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ABSTRACT

Client-side video players employ adaptive bitrate (ABR) algorithms
to optimize user quality of experience (QoE). Despite the abundance
of recently proposed schemes, state-of-the-art ABR algorithms suffer
from a key limitation: they use fixed control rules based on simplified
or inaccurate models of the deployment environment. As a result,
existing schemes inevitably fail to achieve optimal performance
across a broad set of network conditions and QoE objectives.

We propose Pensieve, a system that generates ABR algorithms
using reinforcement learning (RL). Pensieve trains a neural network
model that selects bitrates for future video chunks based on obser-
vations collected by client video players. Pensieve does not rely
on pre-programmed models or assumptions about the environment.
Instead, it learns to make ABR decisions solely through observations
of the resulting performance of past decisions. As a result, Pensieve
automatically learns ABR algorithms that adapt to a wide range of
environments and QoE metrics. We compare Pensieve to state-of-the-
art ABR algorithms using trace-driven and real world experiments
spanning a wide variety of network conditions, QoE metrics, and
video properties. In all considered scenarios, Pensieve outperforms
the best state-of-the-art scheme, with improvements in average QoE
of 12%-25%. Pensieve also generalizes well, outperforming existing
schemes even on networks for which it was not explicitly trained.
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1 INTRODUCTION

Recent years have seen a rapid increase in the volume of HTTP-
based video streaming traffic [7, 39]. Concurrent with this increase
has been a steady rise in user demands on video quality. Many studies
have shown that users will quickly abandon video sessions if the
quality is not sufficient, leading to significant losses in revenue for
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content providers [12, 25]. Nevertheless, content providers continue
to struggle with delivering high-quality video to their viewers.

Adaptive bitrate (ABR) algorithms are the primary tool that con-
tent providers use to optimize video quality. These algorithms run
on client-side video players and dynamically choose a bitrate for
each video chunk (e.g., 4-second block). ABR algorithms make bi-
trate decisions based on various observations such as the estimated
network throughput and playback buffer occupancy. Their goal is
to maximize the user’s QoE by adapting the video bitrate to the
underlying network conditions. However, selecting the right bitrate
can be very challenging due to (1) the variability of network through-
put [18, 42, 49, 52, 53]; (2) the conflicting video QoE requirements
(high bitrate, minimal rebuffering, smoothness, etc.); (3) the cascad-
ing effects of bitrate decisions (e.g., selecting a high bitrate may
drain the playback buffer to a dangerous level and cause rebuffering
in the future); and (4) the coarse-grained nature of ABR decisions.
We elaborate on these challenges in §2.

The majority of existing ABR algorithms (§7) develop fixed con-
trol rules for making bitrate decisions based on estimated network
throughput (“rate-based” algorithms [21, 42]), playback buffer size
(“buffer-based” schemes [19, 41]), or a combination of the two
signals [26]. These schemes require significant tuning and do not
generalize to different network conditions and QoE objectives. The
state-of-the-art approach, MPC [51], makes bitrate decisions by solv-
ing a QoE maximization problem over a horizon of several future
chunks. By optimizing directly for the desired QoE objective, MPC
can perform better than approaches that use fixed heuristics. How-
ever, MPC’s performance relies on an accurate model of the system
dynamics—particularly, a forecast of future network throughput.
As our experiments show, this makes MPC sensitive to throughput
prediction errors and the length of the optimization horizon (§3).

In this paper, we propose Pensieve,! a system that learns ABR
algorithms automatically, without using any pre-programmed con-
trol rules or explicit assumptions about the operating environment.
Pensieve uses modern reinforcement learning (RL) techniques [27,
30, 43] to learn a control policy for bitrate adaptation purely through
experience. During training, Pensieve starts knowing nothing about
the task at hand. It then gradually learns to make better ABR de-
cisions through reinforcement, in the form of reward signals that
reflect video QoE for past decisions.

Pensieve’s learning techniques mine information about the actual
performance of past choices to optimize its control policy for the
characteristics of the network. For example, Pensieve can learn how
much playback buffer is necessary to mitigate the risk of rebuffering
in a specific network, based on the network’s inherent throughput
variability. Or it can learn how much to rely on throughput versus
buffer occupancy signals, or how far into the future to plan its deci-
sions automatically. By contrast, approaches that use fixed control

!'A pensieve is a device used in Harry Potter [38] to review memories.
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rules or simplified network models are unable to optimize their bi-
trate decisions based on all available information about the operating
environment.

Pensieve represents its control policy as a neural network that
maps “raw” observations (e.g., throughput samples, playback buffer
occupancy, video chunk sizes) to the bitrate decision for the next
chunk. The neural network provides an expressive and scalable way
to incorporate a rich variety of observations into the control policy.?
Pensieve trains this neural network using A3C [30], a state-of-the-art
actor-critic RL algorithm. We describe the basic training algorithm
and present extensions that allow a single neural network model to
generalize to videos with different properties, e.g., the number of
encodings and their bitrates (§4).

To train its models, Pensieve uses simulations over a large corpus
of network traces. Pensieve uses a fast and simple chunk-level simu-
lator. While Pensieve could also train using packet-level simulations,
emulations, or data collected from live video clients (§6), the chunk-
level simulator is much faster and allows Pensieve to “experience”
100 hours of video downloads in only 10 minutes. We show that Pen-
sieve’s simulator faithfully models video streaming with live video
players, provided that the transport stack is configured to achieve
close to the true network capacity (§4.1).

We evaluate Pensieve using a full system implementation (§4.4).
Our implementation deploys Pensieve’s neural network model on an
ABR server, which video clients query to get the bitrate to use for the
next chunk; client requests include observations about throughput,
buffer occupancy, and video properties. This design removes the
burden of performing neural network computation on video clients,
which may have limited computation power, e.g., TVs, mobile de-
vices, etc. (§6).

We compare Pensieve to state-of-the-art ABR algorithms using
a broad set of network conditions (both with trace-based emulation
and in the wild) and QoE metrics (§5.2). We find that in all con-
sidered scenarios, Pensieve rivals or outperforms the best existing
scheme, with average QoE improvements ranging from 12%-25%.
Additionally, our results show Pensieve’s ability to generalize to
unseen network conditions and video properties. For example, on
both broadband and HSDPA networks, Pensieve was able to outper-
form all existing ABR algorithms by training solely with a synthetic
dataset. Finally, we present results which highlight Pensieve’s low
overhead and lack of sensitivity to system parameters, e.g., in the
neural network (§5.4).

2 BACKGROUND

HTTP-based adaptive streaming (standardized as DASH [2]) is the
predominant form of video delivery today. By transmitting video
using HTTP, content providers are able to leverage existing CDN
infrastructure and maintain simplified (stateless) backends. Further,
HTTP is compatible with a multitude of client-side applications such
as web browsers and mobile applications.

In DASH systems, videos are stored on servers as multiple chunks,
each of which represents a few seconds of the overall video playback.
Each chunk is encoded at several discrete bitrates, where a higher

2A few prior schemes [6, 8, 9, 47] have applied RL to video streaming. But these
schemes use basic “tabular” RL approaches [43]. As a result, they must rely on simplified
network models and perform poorly in real network conditions. We discuss these
schemes further in §5.4 and §7.
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bitrate implies a higher quality and thus a larger chunk size. Chunks
across bitrates are aligned to support seamless quality transitions,
i.e., a video player can switch to a different bitrate at any chunk
boundary without fetching redundant bits or skipping parts of the
video.

