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ABSTRACT
Modern learning models are characterized by large hyperparameter spaces and long training times. These prop-
erties, coupled with the rise of parallel computing and the growing demand to productionize machine learning
workloads, motivate the need to develop mature hyperparameter optimization functionality in distributed com-
puting settings. We address this challenge by first introducing a simple and robust hyperparameter optimization
algorithm called ASHA, which exploits parallelism and aggressive early-stopping to tackle large-scale hyperparam-
eter optimization problems. Our extensive empirical results show that ASHA outperforms existing state-of-the-art
hyperparameter optimization methods; scales linearly with the number of workers in distributed settings; and is
suitable for massive parallelism, as demonstrated on a task with 500 workers. We then describe several design
decisions we encountered, along with our associated solutions, when integrating ASHA in Determined AI’s
end-to-end production-quality machine learning system that offers hyperparameter tuning as a service.

1 INTRODUCTION

Although machine learning (ML) models have recently
achieved dramatic successes in a variety of practical ap-
plications, these models are highly sensitive to internal pa-
rameters, i.e., hyperparameters. In these modern regimes,
four trends motivate the need for production-quality systems
that support massively parallel for hyperparameter tuning:

1. High-dimensional search spaces. Models are becoming
increasingly complex, as evidenced by modern neural net-
works with dozens of hyperparameters. For such complex
models with hyperparameters that interact in unknown ways,
a practitioner is forced to evaluate potentially thousands of
different hyperparameter settings.

2. Increasing training times. As datasets grow larger and
models become more complex, training a model has become
dramatically more expensive, often taking days or weeks
on specialized high-performance hardware. This trend is
particularly onerous in the context of hyperparameter opti-
mization, as a new model must be trained to evaluate each
candidate hyperparameter configuration.

3. Rise of parallel computing. The combination of a grow-
ing number of hyperparameters and longer training time per
model precludes evaluating configurations sequentially; we
simply cannot wait years to find a suitable hyperparame-
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ter setting. Leveraging distributed computational resources
presents a solution to the increasingly challenging problem
of hyperparameter optimization.

4. Productionization of ML. ML is increasingly driving
innovations in industries ranging from autonomous vehicles
to scientific discovery to quantitative finance. As ML moves
from R&D to production, ML infrastructure must mature
accordingly, with hyperparameter optimization as one of the
core supported workloads.

In this work, we address the problem of developing
production-quality hyperparameter tuning functionality in
a distributed computing setting. Support for massive paral-
lelism is a cornerstone design criteria of such a system and
thus a main focus of our work.

To this end, and motivated by the shortfalls of existing meth-
ods, we first introduce Asynchronous Successive Halving
Algorithm (ASHA), a simple and practical hyperparameter
optimization method suitable for massive parallelism that
exploits aggressive early stopping. Our algorithm is inspired
by the Successive Halving algorithm (SHA) (Karnin et al.,
2013; Jamieson & Talwalkar, 2015), a theoretically princi-
pled early stopping method that allocates more resources to
promising configurations. ASHA is designed for what we
refer to as the ‘large-scale regime,’ where to find a good hy-
perparameter setting, we must evaluate orders of magnitude
more hyperparameter configurations than available parallel
workers in a small multiple of the wall-clock time needed
to train a single model.

We next perform a thorough comparison of several hyper-
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parameter tuning methods in both the sequential and par-
allel settings. We focus on ‘mature’ methods, i.e., well-
established techniques that have been empirically and/or
theoretically studied to an extent that they could be con-
sidered for adoption in a production-grade system. In the
sequential setting, we compare SHA with Fabolas (Klein
et al., 2017a), Population Based Tuning (PBT) (Jaderberg
et al., 2017), and BOHB (Falkner et al., 2018), state-of-the-
art methods that exploit partial training. Our results show
that SHA outperforms these methods, which when coupled
with SHA’s simplicity and theoretical grounding, motivate
the use of a SHA-based method in production. We further
verify that SHA and ASHA achieve similar results. In the
parallel setting, our experiments demonstrate that ASHA
addresses the intrinsic issues of parallelizing SHA, scales
linearly with the number of workers, and exceeds the per-
formance of PBT, BOHB, and Vizier (Golovin et al., 2017),
Google’s internal hyperparameter optimization service.

Finally, based on our experience developing ASHA within
Determined AI’s production-quality machine learning sys-
tem that offers hyperparameter tuning as a service, we de-
scribe several systems design decisions and optimizations
that we explored as part of the implementation. We focus
on four key considerations: (1) streamlining the user inter-
face to enhance usability; (2) autoscaling parallel training to
systematically balance the tradeoff between lower latency
in individual model training and higher throughput in total
configuration evaluation; (3) efficiently scheduling ML jobs
to optimize multi-tenant cluster utilization; and (4) tracking
parallel hyperparameter tuning jobs for reproducibility.

