Paper Review
Naiad: A Timely Dataflow
System’

Theo Long
19th October 2022

Naiad: High Performance Parallel Processing

User queries Low-latency query
are received responses are delivered

Queries are
joined with

processed data

Complex processing
incrementally re-
—————————— executes to reflect

Updates to
data arrive changed data /

Naiad: High Performance Parallel Processing

1. High throughput (like batch

processing)

User queries Low-latency query
are received responses are delivered

Queries are
joined with
processed data

Complex processing
incrementally re-
——————————— executes to reflect

Updates to
data arrive changed data /

Naiad: High Performance Parallel Processing

1. High throughput (like batch

processing)

2. Low latency (like stream

processing)

User queries Low-latency query
are received responses are delivered

joined with
processed data

Complex processing
incrementally re-
——————————— executes to reflect

Updates to
data arrive changed data /

Naiad: High Performance Parallel Processing

1. High throughput (like batch

User queries Low-latency query

p rocessi ng) are received responses are delivered

2. Low latency (like stream

joined with

process in g) processed data
Complex processing
. . . incrementally re-
3. Iterat|ve CompUtat|On — l.e. |OOpS Updatesto |] executes to reflect

data arrive changed data /

Naiad: High Performance Parallel Processing

1. High throughput (like batch

User queries Low-latency query

p rocessi ng) are received responses are delivered

2. Low latency (like stream

joined with
p roceSSi ng) processed data
Complex processing
\ incrementally re-

Updatesto | executes to reflect

data arrive changed data /

3. Iterative Computation —i.e. loops

4. Strong Consistency Guarantees

What is Timely Dataflow?

What is Timely Dataflow?

* Directed Graph of stateful vertices

What is Timely Dataflow?

* Directed Graph of stateful vertices
* Allows for nested cycles

What is Timely Dataflow?

* Directed Graph of stateful vertices
* Allows for nested cycles

* Vertices send and receive timestamped messages allowing for a
partial ordering of computations that includes time

What is Timely Dataflow?

* Directed Graph of stateful vertices
* Allows for nested cycles

* Vertices send and receive timestamped messages allowing for a
partial ordering of computations that includes time

* This allows for parallel computation across epochs

What is Timely Dataflow?

* Directed Graph of stateful vertices
* Allows for nested cycles

* Vertices send and receive timestamped messages allowing for a
partial ordering of computations that includes time

* This allows for parallel computation across epochs

* Global notification when all messages of given timestamp received ->
Allows us to reason about result ‘as of’ a certain time

Key Abstraction: Timestamps

epoch loop counters
—~ = 7

Timestamp : (e €N, (c1,...,c;) € N¥)

i 1
/-[Streaming context J \

Loop context

Vertex Input timestamp Output timestamp
. J

Ingress (e,{(c1y---,Ck)) (e,{c1,...,ck,0))

Egress (e,{c1y---scrschrr)) (e {cry--eycCk))

Feedback (e, {ci,...,ck)) (e,{(c1y...,cx+1))

Achieving Timely Dataflow with Timestamps

e Dataflow through the graph is done by events (messages or
notification requests between nodes)

Achieving Timely Dataflow with Timestamps

e Dataflow through the graph is done by events (messages or
notification requests between nodes)

* Time always increases, so for an event e, only events with time t = te
can depend on e

Achieving Timely Dataflow with Timestamps

e Dataflow through the graph is done by events (messages or
notification requests between nodes)

* Time always increases, so for an event e, only events with time t = te
can depend on e

e Scheduler a list of pointstamps = time + location of unprocessed
events

* Each pointstamp has an occurrence count and predecessor count

Achieving Timely Dataflow with Timestamps

e Dataflow through the graph is done by events (messages or
notification requests between nodes)

* Time always increases, so for an event e, only events with time t = te
can depend on e

e Scheduler a list of pointstamps = time + location of unprocessed
events
* Each pointstamp has an occurrence count and predecessor count

* When a pointstamp no longer has any predecessors (it is on the
frontier), all corresponding events can be released

Making Timely Dataflow Distributed

Logical graph

%

Worker
)
[]
N
Progress tracking = ~
protocol I—
C__ TCP/IP network
Process =F—>
— ¥
[] T
[]

Making Timely Dataflow Distributed

* Naiad implements data parallelism —
operating on multiple parts of the data at
once

Logical graph

%

Worker

[(.

Progress tracking
protocol

Process N

C__ TCP/IP network

¥

[()

X

[()

ik

Making Timely Dataflow Distributed

* Naiad implements data parallelism —
operating on multiple parts of the data at
once

* Logical computation graph translated into
physical graph

Logical graph

%

Worker

[(.