Figure 1 illustrates the end-to-end process of streaming a video
over HTTP today. As shown, a player embedded in a client applica-
tion first sends a token to a video service provider for authentication.
The provider responds with a manifest file that directs the client
to a CDN hosting the video and lists the available bitrates for the
video. The client then requests video chunks one by one, using an
adaptive bitrate (ABR) algorithm. These algorithms use a variety of
different inputs (e.g., playback buffer occupancy, throughput mea-
surements, etc.) to select the bitrate for future chunks. As chunks
are downloaded, they are played back to the client; note that play-
back of a given chunk cannot begin until the entire chunk has been
downloaded.

Challenges: The policies employed by ABR algorithms heavily
influence video streaming performance. However, these algorithms
face four primary practical challenges:

(1) Network conditions can fluctuate over time and can vary signifi-
cantly across environments. This complicates bitrate selection
as different scenarios may require different weights for input
signals. For example, on time-varying cellular links, throughput
prediction is often inaccurate and cannot account for sudden fluc-
tuations in network bandwidth—inaccurate predictions can lead
to underutilized networks (lower video quality) or inflated down-
load delays (rebuffering). To overcome this, ABR algorithms
must prioritize more stable input signals like buffer occupancy
in these scenarios.

(2) ABR algorithms must balance a variety of QoE goals such as
maximizing video quality (i.e., highest average bitrate), mini-
mizing rebuffering events (i.e., scenarios where the client’s play-
back buffer is empty), and maintaining video quality smoothness
(i.e., avoiding constant bitrate fluctuations). However, many of
these goals are inherently conflicting [3, 18, 21]. For example,
on networks with limited bandwidth, consistently requesting
chunks encoded at the highest possible bitrate will maximize
quality, but may increase rebuffer rates. Conversely, on vary-
ing networks, choosing the highest bitrate that the network can
support at any time could lead to substantial quality fluctuation,
and hence degraded smoothness. To further complicate matters,
preferences among these QoE factors vary significantly across
users [23, 31, 32, 34].

(3) Bitrate selection for a given chunk can have cascading effects
on the state of the video player. For example, selecting a high
bitrate may deplete the playback buffer and force subsequent
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Figure 2: Applying reinforcement learning to bitrate adapta-
tion.

chunks to be downloaded at low bitrates (to avoid rebuffering).
Additionally, a given bitrate selection will directly influence the
next decision when smoothness is considered—ABR algorithms
will be less inclined to change bitrates.

(4) The control decisions available to ABR algorithms are coarse-
grained as they are limited to the available bitrates for a given
video. Thus, there exist scenarios where the estimated through-
put falls just below one bitrate, but well above the next available
bitrate. In these cases, the ABR algorithm must decide whether
to prioritize higher quality or the risk of rebuffering.

3 LEARNING ABR ALGORITHMS

In this paper, we consider a learning-based approach to generating
ABR algorithms. Unlike approaches which use preset rules in the
form of fine-tuned heuristics, our techniques attempt to learn an
ABR policy from observations. Specifically, our approach is based on
reinforcement learning (RL). RL considers a general setting in which
an agent interacts with an environment. At each time step t, the agent
observes some state s, and chooses an action a;. After applying
the action, the state of the environment transitions to s;41 and the
agent receives a reward ry. The goal of learning is to maximize
the expected cumulative discounted reward: E [2;0:0 V! rt], where
y € (0,1] is a factor discounting future rewards.

Figure 2 summarizes how RL can be applied to bitrate adaptation.
As shown, the decision policy guiding the ABR algorithm is not
handcrafted. Instead, it is derived from training a neural network. The
ABR agent observes a set of metrics including the client playback
buffer occupancy, past bitrate decisions, and several raw network
signals (e.g., throughput measurements) and feeds these values to the
neural network, which outputs the action, i.e., the bitrate to use for
the next chunk. The resulting QoE is then observed and passed back
to the ABR agent as a reward. The agent uses the reward information
to train and improve its neural network model. More details about
the specific training algorithms we used are provided in §4.2.

To motivate learning-based ABR algorithms, we now provide
two examples where existing techniques that rely on fixed heuristics
can perform poorly. We choose these examples for illustrative pur-
poses. We do not claim that they are indicative of the performance
gains with learning in realistic network scenarios. We perform thor-
ough quantitative evaluations comparing learning-generated ABR
algorithms to existing schemes in §5.2.

In these examples, we compare RL-generated ABR algorithms to
MPC [51]. MPC uses both throughput estimates and observations
about buffer occupancy to select bitrates that maximize a given QoE
metric across a future chunk horizon. Here we consider robustMPC,
a version of MPC that is configured to use a horizon of 5 chunks,
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and a conservative throughput estimate which normalizes the de-
fault throughput prediction with the max prediction error over the
past 5 chunks. As the MPC paper shows, and our results validate,
robustMPC’s conservative throughput prediction significantly im-
proves performance over default MPC, and achieves a high level
of performance in most cases (§5.2). However, heuristics like ro-
bustMPC’s throughput prediction require careful tuning and can
backfire when their design assumptions are violated.

Example 1: The first example considers a scenario in which the
network throughput is highly variable. Figure 3a compares the net-
work throughput specified by the input trace with the throughput
estimates used by robustMPC. As shown, robustMPC’s estimates
are overly cautious, hovering around 2 Mbps instead of the average
network throughput of roughly 4.5 Mbps. These inaccurate through-
put predictions prevent robustMPC from reaching high bitrates even
though the occupancy of the playback buffer continually increases.
In contrast, the RL-generated algorithm is able to properly assess
the high average throughput (despite fluctuations) and switch to the
highest available bitrate once it has enough cushion in the playback
buffer. The RL-generated algorithm considered here was trained on
a large corpus of real network traces (§5.1), not the synthetic trace
in this experiment. Yet, it was able to make the appropriate decision.

Example 2: In our second example, both robustMPC and the RL-
generated ABR algorithm optimize for a new QoE metric which is
geared towards users who strongly prefer HD video. This metric
assigns high reward to HD bitrates and low reward to all other bitrates
(details in Table 1), while still favoring smoothness and penalizing
rebuffering. To optimize for this metric, an ABR algorithm should
attempt to build the client’s playback buffer to a high enough level
such that the player can switch up to and maintain an HD bitrate level.
Using this approach, the video player can maximize the amount of
time spent streaming HD video, while minimizing rebuffering time
and bitrate transitions. However, performing well in this scenario
requires long term planning since at any given instant, the penalty of
selecting a higher bitrate (HD or not) may be incurred many chunks
in the future when the buffer cannot support multiple HD downloads.

Figure 3b illustrates the bitrate selections made by each of these
algorithms, and the effects that these decisions have on the playback
buffer. Note that robustMPC and the RL-generated algorithm were
both configured to optimize for this new QoE metric. As shown,
robustMPC is unable to apply the aforementioned policy. Instead,
robustMPC maintains a medium-sized playback buffer and requests
chunks at bitrates that fall between the lowest level (300 kbps)
and the lowest HD level (1850 kbps). The reason is that, despite
being tuned to consider a horizon of future chunks at every step,
robustMPC fails to plan far enough into the future. In contrast,
the RL-generated ABR algorithm is able to actively implement
the policy outlined above. It quickly grows the playback bufter by
requesting chunks at 300 kbps, and then immediately jumps to the
HD quality of 1850 kbps; it is able to then maintain this level for
nearly 80 seconds, thereby ensuring quality smoothness.

Summary: robustMPC has difficulty (1) factoring throughput fluc-
tuations and prediction errors into its decisions, and (2) choosing the
appropriate optimization horizon. These deficiencies exist because
MPC lacks an accurate model of network dynamics—thus it relies on
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Figure 3: Profiling bitrate selections, buffer occupancy, and throughput estimates with robustMPC [51] and Pensieve.

simple and sub-optimal heuristics such as conservative throughput
predictions and a small optimization horizon. More generally, any
ABR algorithm that relies on fixed heuristics or simplified system
models suffers from these limitations. By contrast, RL-generated
algorithms learn from actual performance resulting from different
decisions. By incorporating this information into a flexible neural
network policy, RL-generated ABR algorithms can automatically
optimize for different network characteristics and QoE objectives.