2 RELATED WORK

We will first discuss related work that motivated our focus
on parallelizing SHA for the large-scale regime. We then
provide an overview of methods for parallel hyperparameter
tuning, from which we identify a mature subset to compare
to in our empirical studies (Section 4). Finally, we discuss
related work on systems for hyperparameter optimization.

Sequential Methods. Existing hyperparameter tuning
methods attempt to speed up the search for a good con-
figuration by either adaptively selecting configurations or
adaptively evaluating configurations. Adaptive configura-
tion selection approaches attempt to identify promising re-
gions of the hyperparameter search space from which to
sample new configurations to evaluate (Hutter et al., 2011;
Snoek et al., 2012; Bergstra et al., 2011; Srinivas et al.,
2010). However, by relying on previous observations to in-
form which configuration to evaluate next, these algorithms
are inherently sequential and thus not suitable for the large-
scale regime, where the number of updates to the posterior
is limited. In contrast, adaptive configuration evaluation ap-
proaches attempt to early-stop poor configurations and allo-

cate more training “resources” to promising configurations.
Previous methods like György & Kocsis (2011); Agarwal
et al. (2011); Sabharwal et al. (2016) provide theoretical
guarantees under strong assumptions on the convergence
behavior of intermediate losses. (Krueger et al., 2015) re-
lies on a heuristic early-stopping rule based on sequential
analysis to terminate poor configurations.

In contrast, SHA (Jamieson & Talwalkar, 2015) and Hyper-
band (Li et al., 2018) are adaptive configuration evaluation
approaches which do not have the aforementioned draw-
backs and have achieved state-of-the-art performance on
several empirical tasks. SHA serves as the inner loop for
Hyperband, with Hyperband automating the choice of the
early-stopping rate by running different variants of SHA.
While the appropriate choice of early stopping rate is prob-
lem dependent, Li et al. (2018)’s empirical results show that
aggressive early-stopping works well for a wide variety of
tasks. Hence, we focus on adapting SHA to the parallel set-
ting in Section 3, though we also evaluate the corresponding
asynchronous Hyperband method.

Hybrid approaches combine adaptive configuration selec-
tion and evaluation (Swersky et al., 2013; 2014; Domhan
et al., 2015; Klein et al., 2017a). Li et al. (2018) showed
that SHA/Hyperband outperforms SMAC with the learning
curve based early-stopping method introduced by Domhan
et al. (2015). In contrast, Klein et al. (2017a) reported
state-of-the-art performance for Fabolas on several tasks in
comparison to Hyperband and other leading methods. How-
ever, our results in Section 4.1 demonstrate that under an
appropriate experimental setup, SHA and Hyperband in fact
outperform Fabolas. Moreover, we note that Fabolas, along
with most other Bayesian optimization approaches, can be
parallelized using a constant liar (CL) type heuristic (Gins-
bourger et al., 2010; González et al., 2016). However, the
parallel version will underperform the sequential version,
since the latter uses a more accurate posterior to propose
new points. Hence, our comparisons to these methods are
restricted to the sequential setting.

Other hybrid approaches combine Hyperband with adap-
tive sampling. For example, Klein et al. (2017b) combined
Bayesian neural networks with Hyperband by first train-
ing a Bayesian neural network to predict learning curves
and then using the model to select promising configura-
tions to use as inputs to Hyperband. More recently, Falkner
et al. (2018) introduced BOHB, a hybrid method combining
Bayesian optimization with Hyperband. They also propose
a parallelization scheme for SHA that retains synchronized
eliminations of underperforming configurations. We discuss
the drawbacks of this parallelization scheme in Section 3
and demonstrate that ASHA outperforms this version of
parallel SHA as well as BOHB in Section 4.2. We note that
similar to SHA/Hyperband, ASHA can be combined with
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adaptive sampling for more robustness to certain challenges
of parallel computing that we discuss in Section 3.

Parallel Methods. Established parallel methods for hyper-
parameter tuning include PBT (Jaderberg et al., 2017; Li
et al., 2019) and Vizier (Golovin et al., 2017). PBT is a
state-of-the-art hybrid evolutionary approach that exploits
partial training to iteratively increase the fitness of a pop-
ulation of models. In contrast to Hyperband, PBT lacks
any theoretical guarantees. Additionally, PBT is primarily
designed for neural networks and is not a general approach
for hyperparameter tuning. We further note that PBT is
more comparable to SHA than to Hyperband since both
PBT and SHA require the user to set the early-stopping rate
via internal hyperparameters.

