

* Logical computation graph translated into
physical graph

* Dependencies are always measured in the
logical graph — this is not always optimal,
but guarantees correctness
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Making Timely Dataflow Distributed

e Each worker maintains a local view of global occurrence and
precedence counts

* When an event is dispatched by a worker, it broadcasts update to all
other workers

* By processing incoming updates from a given worker in FIFO order, we
guarantee that the local frontier is always a subset of the global
frontier



Optimizing Broadcasts

1. Progress tracking is done on logical graph, which is much smaller
than physical graph

2. Updates are accumulated in a local buffer — updates with the same
pointstamp are combined into one update



What do Naiad programs look like?

// la. Define input stages for the dataflow.
var input = controller.NewInput<string>();

// 1lb. Define the timely dataflow graph.
// Here, we use LINQ to implement MapReduce.

var result = input.SelectMany(y => map(y))
.GroupBy (y => key (y),
(k, vs) => reduce(k, vs));

// lc. Define output callbacks for each epoch
result.Subscribe (result => { ... });

// 2. Supply input data to the query.
input.OnNext (/+* 1st epoch data */);
input.OnNext (/+* 2nd epoch data =*/);
input.OnNext (/+* 3rd epoch data =*/);
input.OnCompleted() ;



Naiad is Fast for Iterative Graph Computation

* Want to perform connected components on twitter mention graph
* Also want to show top hashtag in each component

* One input stream of incoming tweets — 32k per second
* One query stream of usernames — 1 every 100ms
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Naiad is fast for iterative graph computation
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Source: ‘Introducing Project Naiad and Differential Dataflow’, https://www.youtube.com/watch?v=nRp3EQy6ccw
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Thoughts, Comments, and Further Questions

* Is this kind of real-time querying useful?
* Many analytics workloads can be performed in batch mode

* Extremely sensitive to ‘micro-stragglers’ — single worker stalls

e Requires significant system optimization and tuning, not an easy ‘run
anywhere’ system

* Requires good partitions for good parallelism — relies on developer
e Cannot support dynamic computation graphs
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Thoughts, Comments, and Further Questions

* Timely Dataflow allows for Differential Dataflow — rather than
recompute on all the data, just recompute on the part that changed

* Very well suited to real-time graph computation where number of
iterations might be dynamic (e.g. BFS)

* Matches performance of many specialized systems of the time



Questions?