4 DESIGN

In this section, we describe the design and implementation of Pen-
sieve, a system that generates RL-based ABR algorithms and applies
them to video streaming sessions. We start by explaining the training
methodology (§4.1) and algorithms (§4.2) underlying Pensieve. We
then describe an enhancement to the basic training algorithm, which
enables Pensieve to support different videos using a single model
(§4.3). Finally, we explain the implementation details of Pensieve
and how it applies learned models to real streaming sessions (§4.4).

4.1 Training Methodology

The first step of Pensieve is to generate an ABR algorithm using
RL (§3). To do this, Pensieve runs a training phase in which the
learning agent explores a video streaming environment. Ideally,
training would occur using actual video streaming clients. However,
emulating the standard video streaming environment entails using a
web browser to continually download video chunks. This approach
is slow, as the training algorithm must wait until all of the chunks in
a video are completely downloaded before updating its model.

To accelerate this process, Pensieve trains ABR algorithms in a
simple simulation environment that faithfully models the dynamics
of video streaming with real client applications. Pensieve’s simulator

maintains an internal representation of the client’s playback buffer.

For each chunk download, the simulator assigns a download time
that is solely based on the chunk’s bitrate and the input network

throughput traces. The simulator then drains the playback buffer by
the current chunk’s download time, to represent video playback dur-
ing the download, and adds the playback duration of the downloaded
chunk to the buffer. The simulator carefully keeps track of rebuffer-
ing events that arise as the buffer occupancy changes, i.e., scenarios
where the chunk download time exceeds the buffer occupancy at
the start of the download. In scenarios where the playback buffer
cannot accommodate video from an additional chunk download,
Pensieve’s simulator pauses requests for 500 ms before retrying.3
After each chunk download, the simulator passes several state obser-
vations to the RL agent for processing: the current buffer occupancy,
rebuffering time, chunk download time, size of the next chunk (at
all bitrates), and the number of remaining chunks in the video. We
describe how this input is used by the RL agent in more detail in
§4.2. Using this chunk-level simulator, Pensieve can “experience’
100 hours of video downloads in only 10 minutes.

Though modeling the application layer semantics of client video
players is straightforward, faithful simulation is complicated by
intricacies at the transport layer. Specifically, video players may
not request future chunks as soon as a chunk download completes,
e.g., because the playback buffer is full. Such delays can trigger
the underlying TCP connection to revert to slow start, a behavior
known as slow-start-restart [4]. Slow start may in turn prevent the
video player from fully using the available bandwidth, particularly
for small chunk sizes (low bitrates). This behavior makes simulation
challenging as it inherently ties network throughput to the ABR
algorithm being used, e.g., schemes that fill buffers quickly will
experience more slow start phases and thus less network utilization.

To verify this behavior, we loaded the test video described in §5.1
over an emulated 6 Mbps link using four ABR algorithms, each of
which continually requests chunks at a single bitrate. We loaded the
video with each scheme twice, both with slow-start-restart enabled

s

3This is the default request retry rate used by DASH players [2].
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Figure 4: Profiling the throughput usage per-chunk of commod-
ity video players with and without TCP slow start restart.

and disabled.* Figure 4 shows the throughput usage during chunk
downloads for each bitrate in both scenarios. As shown, with slow-
start-restart enabled, the throughput depends on the bitrate of the
chunk; ABR algorithms using lower bitrates (smaller chunk sizes)
achieve less throughput per chunk. However, throughput is consistent
and matches the available bandwidth (6 Mbps) for different bitrates
if we disable slow-start-restart.

Pensieve’s simulator assumes that the throughput specified by
the trace is entirely used by each chunk download. As the above
results show, this can be achieved by disabling slow-start-restart on
the video server. Disabling slow-start-restart could increase traffic
burstiness, but recent standards efforts are tackling the same problem
for video streaming more gracefully by pacing the initial burst from
TCP following an idle period [13, 17].

While it is possible to use a more accurate simulator (e.g., packet-
level) to train Pensieve, in the end, no simulation can capture all
real world system artifacts with 100% accuracy. However, we find
that Pensieve can learn very high quality ABR algorithms (§5.2)
using imperfect simulations, as long as it experiences a large enough
variety of network conditions during training. This is a consequence
of Pensieve’s strong generalization ability (§5.3).

4.2 Basic Training Algorithm

We now describe our training algorithms. As shown in Figure 5,
Pensieve’s training algorithm uses A3C [30], a state-of-the-art actor-
critic method which involves training two neural networks. The
detailed functionalities of these networks are explained below.

Inputs: After the download of each chunk ¢, Pensieve’s learning
agent takes state inputs s; = (X3, 7r, 1¢, by, ¢¢, I) to its neural net-
works. x; is the network throughput measurements for the past k
video chunks; 7; is the download time of the past k video chunks,
which represents the time interval of the throughput measurements;
ny is a vector of m available sizes for the next video chunk; b; is
the current buffer level; c; is the number of chunks remaining in the
video; and [; is the bitrate at which the last chunk was downloaded.

4In Linux, the net.ipv4.tcp_slow_start_after_idle parameter can be
used to set this configuration.
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Figure 5: The Actor-Critic algorithm that Pensieve uses to gen-
erate ABR policies (described in §4.4).

Policy: Upon receiving s;, Pensieve’s RL agent needs to take an
action a; that corresponds to the bitrate for the next video chunk.
The agent selects actions based on a policy, defined as a probability
distribution over actions 7 : m(s¢,ar) — [0,1]. n(st,ar) is the
probability that action a; is taken in state s;. In practice, there are
intractably many {state, action} pairs, e.g., throughput estimates and
buffer occupancies are continuous real numbers. To overcome this,
Pensieve uses a neural network (NN) [15] to represent the policy
with a manageable number of adjustable parameters, 6, which we
refer to as policy parameters. Using 0, we can represent the policy
as 7y (s¢, ar). NNs have recently been applied successfully to solve
large-scale RL tasks [27, 29, 40]. An advantage of NNs is that they
do not need hand-crafted features and can be applied directly to
“raw” observation signals. The actor network in Figure 5 depicts how
Pensieve uses an NN to represent an ABR policy. We describe how
we design the specific architecture of the NN in §5.3.

Policy gradient training: After applying each action, the simulated
environment provides the learning agent with a reward r; for that
chunk. Recall from §3 that the primary goal of the RL agent is
to maximize the expected cumulative (discounted) reward that it
receives from the environment. Thus, the reward is set to reflect the
performance of each chunk download according to the specific QoE
metric we wish to optimize. See §5 for examples of QoE metrics.
The actor-critic algorithm used by Pensieve to train its policy is
a policy gradient method [44]. We highlight the key steps of the
algorithm, focusing on the intuition. The key idea in policy gradient
methods is to estimate the gradient of the expected total reward
by observing the trajectories of executions obtained by following
the policy. The gradient of the cumulative discounted reward with
respect to the policy parameters, 6, can be computed as [30]:

00

VoBry | ) v're| =By [Vologma(s,0)A™ (5,0)]. (1)

t=0

A" (s, a) is the advantage function, which represents the difference
in the expected total reward when we deterministically pick action
a in state s, compared with the expected reward for actions drawn
from policy 7g. The advantage function encodes how much better a
specific action is compared to the “average action” taken according
to the policy.
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In practice, the agent samples a trajectory of bitrate decisions and
uses the empirically computed advantage A(s;, a;), as an unbiased
estimate of A0 (s¢, a;). Each update of the actor network parameter
0 follows the policy gradient,

0 «— 9+aZV9 log 7o (st, ar)A(st, ar), 2)
7

where « is the learning rate. The intuition behind this update rule is as
follows. The direction Vg log 7y (s¢, a;) specifies how to change the
policy parameters in order to increase 7y (s¢, az) (i.e., the probability
of action a; at state s;). Equation 2 takes a step in this direction. The
size of the step depends on the value of the advantage for action a;
in state s;. Thus, the net effect is to reinforce actions that empirically
lead to better returns.