Vizier is Google’s black-box optimization service with sup-
port for multiple hyperparameter optimization methods and
early-stopping options. For succinctness, we will refer to
Vizier’s default algorithm as “Vizier” although it is simply
one of methods available on the Vizier platform. While
Vizier provides early-stopping rules, the strategies only of-
fer approximately 3× speedup in contrast to the order of
magnitude speedups observed for SHA. We compare to PBT
and Vizier in Section 4.2 and Section 4.4, respectively.

Hyperparameter Optimization Systems. While there is a
large body of work on systems for machine learning, we nar-
row our focus to systems for hyperparameter optimization.
AutoWEKA (Kotthoff et al., 2017) and AutoSklearn (Feurer
et al., 2015) are two established single-machine, single-user
systems for hyperparameter optimization. Existing systems
for distributed hyperparameter optimization include Vizier
(Golovin et al., 2017), RayTune (Liaw et al., 2018), CHOPT
(Kim et al., 2018) and Optuna (Akiba et al.). These existing
systems provide generic support for a wide range of hyperpa-
rameter tuning algorithms; both RayTune and Optuna in fact
have support for ASHA. In contrast, our work focuses on a
specific algorithm—ASHA—that we argue is particularly
well-suited for massively parallel hyperparameter optimiza-
tion. We further introduce a variety of systems optimizations
designed specifically to improve the performance, usabil-
ity, and robustness of ASHA in production environments.
We believe that these optimizations would directly benefit
existing systems to effectively support ASHA, and general-
izations of these optimizations could also be beneficial in
supporting other hyperparameter tuning algorithms.

Similarly, we note that Kim et al. (2018) address the prob-
lem of resource management for generic hyperparameter
optimization methods in a shared compute environment,
while we focus on efficient resource allocation with adaptive
scheduling specifically for ASHA in Section 5.3. Addition-
ally, in contrast to the user-specified automated scaling capa-
bility for parallel training presented in Xiao et al. (2018), we
propose to automate appropriate autoscaling limits by using

the performance prediction framework by Qi et al. (2017).

3 ASHA ALGORITHM

We start with an overview of SHA (Karnin et al., 2013;
Jamieson & Talwalkar, 2015) and motivate the need to adapt
it to the parallel setting. Then we present ASHA and dis-
cuss how it addresses issues with synchronous SHA and
improves upon the original algorithm.

3.1 Successive Halving (SHA)

The idea behind SHA (Algorithm 1) is simple: allocate a
small budget to each configuration, evaluate all configura-
tions and keep the top 1/η, increase the budget per con-
figuration by a factor of η, and repeat until the maximum
per-configuration budget of R is reached (lines 5–11). The
resource allocated by SHA can be iterations of stochastic
gradient descent, number of training examples, number of
random features, etc.

Algorithm 1 Successive Halving Algorithm.
input number of configurations n, minimum resource
r, maximum resource R, reduction factor η, minimum
early-stopping rate s
smax = blogη(R/r)c
assert n ≥ ηsmax−s so that at least one configuration will
be allocated R.
T = get hyperparameter configuration(n)
// All configurations trained for a given

i constitute a ‘‘rung.’’

for i ∈ {0, . . . , smax − s} do
ni = bnη−ic
ri = rηi+s

L = run then return val loss(θ, ri) : θ ∈ T
T = top k(T, L, ni/η)

end for
return best configuration in T

SHA requires the number of configurations n, a minimum
resource r, a maximum resource R, a reduction factor
η ≥ 2, and a minimum early-stopping rate s. Addition-
ally, the get hyperparameter configuration(n)
subroutine returns n configurations sampled randomly
from a given search space; and the run then
return val loss(θ, r) subroutine returns the validation
loss after training the model with the hyperparameter setting
θ and for r resources. For a given early-stopping rate s, a
minimum resource of r0 = rηs will be allocated to each
configuration. Hence, lower s corresponds to more aggres-
sive early-stopping, with s = 0 prescribing a minimum
resource of r. We will refer to SHA with different values
of s as brackets and, within a bracket, we will refer to each
round of promotion as a rung with the base rung numbered
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(a) Visual depiction of the promotion scheme for bracket s = 0.

bracket s rung i ni ri total budget
0 0 9 1 9

1 3 3 9
2 1 9 9

1 0 9 3 27
1 3 9 27

2 0 9 9 81

(b) Promotion scheme for different brackets s.