Progress tracking
protocol

Process —

C__ TCP/IP network

¥

[()
[()

X

ik

Making Timely Dataflow Distributed

* Naiad implements data parallelism —
operating on multiple parts of the data at
once

* Logical computation graph translated into
physical graph

* Dependencies are always measured in the
logical graph — this is not always optimal,
but guarantees correctness

Logical graph e—m-)w
Wi E @ [Scheduler X
N
Progress tracking = A4
protocol {—
C__ TCP/IP network
Process e N
1tV

Making Timely Dataflow Distributed

e Each worker maintains a local view of global occurrence and
precedence counts

Making Timely Dataflow Distributed

e Each worker maintains a local view of global occurrence and
precedence counts

* When an event is dispatched by a worker, it broadcasts update to all
other workers

Making Timely Dataflow Distributed

e Each worker maintains a local view of global occurrence and
precedence counts

* When an event is dispatched by a worker, it broadcasts update to all
other workers

* By processing incoming updates from a given worker in FIFO order, we
guarantee that the local frontier is always a subset of the global
frontier

Optimizing Broadcasts

1. Progress tracking is done on logical graph, which is much smaller
than physical graph

2. Updates are accumulated in a local buffer — updates with the same
pointstamp are combined into one update

What do Naiad programs look like?

// la. Define input stages for the dataflow.
var input = controller.NewInput<string>();

// 1lb. Define the timely dataflow graph.
// Here, we use LINQ to implement MapReduce.

var result = input.SelectMany(y => map(y))
.GroupBy (y => key (y),
(k, vs) => reduce(k, vs));

// lc. Define output callbacks for each epoch
result.Subscribe (result => { ... });

// 2. Supply input data to the query.
input.OnNext (/+* 1st epoch data */);
input.OnNext (/+* 2nd epoch data =*/);
input.OnNext (/+* 3rd epoch data =*/);
input.OnCompleted() ;

Naiad is Fast for Iterative Graph Computation

* Want to perform connected components on twitter mention graph
* Also want to show top hashtag in each component

* One input stream of incoming tweets — 32k per second
* One query stream of usernames — 1 every 100ms

1000 ¢
£ B RN A N A T T A T S R I N AR AR AN
o MO0 |iriiii biian i b it i
(0]
n
S 10
2 v |
()] o
o [' S
i Fresh ------- 1s delay
1 | |
30 35 40 45 50

Time from start of trace (s)

Naiad is fast for iterative graph computation

p—
I | Twitter SCC E I

Twitter demo
&

® odiacfacts 4089 ° “. °

® rowplaying 2768 E O

' bieberfact 2203 .‘

@ camfollowback 1579 ®lakewith petie

@& tinychat 127 ® ®
@ D

. amemoryyoucantforget 1217)

@ :dos 1044 o @

Source: ‘Introducing Project Naiad and Differential Dataflow’, https://www.youtube.com/watch?v=nRp3EQy6ccw

Thoughts, Comments, and Further Questions

* Is this kind of real-time querying useful?
* Many analytics workloads can be performed in batch mode

Thoughts, Comments, and Further Questions

* Is this kind of real-time querying useful?
* Many analytics workloads can be performed in batch mode

* Extremely sensitive to ‘micro-stragglers’ — single worker stalls

e Requires significant system optimization and tuning, not an easy ‘run
anywhere’ system

Thoughts, Comments, and Further Questions

* Is this kind of real-time querying useful?
* Many analytics workloads can be performed in batch mode

* Extremely sensitive to ‘micro-stragglers’ — single worker stalls

e Requires significant system optimization and tuning, not an easy ‘run
anywhere’ system

* Requires good partitions for good parallelism — relies on developer

Thoughts, Comments, and Further Questions

* Is this kind of real-time querying useful?
* Many analytics workloads can be performed in batch mode

* Extremely sensitive to ‘micro-stragglers’ — single worker stalls

e Requires significant system optimization and tuning, not an easy ‘run
anywhere’ system

* Requires good partitions for good parallelism — relies on developer
e Cannot support dynamic computation graphs

Thoughts, Comments, and Further Questions

* Timely Dataflow allows for Differential Dataflow — rather than
recompute on all the data, just recompute on the part that changed

Thoughts, Comments, and Further Questions

* Timely Dataflow allows for Differential Dataflow — rather than
recompute on all the data, just recompute on the part that changed

* Very well suited to real-time graph computation where number of
iterations might be dynamic (e.g. BFS)

Thoughts, Comments, and Further Questions

* Timely Dataflow allows for Differential Dataflow — rather than
recompute on all the data, just recompute on the part that changed

* Very well suited to real-time graph computation where number of
iterations might be dynamic (e.g. BFS)

* Matches performance of many specialized systems of the time

Questions?