To compute the advantage A(s;, a;) for a given experience, we
need an estimate of the value function, v (s)—the expected total
reward starting at state s and following the policy 7y. The role of
the critic network in Figure 5 is to learn an estimate of v’ (s) from
empirically observed rewards. We follow the standard Temporal
Difference method [43] to train the critic network parameters 6.,

2
Oy — 0o =’ Y Vo, (re +yV™ (st41500) = V7 (513600)) . (3)
t

where V70 (-; 0,,) is the estimate of v (-), output by the critic net-
work, and a’ is the learning rate for the critic. For an experience
(s¢, ag, re,s¢41) (i.€., take action ay in state s¢, receive reward ry, and
transition to s;+1), the advantage A(s¢, a;) can now be estimated as
re + YV (sp41;00) — V0 (s¢50,). See [24] for more details.

It is important to note that the critic network merely helps to train
the actor network. Post-training, only the actor network is required
to execute the ABR algorithm and make bitrate decisions.

Finally, we must ensure that the RL agent explores the action
space adequately during training to discover good policies. One
common practice to encourage exploration is to add an entropy
regularization term to the actor’s update rule [30]; this can be crit-
ical in helping the learning agent converge to a good policy [50].
Concretely, we modify Equation 2 to be,

6 0+ay Vologrg(se.a)Als.ar) + foH(ro(lsr)). (4)
t

where H(-) is the entropy of the policy (the probability distribution
over actions) at each time step. This term encourages exploration
by pushing 6 in the direction of higher entropy. The parameter f is
set to a large value at the start of training (to encourage exploration)
and decreases over time to emphasize improving rewards (§4.4).

The detailed derivation and pseudocode can be found in [30] (§4
and Algorithm S3).

Parallel training: To further enhance and speed up training, Pen-
sieve spawns multiple learning agents in parallel, as suggested by the
A3C paper [30]. By default, Pensieve uses 16 parallel agents. Each
learning agent is configured to experience a different set of input
parameters (e.g., network traces). However, the agents continually
send their {state, action, reward} tuples to a central agent, which
aggregates them to generate a single ABR algorithm model. For
each sequence of tuples that it receives, the central agent uses the
actor-critic algorithm to compute a gradient and perform a gradient
descent step (Equations (3) and (4)). The central agent then updates
the actor network and pushes out the new model to the agent which
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Figure 6: Modification to the state input and the softmax output
to support multiple videos.

sent that tuple. Note that this can happen asynchronously among all
agents, i.e., there is no locking between agents [36].

Choice of algorithm: A variety of different algorithms could be
used to train the learning agent in the abstract RL framework de-
scribed above (e.g., DQN [29], REINFORCE [44], etc.). In our
design, we chose to use A3C [30] because (1) to the best of our
knowledge, it is the state-of-art and it has been successfully applied
to many other concrete learning problems [20, 48, 50]; and (2) in
the video streaming application, the asynchronous parallel training
framework supports online training in which many users concur-
rently send their experience feedback to the agent. We also compare
Pensieve with previous tabular Q-learning schemes [6] in §5.4.

4.3 Enhancement for multiple videos

The basic algorithm described in §4.2 has some practical issues. The
primary challenge is that videos can be encoded at different bitrate
levels and may have diverse chunk sizes due to variable bitrate en-
coding [41], e.g., chunk sizes for 720p video are not identical across
videos. Handling this variation would require each neural network
to take a variable sized set of inputs and produce a variable sized set
of outputs. The naive solution to supporting a broad range of videos
is to train a model for each possible set of video properties. Unfortu-
nately, this solution is not scalable. To overcome this, we describe
two enhancements to the basic algorithm that enable Pensieve to
generate a single model to handle multiple videos (Figure 6).

First, we pick canonical input and output formats that span the
maximum number of bitrate levels we expect to see in practice. For
example, a range of 13 levels covers the entire DASH reference
client video list [11]. Then, to determine the input state for a specific
video, we take the chunk sizes and map them to the index which has
the closest bitrate. The remaining input states, which pertain to the
bitrates that the video does not support, are zeroed out. For example,
in Figure 6, chunk sizes (n1, n2, n3) are mapped to the corresponding
indices, while the remaining input values are filled with zeroes.

The second change pertains to how the output of the actor net-
work is interpreted. For a given video, we apply a mask to the output
of the final softmax [5] layer in the actor network, such that the
output probability distribution is only over the bitrates that the video
actually supports. Formally, the mask is presented by a 0-1 vec-

tor [m1, my, ..., my ], and the modified softmax for the NN output
[z1, 22, ..., 2] will be B mye?i s
pi = S, mes

where p; is the normalized probability for action i. With this mod-
ification, the output probabilities are still a continuous function of
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the network parameters. The reason is that the mask values {m;}
are independent of the network parameters, and are only a function
of the input video. As a result, the standard back-propagation of
the gradient in the NN still holds and the training techniques estab-
lished in §4.2 can be applied without modification. We evaluate the
effectiveness of these modifications in more detail in §5.4.

4.4 Implementation

To generate ABR algorithms, Pensieve passes k = 8 past bandwidth
measurements to a 1D convolution layer (CNN) with 128 filters,
each of size 4 with stride 1. Next chunk sizes are passed to another
1D-CNN with the same shape. Results from these layers are then
aggregated with other inputs in a hidden layer that uses 128 neurons
to apply the softmax function (Figure 5). The critic network uses
the same NN structure, but its final output is a linear neuron (with
no activation function). During training, we use a discount factor
y = 0.99, which implies that current actions will be influenced by
100 future steps. The learning rates for the actor and critic are con-
figured to be 107 and 1073, respectively. Additionally, the entropy
factor f3 is controlled to decay from 1 to 0.1 over 10 iterations. We
keep all these hyperparameters fixed throughout our experiments.
While some tuning is useful, we found that Pensieve performs well
for a wide range of hyperparameter values. Thus we did not use
sophisticated hyperparameter tuning methods [14]. We implemented
this architecture using TensorFlow [1]. For compatibility, we lever-
aged the TFLearn deep learning library’s TensorFlow API [46] to
declare the neural network during both training and testing.

Once Pensieve has generated an ABR algorithm using its simula-
tor, it must apply the model’s rules to real video streaming sessions.
To do this, Pensieve runs on a standalone ABR server, implemented
using the Python BaseHTTPServer. Client requests are modified
to include additional information about the previous chunk down-
load and the video being streamed (§4.2). By collecting information
through client requests, Pensieve’s server and ABR algorithm can
remain stateless while still benefitting from observations that can
solely be collected in client video players. As client requests for indi-
vidual chunks arrive at the video server, Pensieve feeds the provided
observations through its actor NN model and responds to the video
client with the bitrate level to use for the next chunk download; the
client then contacts the appropriate CDN to fetch the corresponding
chunk. It is important to note that Pensieve’s ABR algorithm could
also operate directly inside video players. We evaluate the overhead
that a server-side deployment has on video QoE in §5.4, and discuss
other deployment models in more detail in §6.