Figure 1. Promotion scheme for SHA with n = 9, r = 1, R = 9, and η = 3.

0 and increasing. Figure 1(a) shows the rungs for bracket
0 for an example setting with n = 9, r = 1, R = 9, and
η = 3, while Figure 1(b) shows how resource allocations
change for different brackets s. Namely, the starting budget
per configuration r0 ≤ R increases by a factor of η per
increment of s. Hence, it takes more resources to explore
the same number of configurations for higher s. Note that
for a given s, the same budget is allocated to each rung but
is split between fewer configurations in higher rungs.

Straightforward ways of parallelizing SHA are not well
suited for the parallel regime. We could consider the em-
barrassingly parallel approach of running multiple instances
of SHA, one on each worker. However, this strategy is not
well suited for the large-scale regime, where we would like
results in little more than the time to train one configuration.
To see this, assume that training time for a configuration
scales linearly with the allocated resource and time(R) rep-
resents the time required to train a configuration for the max-
imum resource R. In general, for a given bracket s, the min-
imum time to return a configuration trained to completion is
(logη(R/r)− s+ 1)× time(R), where logη(R/r)− s+ 1
counts the number of rungs. For example, consider Bracket
0 in the toy example in Figure 1. The time needed to return
a fully trained configuration is 3× time(R), since there are
three rungs and each rung is allocated R resource. In con-
trast, as we will see in the next section, our parallelization
scheme for SHA can return an answer in just time(R).

Another naive way of parallelizing SHA is to distribute the
training of the n/ηk surviving configurations on each rung
k as is done by Falkner et al. (2018) and add brackets when
there are no jobs available in existing brackets. We will
refer to this method as “synchronous” SHA. The efficacy of
this strategy is severely hampered by two issues: (1) SHA’s
synchronous nature is sensitive to stragglers and dropped
jobs as every configuration within a rung must complete
before proceeding to the next rung, and (2) the estimate of
the top 1/η configurations for a given early-stopping rate
does not improve as more brackets are run since promotions
are performed independently for each bracket. We demon-
strate the susceptibility of synchronous SHA to stragglers
and dropped jobs on simulated workloads in Appendix A.1.

3.2 Asynchronous SHA (ASHA)

We now introduce ASHA as an effective technique to paral-
lelize SHA, leveraging asynchrony to mitigate stragglers and
maximize parallelism. Intuitively, ASHA promotes configu-
rations to the next rung whenever possible instead of waiting
for a rung to complete before proceeding to the next rung.
Additionally, if no promotions are possible, ASHA simply
adds a configuration to the base rung, so that more configura-
tions can be promoted to the upper rungs. ASHA is formally
defined in Algorithm 2. Given its asynchronous nature it
does not require the user to pre-specify the number of config-
urations to evaluate, but it otherwise requires the same inputs
as SHA. Note that the run then return val loss
subroutine in ASHA is asynchronous and the code execution
continues after the job is passed to the worker. ASHA’s
promotion scheme is laid out in the get job subroutine.

ASHA is well-suited for the large-scale regime, where wall-
clock time is constrained to a small multiple of the time
needed to train a single model. For ease of comparison with
SHA, assume training time scales linearly with the resource.
Consider the example of Bracket 0 shown in Figure 1, and
assume we can run ASHA with 9 machines. Then ASHA re-
turns a fully trained configuration in 13/9×time(R), since 9
machines are sufficient to promote configurations to the next
rung in the same time it takes to train a single configuration
in the rung. Hence, the training time for a configuration in
rung 0 is 1/9× time(R), for rung 1 it is 1/3× time(R), and
for rung 2 it is time(R). In general, ηlogη(R)−s machines
are needed to advance a configuration to the next rung in the
same time it takes to train a single configuration in the rung,
and it takes ηs+i−logη(R)×time(R) to train a configuration
in rung i. Hence, ASHA can return a configuration trained
to completion in time( logη(R)∑

i=s

ηi−logη(R)

)
× time(R) ≤ 2 time(R).

Moreover, when training is iterative, ASHA can return an an-
swer in time(R), since incrementally trained configurations
can be checkpointed and resumed.

Finally, since Hyperband simply runs multiple SHA brack-
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Algorithm 2 Asynchronous Successive Halving (ASHA)
input minimum resource r, maximum resource R, reduc-
tion factor η, minimum early-stopping rate s
function ASHA()

repeat
for for each free worker do

(θ, k) = get job()
run then return val loss(θ, rηs+k)

end for
for completed job (θ, k) with loss l do

Update configuration θ in rung k with loss l.
end for

until desired
end function
function get job()
// Check if there is a promotable config.

for k = blogη(R/r)c − s− 1, . . . , 1, 0 do
candidates = top k(rung k, |rung k|/η)
promotable = {t ∈ candidates : t not promoted}
if |promotable| > 0 then

return promotable[0], k + 1
end if
// If not, grow bottom rung.

Draw random configuration θ.
return θ, 0

end for
end function

ets, we can asynchronously parallelize Hyperband by either
running multiple brackets of ASHA or looping through
brackets of ASHA sequentially as is done in the original
Hyperband. We employ the latter looping scheme for asyn-
chronous Hyperband in the next section.

3.3 Algorithm Discussion

ASHA is able to remove the bottleneck associated with
synchronous promotions by incurring a small number of in-
correct promotions, i.e. configurations that were promoted
early on but are not in the top 1/η of configurations in hind-
sight. By the law of large numbers, we expect to erroneously
promote a vanishing fraction of configurations in each rung
as the number of configurations grows. Intuitively, in the
first rung with n evaluated configurations, the number of
mispromoted configurations is roughly

√
n, since the pro-

cess resembles the convergence of an empirical cumulative
distribution function (CDF) to its expected value (Dvoretzky
et al., 1956). For later rungs, although the configurations are
no longer i.i.d. since they were advanced based on the empir-
ical CDF from the rung below, we expect this dependence
to be weak.

We further note that ASHA improves upon SHA in two

ways. First, Li et al. (2018) discusses two SHA variants:
finite horizon (bounded resource R per configuration) and
infinite horizon (unbounded resources R per configuration).
ASHA consolidates these settings into one algorithm. In
Algorithm 2, we do not promote configurations that have
been trained for R, thereby restricting the number of rungs.
However, this algorithm trivially generalizes to the infinite
horizon; we can remove this restriction so that the maximum
resource per configuration increases naturally as configura-
tions are promoted to higher rungs. In contrast, SHA does
not naturally extend to the infinite horizon setting, as it relies
on the doubling trick and must rerun brackets with larger
budgets to increase the maximum resource.

Additionally, SHA does not return an output until a single
bracket completes. In the finite horizon this means that there
is a constant interval of (# of rungs × time(R)) between
receiving outputs from SHA. In the infinite horizon this
interval doubles between outputs. In contrast, ASHA grows
the bracket incrementally instead of in fixed budget intervals.
To further reduce latency, ASHA uses intermediate losses
to determine the current best performing configuration, as
opposed to only considering the final SHA outputs.

4 EMPIRICAL EVALUATION

We first present results in the sequential setting to justify our
choice of focusing on SHA and to compare SHA to ASHA.
We next evaluate ASHA in parallel environments on three
benchmark tasks.

4.1 Sequential Experiments

We benchmark Hyperband and SHA against PBT, BOHB
(synchronous SHA with Bayesian optimization as intro-
duced by Falkner et al. (2018)), and Fabolas, and examine
the relative performance of SHA versus ASHA and Hy-
perband versus asynchronous Hyperband. As mentioned
previously, asynchronous Hyperband loops through brackets
of ASHA with different early-stopping rates.

We compare ASHA against PBT, BOHB, and synchronous
SHA on two benchmarks for CIFAR-10: (1) tuning a con-
volutional neural network (CNN) with the cuda-convnet
architecture and the same search space as (Li et al., 2017);
and (2) tuning a CNN architecture with varying number of
layers, batch size, and number of filters. The details for
the search spaces considered and the settings we used for
each search method can be found in Appendix A.3. Note
that BOHB uses SHA to perform early-stopping and dif-
fers only in how configurations are sampled; while SHA
uses random sampling, BOHB uses Bayesian optimization
to adaptively sample new configurations. In the following
experiments, we run BOHB using the same early-stopping
rate as SHA and ASHA instead of looping through brackets
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Figure 2. Sequential experiments (1 worker). Average across
10 trials is shown for each hyperparameter optimization method.
Gridded lines represent top and bottom quartiles of trials.

with different early-stopping rates as is done by Hyperband.

The results on these two benchmarks are shown in Figure 2.
On benchmark 1, Hyperband and all variants of SHA (i.e.,
SHA, ASHA, and BOHB) outperform PBT by 3×. On
benchmark 2, while all methods comfortably beat random
search, SHA, ASHA, BOHB and PBT performed similarly
and slightly outperform Hyperband and asynchronous Hy-
perband. This last observation (i) corroborates the results in
Li et al. (2017), which found that the brackets with the most
aggressive early-stopping rates performed the best; and (ii)
follows from the discussion in Section 2 noting that PBT
is more similar in spirit to SHA than Hyperband, as PBT /
SHA both require user-specified early-stopping rates (and
are more aggressive in their early-stopping behavior in these
experiments). We observe that SHA and ASHA are competi-
tive with BOHB, despite the adaptive sampling scheme used
by BOHB. Additionally, for both tasks, introducing asyn-
chrony does not consequentially impact the performance
of ASHA (relative to SHA) or asynchronous Hyperband
(relative to Hyperband). This not surprising; as discussed in
Section 3.3, we expect the number of ASHA mispromotions
to be square root in the number of configurations.