5 EVALUATION

In this section, we experimentally evaluate Pensieve. Our experi-
ments cover a broad set of network conditions (both trace-based
and in the wild) and QoE metrics. Our results answer the following
questions:

(1) How does Pensieve compare to state-of-the-art ABR algorithms
in terms of video QoE? We find that, in all of the considered
scenarios, Pensieve is able to rival or outperform the best ex-
isting scheme, with average QoE improvements ranging from
12.1%-24.6% (§5.2); Figure 7 provides a summary.
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(2) Do models learned by Pensieve generalize to new network con-
ditions and videos? We find that Pensieve’s ABR algorithms are
able to maintain high levels of performance both in the presence
of new network conditions and new video properties (§5.3).

(3) How sensitive is Pensieve to various parameters such as the neu-
ral network architecture and the latency between the video client
and ABR server? Our experiments suggest that performance
is largely unaffected by these parameters (Tables 2 and 3). For
example, applying 100 ms RTT values between clients and the
Pensieve server reduces average QoE by only 3.5% (§5.4).

5.1 Methodology

Network traces: To evaluate Pensieve and state-of-the-art ABR
algorithms on realistic network conditions, we created a corpus of
network traces by combining several public datasets: a broadband
dataset provided by the FCC [10] and a 3G/HSDPA mobile dataset
collected in Norway [37]. The FCC dataset contains over 1 million
throughput traces, each of which logs the average throughput over
2100 seconds, at a 5 second granularity. We generated 1000 traces
for our corpus, each with a duration of 320 seconds, by concatenating
randomly selected traces from the “Web browsing” category in the
August 2016 collection. The HSDPA dataset comprises 30 minutes
of throughput measurements, generated using mobile devices that
were streaming video while in transit (e.g., via bus, train, etc.). To
match the duration of the FCC traces included in our corpus, we
generated 1000 traces (each spanning 320 seconds) using a sliding
window across the HSDPA dataset. To avoid scenarios where bitrate
selection is trivial, i.e., situations where picking the maximum bitrate
is always the optimal solution, or where the network cannot support
any available bitrate for an extended period, we only considered
original traces whose average throughput is less than 6 Mbps, and
whose minimum throughput is above 0.2 Mbps. We reformatted
throughput traces from both datasets to be compatible with the
Mahimahi [33] network emulation tool. Unless otherwise noted,
we used a random sample of 80% of our corpus as a training set
for Pensieve; we used the remaining 20% as a test set for all ABR
algorithms. All in all, our test set comprises of over 30 hours of
network traces.

Adaptation algorithms: We compare Pensieve to the following
algorithms which collectively represent the state-of-the-art in bitrate
adaptation:

(1) Buffer-Based (BB): mimics the buffer-based algorithm described
by Huang et al. [19] which uses a reservoir of 5 seconds and a
cushion of 10 seconds, i.e., it selects bitrates with the goal of
keeping the buffer occupancy above 5 seconds, and automati-
cally chooses the highest available bitrate if the buffer occupancy
exceeds 15 seconds.

(2) Rate-Based (RB): predicts throughput using the harmonic mean
of the experienced throughput for the past 5 chunk downloads.
It then selects the highest available bitrate that is below the
predicted throughput.

(3) BOLA [41]: uses Lyapunov optimization to select bitrates solely
considering buffer occupancy observations. We use the BOLA
implementation in dash.js [2].

(4) MPC [51]: uses buffer occupancy observations and throughput
predictions (computed in the same way as RB) to select the
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bitrate which maximizes a given QoE metric over a horizon of
5 future chunks.

(5) robustMPC [51]: uses the same approach as MPC, but accounts
for errors seen between predicted and observed throughputs by
normalizing throughput estimates by the max error seen in the
past 5 chunks.

Note: MPC involves solving an optimization problem for each bitrate

decision which maximizes the QoE metric over the next 5 video

chunks. The MPC [51] paper describes a method, fastMPC, which
precomputes the solution to this optimization problem for a quan-
tized set of input values (e.g., buffer size, throughput prediction, etc.).

Because the implementation of fastMPC is not publicly available,

we implemented MPC using our ABR server as follows. For each

bitrate decision, we solve the optimization problem exactly on the

ABR server by enumerating all possibilities for the next 5 chunks.

We found that the computation takes at most 27 ms for 6 bitrate

levels and has negligible impact on QoE.

Experimental setup: We modified dash.js (version 2.4) [2] to sup-
port each of the aforementioned state-of-the-art ABR algorithms.
For Pensieve and both variants of MPC, dash.js was configured
to fetch bitrate selection decisions from an ABR server that im-
plemented the corresponding algorithm. ABR servers ran on the
same machine as the client, and requests to these servers were
made using XMLHt t pRequest s. All other algorithms ran directly
in dash.js. The DASH player was configured to have a playback
buffer capacity of 60 seconds. Our evaluations used the “Envivio-
Dash3” video from the DASH-246 JavaScript reference client [11].
This video is encoded by the H.264/MPEG-4 codec at bitrates
in {300, 750, 1200, 1850, 2850, 4300} kbps (which pertain to video
modes in {240, 360, 480, 720, 1080, 1440}p). Additionally, the video
was divided into 48 chunks and had a total length of 193 seconds.
Thus, each chunk represented approximately 4 seconds of video
playback. In our setup, the client video player was a Google Chrome
browser (version 53) and the video server (Apache version 2.4.7)
ran on the same machine as the client. We used Mahimahi [33] to
emulate the network conditions from our corpus of network traces,
along with an 80 ms RTT, between the client and server. Unless
otherwise noted, all experiments were performed on Amazon EC2
t2.2xlarge instances.

QoE metrics: There exists significant variance in user preferences
for video streaming QoE [23, 31, 32, 34]. Thus, we consider a
variety of QoE metrics. We start with the general QoE metric used
by MPC [51], which is defined as

N N N-1
QE =" qRa) =4t ) Ta= Y |g(Rus1) — q(Ra)|  (6)
n=1 n=1 n=1

for a video with N chunks. R, represents the bitrate of chunk, and
q(Rp) maps that bitrate to the quality perceived by a user. T, repre-
sents the rebuffering time that results from downloading chunk,, at
bitrate R, while the final term penalizes changes in video quality to
favor smoothness.
We consider three choices of g(Rp):
(1) QoEj;n: q(Rn) = Ry. This metric was used by MPC [51].
(2) Q0Ejog: q(Rn) = log(R/Rmin). This metric captures the notion
that, for some users, the marginal improvement in perceived
quality decreases at higher bitrates and was used by BOLA [41].
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Name bitrate utility (q(R)) rebuffer
penalty ()
00Erin R 73
Q0E|oy4 log (R/Rmin) 2.66
Q0Epy 0.3—1,0.75-2, 1.2-3 3
1.85—12,2.85—15, 4.3-20

Table 1: The QoE metrics we consider in our evaluation. Each
metric is a variant of Equation 6.

(3) QoEy,: This metric favors High Definition (HD) video. It as-
signs a low quality score to non-HD bitrates and a high quality
score to HD bitrates.

The exact values of q(Ry) for our baseline video are provided in

Table 1. In this section, we report the average QoE per chunk, i.e.,

the total QoE metric divided by the number of chunks in the video.

5.2 Pensieve vs. Existing ABR algorithms

To evaluate Pensieve, we compared it with state-of-the-art ABR
algorithms on each QoE metric listed in Table 1. In each experiment,
Pensieve’s ABR algorithm was trained to optimize for the considered
QoE metric, using the entire training corpus described in §5.1; both
MPC variants were also modified to optimize for the considered
QoE metric. For comparison, we also present results for the offline
optimal scheme, which is computed using dynamic programing with
complete future throughput information. The offline optimal serves
as an (unattainable) upper bound on the QoE that an omniscient
policy with complete and perfect knowledge of the future network
throughput could achieve.