Finally, due to the nuanced nature of the evaluation frame-

work used by Klein et al. (2017a), we present our results
on 4 different benchmarks comparing Hyperband to Fabo-
las in Appendix A.2. In summary, our results show that
Hyperband, specifically the first bracket of SHA, tends to
outperform Fabolas while also exhibiting lower variance
across experimental trials.

4.2 Limited-Scale Distributed Experiments

We next compare ASHA to synchronous SHA, the paral-
lelization scheme discussed in Section 3.1; BOHB; and PBT
on the same two tasks. For each experiment, we run each
search method with 25 workers for 150 minutes. We use the
same setups for ASHA and PBT as in the previous section.
We run synchronous SHA and BOHB with default settings
and the same η and early-stopping rate as ASHA.

Figure 3 shows the average test error across 5 trials for
each search method. On benchmark 1, ASHA evaluated
over 1000 configurations in just over 40 minutes with 25
workers and found a good configuration (error rate below
0.21) in approximately the time needed to train a single
model, whereas it took ASHA nearly 400 minutes to do
so in the sequential setting (Figure 2). Notably, we only
achieve a 10× speedup on 25 workers due to the relative
simplicity of this task, i.e., it only required evaluating a
few hundred configurations to identify a good one in the
sequential setting. In contrast, for the more difficult search
space used in benchmark 2, we observe linear speedups
with ASHA, as the ∼ 700 minutes needed in the sequential
setting (Figure 2) to reach a test error below 0.23 is reduced
to under 25 minutes in the distributed setting.

Compared to synchronous SHA and BOHB, ASHA finds
a good configuration 1.5× as fast on benchmark 1 while
BOHB finds a slightly better final configuration. On bench-
mark 2, ASHA performs significantly better than syn-
chronous SHA and BOHB due to the higher variance in
training times between configurations (the average time re-
quired to train a configuration on the maximum resource
R is 30 minutes with a standard deviation of 27 minutes),
which exacerbates the sensitivity of synchronous SHA to
stragglers (see Appendix A.1). BOHB actually underper-
forms synchronous SHA on benchmark 2 due to its bias
towards more computationally expensive configurations, re-
ducing the number of configurations trained to completion
within the given time frame.

We further note that ASHA outperforms PBT on benchmark
1; in fact the minimum and maximum range for ASHA
across 5 trials does not overlap with the average for PBT.
On benchmark 2, PBT slightly outperforms asynchronous
Hyperband and performs comparably to ASHA. However,
note that the ranges for the searchers share large overlap
and the result is likely not significant. Overall, ASHA out-
performs PBT, BOHB and SHA on these two tasks. This
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Figure 3. Limited-scale distributed experiments with 25 work-
ers. For each searcher, the average test error across 5 trials is
shown in each plot. The light dashed lines indicate the min/max
ranges. The dotted black line represents the time needed to train
the most expensive model in the search space for the maximum
resource R. The dotted blue line represents the point at which
25 workers in parallel have performed as much work as a single
machine in the sequential experiments (Figure 2).

improved performance, coupled with the fact that it is a
more principled and general approach than either BOHB
or PBT (e.g., agnostic to resource type and robust to hy-
perparameters that change the size of the model), further
motivates its use for the large-scale regime.

4.3 Tuning Neural Network Architectures

Motivated by the emergence of neural architecture search
(NAS) as a specialized hyperparameter optimization prob-
lem, we evaluate ASHA and competitors on two NAS bench-
marks: (1) designing convolutional neural networks (CNN)
for CIFAR-10 and (2) designing recurrent neural networks
(RNN) for Penn Treebank (Marcus et al., 1993). We use the
same search spaces as that considered by Liu et al. (2019)
(see Appendix A.5 for more details).

For both benchmarks, we ran ASHA, SHA, and BOHB on
16 workers with η = 4 and a maximum resource ofR = 300
epochs. The results in Figure 4 shows ASHA outperforms
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Figure 4. Tuning neural network architectures with 16 workers.
For each searcher, the average test error across 4 trials is shown in
each plot. The light dashed lines indicate the min/max ranges.