Figure 7 shows the average QoE that each scheme achieves on
our entire test corpus. Figures 8 and 9 provide more detailed results
in the form of full CDFs for each network. There are three key take-
aways from these results. First, we find that Pensieve either matches
or exceeds the performance of the best existing ABR algorithm
on each QoE metric and network considered. The closest compet-
ing scheme is robustMPC; this shows the importance of tuning, as
without robustMPC'’s conservative throughput estimates, MPC can
become too aggressive (relying on the playback buffer) and perform
worse than even a naive rate-based scheme. For QoE;;,,, which was
considered in the MPC paper [51], the average QoE for Pensieve is
15.5% higher than robustMPC on the FCC broadband network traces.
The gap between Pensieve and robustMPC widens to 18.9% and
24.6% for QoE;,4 and QoEj4. The results are qualitatively similar
for the Norway HSDPA network traces.

Second, we observe that the performance of existing ABR algo-
rithms struggle to optimize for different QoE objectives. The reason
is that these algorithms employ fixed control laws, even though op-
timizing for different QoE objectives requires inherently different
ABR strategies. For example, for QoEj,, since the marginal im-
provement in user-perceived quality diminishes at higher bitrates,
the optimal strategy is to avoid jumping to high bitrate levels when
the risk of rebuffering is high. However, to optimize for QoE;,,,
the ABR algorithm needs to be more aggressive. Pensieve is able
to automatically learn these policies and thus, performance with
Pensieve remains consistently high as conditions change.

The results for QoEy, further illustrate this point. Recall that
QoE}, 4 favors HD video, assigning the highest utility to the top three
bitrates available for our test video (see Table 1). As discussed in
§3, optimizing for QoEy; requires longer term planning than the
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Figure 7: Comparing Pensieve with existing ABR algorithms on broadband and 3G/HSDPA networks. The QoE metrics considered
are presented in Table 1. Results are normalized against the performance of Pensieve. Error bars span + one standard deviation from

the average.
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Figure 9: Comparing Pensieve with existing ABR algorithms on the QoE metrics listed in Table 1. Results were collected on the
Norway HSDPA dataset. Average QoE values are listed for each ABR algorithm.

other two QoE metrics. When network bandwidth is inadequate,
the ABR algorithm should build the playback buffer as quickly as
possible using the lowest available bitrate. Once the buffer is large
enough, it should then make a direct transition to the lowest HD
quality (bypassing intermediate bitrates). However, building buffers
to a level which circumvents rebuffering and maintains sufficient
smoothness requires a lot of foresight. As illustrated by the example
in Figure 3b, Pensieve is able to learn such a policy with zero tuning
or designer involvement, while other schemes such as robustMPC
have difficulty optimizing such long term strategies.

Finally, Pensieve’s performance is within 9.6%—14.3% of the
offline optimal scheme across all network traces and QoE metrics.
Recall that the offline optimal performance cannot be achieved in
practice as it requires complete knowledge of future throughput.
This shows that there is likely to be little room for any online algo-
rithm (without future knowledge) to improve over Pensieve in these
scenarios. We revisit the question of Pensieve’s optimality in §5.4.

QoE breakdown: To better understand the QoE gains obtained
by Pensieve, we analyzed Pensieve’s performance on the individ-
ual terms in our general QoE definition (Equation 6). Specifically,
Figure 10 compares Pensieve to state-of-the-art ABR algorithms in
terms of the utility from the average playback bitrate, the penalty
from rebuffering, and the penalty from switching bitrates (i.e., the
smoothness penalty). In other words, a given scheme’s QoE can be
computed by subtracting the rebuffering penalty and smoothness
penalty from the bitrate utility. In the interest of space, Figure 10
combines the results for the FCC broadband and HSDPA traces.
As shown, a large portion of Pensieve’s performance gains come
from its ability to limit rebuffering across the different networks and
QoE metrics considered. Pensieve reduces rebuffering by 10.6%—
32.8% across the three metrics by building up sufficient buffer to
handle the network’s throughput fluctuations. Additionally, Figure 6
illustrates that Pensieve does not outperform all state-of-the-art
schemes on every QoE factor. Instead, Pensieve is able to balance
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Figure 10: Comparing Pensieve with existing ABR algorithms
by analyzing their performance on the individual components
in the general QoE definition (Equation 6). Results consider
both the broadband and HSDPA networks. Error bars span +
one standard deviation from the average.

each factor in a way that optimizes the QoE metric. For example, to
optimize QoEy 4, Pensieve achieves the best bitrate utility by always
trying to download chunks at HD bitrates, while when optimizing for
QOE) i, or QoEj,4, Pensieve focuses on achieving sufficiently high
bitrates with the smallest amount of rebuffering and bitrate switches.

5.3 Generalization

In the experiments above, Pensieve was trained with a set of traces
collected on the same networks that were used during testing; note
that no test traces were directly included in the training set. How-
ever, in practice, Pensieve’s ABR algorithms could encounter new
networks, with different conditions (and thus, with different optimal
strategies). To evaluate Pensieve’s ability to generalize to new net-
work conditions, we conduct two experiments. First, we evaluate
Pensieve in the wild on two real networks. Second, we take general-
ity to the extreme and show how Pensieve can be trained to perform
well across multiple environments using a purely synthetic dataset.

Real world experiments: We evaluated Pensieve and several state-
of-the-art ABR algorithms in the wild using three different networks:
the Verizon LTE cellular network, a public WiFi network at a lo-
cal coffee shop, and the wide area network between Shanghai and
Boston. In these experiments, a client, running on a Macbook Pro
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Figure 11: Comparlng Pensieve with existing ABR algorithms
in the wild. Results are for the QoE;;,, metric and were collected
on the Verizon LTE cellular network, a public WiFi network,
and the wide area network between Shanghai and Boston. Bars
list averages and error bars span + one standard deviation from
the average.

laptop, contacted a video server running on a desktop machine lo-
cated in Boston. We considered a subset of the ABR algorithms listed
in §5.1: BOLA, robustMPC, and Pensieve. On each network, we
loaded our test video ten times with each scheme, randomly selecting
the order among them. The Pensieve ABR algorithm evaluated here
was solely trained using the broadband and HSDPA traces in our
corpus. However, even on these new networks, Pensieve was able
to outperform the other schemes on the QoE;;,, metric (Figure 11).
Experiments with the other QoE metrics show similar results.

Training with a synthetic dataset: Can we train Pensieve without
any real network data? Learning from synthetic data alone would
of course be undesirable, but we use it as a challenging test of
Pensieve’s ability to generalize.

We design a data set to cover a relatively broad set of network
conditions, with average throughputs ranging from 0.2 Mbps to 4.3
Mbps. Specifically, the dataset was generated using a Markovian
model in which each state represented an average throughput in the
aforementioned range. State transitions were performed at a 1 second
granularity and followed a geometric distribution (making it more
likely to transition to a nearby average throughput). Each throughput
value was then drawn from a Gaussian distribution centered around
the average throughput for the current state, with variance uniformly
distributed between 0.05 and 0.5.

We then used Pensieve to compare two ABR algorithms on the
test dataset described above (i.e., a combination of the HSDPA and
broadband datasets): one trained solely using the synthetic dataset,
and another trained explicitly on broadband and HSDPA network
traces. Figure 12 illustrates our results for all three QoE metrics
listed in Table 1. As shown, Pensieve’s ABR algorithm that was
trained on the synthetic dataset is able to generalize across these new
networks, outperforming robustMPC and achieving average QoE
values within 1.6%—10.8% of the ABR algorithm trained directly
on the test networks. These results suggest that, in practice, Pen-
sieve will likely be able to generalize to a broad range of network
conditions encountered by its clients.