SHA and BOHB on both benchmarks. Our results for CNN
search show that ASHA finds an architecture with test error
below 10% nearly twice as fast as SHA and BOHB. ASHA
also finds final architectures with lower test error on average:
3.24% for ASHA vs 3.42% for SHA and 3.36% for BOHB.
Our results for RNN search show that ASHA finds an archi-
tecture with validation perplexity below 80 nearly trice as
fast as SHA and BOHB and also converges an architecture
with lower perplexity: 63.5 for ASHA vs 64.3 for SHA
and 64.2 for BOHB. Note that vanilla PBT is incompatible
with these search spaces since it is not possible to warmstart
training with weights from a different architecture. We show
ASHA outperforms PBT in addition to SHA and BOHB on
an additional search space for LSTMs in Appendix A.6.

4.4 Tuning Large-Scale Language Models

In this experiment, we increase the number of workers to
500 to evaluate ASHA for massively parallel hyperparame-
ter tuning. Our search space is constructed based off of the
LSTMs considered in Zaremba et al. (2014), with the largest
model in our search space matching their large LSTM (see
Appendix A.7). For ASHA, we set η = 4, r = R/64, and
s = 0; asynchronous Hyperband loops through brackets
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Figure 5. Large-scale ASHA benchmark requiring weeks to run
with 500 workers. The x-axis is measured in units of average time
to train a single configuration for R resource. The average across
5 trials is shown, with dashed lines indicating min/max ranges.

s = 0, 1, 2, 3. We compare to Vizier without the perfor-
mance curve early-stopping rule (Golovin et al., 2017).1

The results in Figure 5 show that ASHA and asynchronous
Hyperband found good configurations for this task in
1× time(R). Additionally, ASHA and asynchronous Hy-
perband are both about 3× faster than Vizier at finding a
configuration with test perplexity below 80, despite being
much simpler and easier to implement. Furthermore, the
best model found by ASHA achieved a test perplexity of
76.6, which is significantly better than 78.4 reported for the
large LSTM in Zaremba et al. (2014). We also note that
asynchronous Hyperband initially lags behind ASHA, but
eventually catches up at around 1.5× time(R).

Notably, we observe that certain hyperparameter configu-
rations in this benchmark induce perplexities that are or-
ders of magnitude larger than the average case perplexity.
Model-based methods that make assumptions on the data
distribution, such as Vizier, can degrade in performance
without further care to adjust this signal. We attempted to
alleviate this by capping perplexity scores at 1000 but this
still significantly hampered the performance of Vizier. We
view robustness to these types of scenarios as an additional
benefit of ASHA and Hyperband.

5 PRODUCTIONIZING ASHA
While integrating ASHA in Determined AI’s software plat-
form to deliver production-quality hyperparameter tuning
functionality, we encountered several fundamental design
decisions that impacted usability, computational perfor-

1 At the time of running the experiment, it was brought to
our attention by the team maintaining the Vizier service that the
early-stopping code contained a bug which negatively impacted its
performance. Hence, we omit the results here.

mance, and reproducibility. We next discuss each of these
design decisions along with proposed systems optimizations
for each decision.

5.1 Usability

Ease of use is one of the most important considerations in
production; if an advanced method is too cumbersome to
use, its benefits may never be realized. In the context of
hyperparameter optimization, classical methods like random
or grid search require only two intuitive inputs: number of
configurations (n) and training resources per configuration
(R). In contrast, as a byproduct of adaptivity, all of the mod-
ern methods we considered in this work have many internal
hyperparameters. ASHA in particular has the following
internal settings: elimination rate η, early-stopping rate s,
and, in the case of asynchronous Hyperband, the brackets
of ASHA to run. To facilitate use and increase adoption of
ASHA, we simplify its user interface to require the same in-
puts as random search and grid search, exposing the internal
hyperparameters of ASHA only to advanced users.

Selecting ASHA default settings. Our experiments in Sec-
tion 4 and the experiments conducted by Li et al. (2018)
both show that aggressive early-stopping is effective across
a variety of different hyperparameter tuning tasks. Hence,
using both works as guidelines, we propose the following
default settings for ASHA:

• Elimination rate: we set η = 4 so that the top 1/4 of
configurations are promoted to the next rung.

• Maximum early-stopping rate: we set the maximum
early-stopping rate for bracket s0 to allow for a maxi-
mum of 5 rungs which indicates a minimum resource of
r = (1/44)R = R/256. Then the minimum resource per
configuration for a given bracket s is rs = rηs.