Multiple videos: As a final test of generalization, we evaluated Pen-
sieve’s ability to generalize across multiple video properties. To do
this, we trained a single ABR model on 1,000 synthetic videos using
the techniques described in §4.3. The number of available bitrates
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Figure 12: Comparing two ABR algorithms with Pensieve on the broadband and HSDPA networks: one algorithm was trained on
synthetic network traces, while the other was trained using a set of traces directly from the broadband and HSDPA networks. Results

are aggregated across the two datasets.
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Figure 13: Comparing ABR algorithms trained across multiple
videos with those trained explicitly on the test video. The mea-
suring metric is QoEj;,.

for each video was randomly selected from [3, 10], and the value
for each bitrate was then randomly chosen from {200, 300, 450, 750,
1200, 1850, 2350, 2850, 3500, 4300} kbps. The number of video chunks
for each video was randomly generated from [20, 100]; chunk sizes
were computed by multiplying the standard 4-second chunk size
with Gaussian noise ~ N (1, 0.1). Thus, these videos diverge on nu-
merous properties including the bitrate options (both the number of
options and value of each), number of chunks, chunk sizes and video
duration. Importantly, we ensured that none of the generated training
videos had the exact same bitrate options as the testing video.

We compare this newly trained model to the original model, which
was trained solely on the “EnvivioDash3” video described in §5.1
(the test video). Our results measure QoE;;,, on broadband and HS-
DPA network traces and are depicted in Figure 13. As shown, the
generalized ABR algorithm trained across multiple videos is able
to achieve average QoE;;, values within 3.2% of the model trained
explicitly on the test video. These results suggest that in practice,
Pensieve servers can be configured to use a small number of ABR
algorithms to improve streaming for a diverse set of videos.

5.4 Pensieve Deep Dive

In this section, we describe microbenchmarks that provide a deeper
understanding of Pensieve and shed light on some practical concerns
with using RL-generated ABR algorithms. We begin by comparing
Pensieve’s RL algorithm to tabular RL schemes, which are used by
some previous proposals for applying RL to video streaming. We
then analyze how robust Pensieve is to varying system parameters
(e.g., neural network hyperparameters, client-to-ABR server latency)
and evaluate its training time. Finally, we conduct experiments to
understand how close Pensieve is to the optimal scheme.

SThis range represents the two ends of the spectrum for the number of bitrates supported
by the videos provided by the DASH reference client [11].
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Figure 14: Comparing existing tabular RL schemes with vari-
ants of Pensieve that consider different numbers of past
throughout measurements. Results are evaluated with QoE;;,
for the HSDPA network.

Comparison to tabular RL schemes: A few recent schemes [6,
8, 9, 47] have applied “tabular” RL to video streaming. Tabular
methods represent the model to be learned as a table, with separate
entries for all states (e.g., client observations) and actions (e.g.,
bitrate decisions). Tabular methods do not scale to large state/action
spaces. As a result, such schemes are forced to restrict the state
space by making simplified (and unrealistic) assumptions about
network behavior. For example, the most recent tabular RL scheme
for ABR [6] assumes network throughput is Markovian, i.e., the
future bandwidth depends only on the throughput observed in the
last chunk download.

To compare these approaches with Pensieve, we implemented a
tabular RL scheme with Q-learning [29]. Our implementation is mod-
eled after the design in [6]. The state space is the same as described
in §4.2 except that the past bandwidth measurement is restricted
to only 1 sample (as in [6]). The past bandwidth measurement and
buffer occupancy are quantized with 0.5 Mbps and 1 second granu-
larity respectively. Our quantization is more fine-grained than that
used in [6]; we found that this resulted in better performance in our
experiments. (Note that simulation results in [6] used synthetically
generated network traces with the Markov property.)

Figure 14 shows a significant performance gap (46.3%) between
the tabular scheme and Pensieve. This result shows that simple
network models (e.g., Markovian dynamics) fail to capture the intri-
cacies of real networks. Unlike tabular RL methods, Pensieve can
incorporate a large amount of throughput history into its state space
to optimize for actual network characteristics.

To better understand the importance of throughput history, we
tried to answer: how many past chunks are necessary to include in the
state space? To do this, we generated three ABR algorithms with Pen-
sieve that consider different numbers of throughput measurements:
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Number of neurons and filters (each) | Average QoEpq4
4 3.850 + 1.215
16 4.681 + 1.369
32 5.106 + 1.452
64 5.496 + 1.411
128 5.489 + 1.378

Table 2: Sweeping the number of CNN filters and hidden neu-

rons in Pensieve’s learning architecture.

Number of hidden layers | Average QoEp 4
1 5.489 + 1.378
2 5.396 + 1.434
5 4.253 +1.219

Table 3: Sweeping the number of hidden layers in Pensieve’s
learning architecture.

1, 8, and 16 past video chunks. As shown in Figure 14, considering
only 1 past chunk does not provide enough information to infer
future network characteristics and hurts performance. Considering
the past 8 chunks allows Pensieve to extract more information and
improve its policy. However, the benefits of additional throughput
measurements eventually plateau. For example, providing Pensieve
with measurements for the past 16 chunks only improves the aver-
age QoE by 1% compared to using throughput measurements for
8 chunks. This marginal improvement comes at the cost of higher
burden during training.

Neural network (NN) architecture: Starting with Pensieve’s de-
fault learning architecture (Figure 5), we swept a range of NN pa-
rameters to understand the impact that each has on QoEy,4°. First,
using a single fixed hidden layer, we varied the number of filters in
the 1D-CNN and the number of neurons in the hidden merge layer.
These parameters were swept in tandem, i.e., when 4 filters were
used, 4 neurons were used. Results from this sweep are presented in
Table 2. As shown, performance begins to plateau once the number
of filters and neurons each exceed 32. Additionally, notice that once
these values reach 128 (Pensieve’s default configuration), variance
levels decrease while average QoE values remain stable.

Next, after fixing the number of filters and hidden neurons to 128,
we varied the number of hidden layers in Pensieve’s architecture.
The resulting QoEy 4 values are listed in Table 3. Interestingly, we
find that the shallowest network of 1 hidden layer yields the best per-
formance; this represents the default value in Pensieve. Performance
steadily degrades as we increase the number of hidden layers. How-
ever, it is important to note that our sweep used a fixed learning rate
and number of training iterations. Tuning these parameters to cater
to deeper networks may improve performance, as these networks
generally take longer to train.

Client-to-ABR server latency: Recall that Pensieve deploys the
RL-generated ABR model on an ABR server (not the video stream-
ing clients). Under this deployment model, clients must first query
the Pensieve’s ABR server to determine the bitrate to use for the
next chunk, before downloading that chunk from a CDN server. To
understand the overhead incurred by this additional round trip, we
performed a sweep of the RTT between the client player and ABR

6QoE na is used for the parameter sweep experiments as it highlights performances
differences more clearly.
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RTT (ms) | Average QoEp4
0 5.407 + 1.820
20 5.356 + 1.768
40 5.309 + 1.768
60 5271 + 1.773
30 5217 £ 1.742
100 5.219 + 1.748

Table 4: Average QoEy; values when different RTT values are
imposed between the client and Pensieve’s ABR server.

1 ¢ .
—Pensieve ’
08 r . .
---Online optimal
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a
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Figure 15: Comparing Pensieve with online and offline optimal.
The experiment uses the QoE;;,, metric.

server, considering values from 0 ms—100 ms. This experiment used
the same setup described in §5.1, and measured the QoE},; metric.
Table 4 lists our results, highlighting that the latency from this ad-
ditional RTT has minimal impact on QoE: the average QoEy; with
a 100 ms latency was within 3.5% of that when the latency was 0
ms. The reason is that the latency incurred from the additional round
trip to Pensieve’s ABR server is masked by the playback buffer
occupancy and chunk download times [18, 21].

Training time: To measure the overhead of generating ABR algo-
rithms using RL, we profiled Pensieve’s training process. Training
a single algorithm required approximately 50,000 iterations, where
each iteration took 300 ms and corresponded to 16 agents updating
their parameters in parallel (using the training approach described in
§4.2). Thus, in total, training took approximately 4 hours. We note
that this cost is incurred offline and can be performed infrequently
depending on environment stability.

Optimality: Our results illustrate that Pensieve is able to outperform
existing ABR algorithms. However, Figures 8 and 9 show that there
still exists a gap between Pensieve and the offline optimal. It is
unclear to what extent this gap can be closed since the offline optimal
scheme makes decisions with perfect knowledge of future bandwidth
(§5.1). A practical online algorithm would only know the underlying
distribution of future network throughput (rather than the precise
throughput values). Thus Pensieve may in fact be much closer to the
optimal online scheme.

Of course, we cannot compute the optimal online algorithm for
real network traces, as we do not know the stochastic processes
underlying these traces. Thus, to understand how Pensieve compares
to the best online algorithm, we conducted a controlled experiment
where the download time for each chunk is generated according to a
known Markov process. Specifically, we simulate the download time
T, of chunk n as T,, = Ty,—1(Rn/Rn-1) + €, where R, is the bitrate of
chunknand e ~ N (0, 02). For this model, it is straightforward to
compute the optimal online decisions using dynamic programming.
See [28] for details.
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To compare the optimal online algorithm with Pensieve, we set the
video chunk length & to be 4 seconds, mimicking the “EnvivioDash3”
video described in §5.1. The initial download time T, was set to 4
seconds for bitrate Ry = 2 kbps, and the standard deviation ¢ of the
Gaussian noise was set to 0.5. Both buffer occupancy and download
time were quantized to 0.1 second to run dynamic programming.

We used the same setup in §5.1 to train a Pensieve agent in this
simulated environment, and compared Pensieve’s performance with
the online and offline optimal schemes. Our experiment considers
the QoE;;, metric and the results are depicted in Figure 15. As ex-
pected, the offline optimal outperforms the online optimal by 9.1%
on average. This is comparable to the performance gap between Pen-
sieve and the offline optimal observed in §5.2. Indeed, the average
QoE achieved by Pensieve is within 0.2% of the online optimal.

6 DISCUSSION

Deploying Pensieve in practice: In our current implementation,
Pensieve’s ABR server runs on the server-side of video streaming
applications. This approach offers several advantages over deploy-
ment in client video players. First, a variety of client-side devices
are used for video streaming today, ranging from multi-core desktop
machines to mobile devices to TVs. By using an ABR server to
simply guide client bitrate selection, Pensieve can easily support
this broad range of video clients without modifications that may sac-
rifice performance. Additionally, ABR algorithms are traditionally
deployed on clients which can quickly react to changing environ-
ments [51]. However, as noted in §4, Pensieve preserves this ability
by having clients include observations about the environment in
each request sent to the ABR server. Further, our results suggest that
the additional latency required to contact Pensieve’s ABR server
has negligible impact on QoE (§5.4). If direct deployment in client
video players is preferred, Pensieve could use compressed neural
networks [16] or represent them in languages supported by many
client applications, e.g., JavaScript [45].

Periodic and online training: In this paper, we primarily described
RL-based ABR algorithm generation as an offline task. That is, with
Pensieve, we assumed that the ABR algorithm was generated a priori
(during a training phase) and was then unmodified after deployment.
However, Pensieve can naturally support an approach in which an
ABR algorithm is generated or updated periodically as new data
arrives. This technique would enable ABR algorithms to further
adapt to the exact conditions that video clients are experiencing at a
given time. The extreme version of this approach is to train online
directly on the video client. However, online training on video clients
raises two challenges. First, it increases the computational overhead
for the client. Second, it requires algorithms that can learn from
small amounts of data and converge to a good policy quickly.

Retraining frequency depends on how quickly new network be-
haviors emerge to which existing models do not generalize. While
our generalization results (§5.3) suggest that retraining frequently
may not be necessary, techniques to determine when to retrain and
investigating the tradeoffs with online training are interesting areas
for future work.
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7 RELATED WORK

The earliest ABR algorithms can be primarily grouped into two
classes: rate-based and buffer-based. Rate-based algorithms [21, 42]
first estimate the available network bandwidth using past chunk
downloads, and then request chunks at the highest bitrate that the
network is predicted to support. For example, Festive [21] predicts
throughput to be the harmonic mean of the experienced throughput
for the past 5 chunk downloads. However, these methods are hin-
dered by the biases present when estimating available bandwidth
on top of HTTP [22, 26]. Several systems aim to correct these
throughput estimates using smoothing heuristics and data aggrega-
tion techniques [42], but accurate throughput prediction remains a
challenge in practice [53].

In contrast, buffer-based approaches [19, 41] solely consider the
client’s playback buffer occupancy when deciding the bitrates for
future chunks. The goal of these algorithms is to keep the buffer
occupancy at a pre-configured level which balances rebuffering and
video quality. The most recent buffer-based approach, BOLA [41],
optimizes for a specified QoE metric using a Lyapunov optimization
formulation. BOLA also supports chunk download abandonment,
whereby a video player can restart a chunk download at a lower
bitrate level if it suspects that rebuffering is imminent.

Each of these approaches performs well in certain settings but
not in others. Specifically, rate-based approaches are best at startup
time and when link rates are stable, while buffer-based approaches
are sufficient and more robust in steady state and in the presence of
time-varying networks [19]. Consequently, recently proposed ABR
algorithms have also investigated combining these two techniques.
The state-of-the-art approach is MPC [51], which employs model
predictive control algorithms that use both throughput estimates and
buffer occupancy information to select bitrates that are expected to
maximize QoE over a horizon of several future chunks. However,
MPC still relies heavily on accurate throughput estimates which are
not always available. When throughput predictions are incorrect,
MPC’s performance can degrade significantly. Addressing this issue
requires heuristics that make throughput predictions more conser-
vative. However, tuning such heuristics to perform well in different
environments is challenging. Further, as we observed in §3, MPC is
often unable to plan far enough into the future to apply the policies
that would maximize performance in given settings.

A separate line of work has proposed applying RL to adaptive
video streaming [6, 8, 9, 47]. All of these schemes apply RL in
a “tabular form,” which stores and learns the value function for
all states and actions explicitly, rather than using function approx-
imators (e.g., neural networks). As a result, these schemes do not
scale to the large state spaces necessary for good performance in
real networks, and their evaluation has been limited to simulations
with synthetic network models. For example, the most recent tabu-
lar scheme [6] relies on the fundamental assumption that network
bandwidth is Markovian, i.e., the future bandwidth depends only on
the throughput observed in the last chunk download. This assump-
tion confines the state space to consider only one past bandwidth
measurement, making the tabular approach feasible to implement.
As we saw in §5.4, the information contained in one past chunk is
not sufficient to accurately infer the distribution of future bandwidth.
Nevertheless, some of the techniques used in the existing RL video
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streaming schemes (e.g., Post-Decision States [6, 35]) could be used
to accelerate learning in Pensieve as well.

8 CONCLUSION

We presented Pensieve, a system which generates ABR algorithms
using reinforcement learning. Unlike ABR algorithms that use fixed
heuristics or inaccurate system models, Pensieve’s ABR algorithms
are generated using observations of the resulting performance of
past decisions across a large number of video streaming experiments.
This allows Pensieve to optimize its policy for different network
characteristics and QoE metrics directly from experience. Over a
broad set of network conditions and QoE metrics, we found that
Pensieve outperformed existing ABR algorithms by 12%-25%.
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