• Brackets to run: to increase robustness to misspecification
of the early-stopping rate, we default to running the three
most aggressively early-stopping brackets s = 0, 1, 2 of
ASHA. We exclude the two least aggressive brackets (i.e.
s4 with r4 = R and s3 with r3 = R/4) to allow for
higher speedups from early-stopping. We define this de-
fault set of brackets as the ‘standard’ set of early-stopping
brackets, though we also expose the options for more
conservative or more aggressive bracket sets.

Using n as ASHA’s stopping criterion. Algorithm 2 does
not specify a stopping criterion; instead, it relies on the user
to stop once an implicit condition is met, e.g., number of
configurations evaluated, compute time, or minimum perfor-
mance achieved. In a production environment, we decided
to use the number of configurations n as an explicit stopping
criterion both to match the user interface for random and
grid search, and to provide an intuitive connection to the
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underlying difficulty of the search space. In contrast, setting
a maximum compute time or minimum performance thresh-
old requires prior knowledge that may not be available.

From a technical perspective, n is allocated to the differ-
ent brackets while maintaining the same total training re-
sources across brackets. We do this by first calculating
the average budget per configuration for a bracket (assum-
ing no incorrect promotions), and then allocating config-
urations to brackets according to the inverse of this ratio.
For concreteness, let B be the set of brackets we are con-
sidering, then the average resource for a given bracket s
is r̄s = # of Rungs/ηblogη R/rc−s. For the default settings de-
scribed above, this corresponds to r̄0 = 5/256, r̄1 = 4/64,
and r̄2 = 3/16, and further translates to 70.5%, 22.1%,
and 7.1% of the configurations being allocated to brackets
s0, s1, and s2, respectively.

Note that we still run each bracket asynchronously; the allo-
cated number of configurations ns for a particular bracket
s simply imposes a limit on the width of the bottom rung.
In particular, upon reaching the limit ns in the bottom rung,
the number of pending configurations in the bottom rung is
at most equal to the number of workers, k. Therefore, since
blocking occurs once a bracket can no longer add config-
uration to the bottom rung and must wait for promotable
configurations, for large-scale problems where ns � k, lim-
iting the width of rungs will not block promotions until the
bracket is near completion. In contrast, synchronous SHA
is susceptible to blocking from stragglers throughout the
entire process, which can greatly reduce both the latency
and throughput of configurations promoted to the top rung
(e.g. Section 4.2, Appendix A.1).

5.2 Automatic Scaling of Parallel Training

The promotion schedule for ASHA geometrically increases
the resource per configuration as we move up the rungs of a
bracket. Hence, the average training time for configurations
in higher rungs increases drastically for computation that
scales linearly or super-linearly with the training resource,
presenting an opportunity to speed up training by using
multiple GPUs. We explore autoscaling of parallel training
to exploit this opportunity when resources are available.

We determine the maximum degree of parallelism for au-
toscaling a training task using an efficiency criteria moti-
vated by the observation that speedups from parallel training
do not scale linearly with the number of GPUs (Krizhevsky,
2014; Szegedy et al., 2014; You et al., 2017; You et al.,
2017; Goyal et al., 2017). More specifically, we can use
the Paleo framework, introduced by Qi et al. (2017), to esti-
mate the cost of training neural networks in parallel given
different specifications. Qi et al. (2017) demonstrated that
the speedups from parallel training computed using Paleo
are fairly accurate when compared to the actual observed
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Figure 6. Tradeoffs for parallel training of Imagenet using In-
ception V3. Given that each configuration takes 24 days to train on
a single Tesla K80 GPU, we chart the estimated number (according
to the Paleo performance model) of configurations evaluated by
128 Tesla K80s as a function of the number of GPUs used to train
each model for different time budgets. The dashed line for each
color represents the number of models evaluated under perfect
scaling, i.e. n GPUs train a single model n times as fast, and
span the feasible range for number of GPUs per model in order to
train within the allocated time budget. As expected, more GPUs
per configuration are required for smaller time budgets and the
total number of configurations evaluated decreases with number of
GPUs per model due to decreasing marginal benefit.

speedups for a variety of models.

Figure 6 shows Paleo applied to Inception on ImageNet
(et al., 2016) to estimate the training time with different
numbers of GPUs under strong scaling (i.e. fixed batch size
with increasing parallelism), Butterfly AllReduce commu-
nication scheme, specified hardware settings (namely Tesla
K80 GPU and 20G Ethernet), and a batch size of 1024.

The diminishing returns when using more GPUs to train a
single model is evident in Figure 6. Additionally, there is
a tradeoff between using resources to train a model faster
to reduce latency versus evaluating more configurations to
increase throughput. Using the predicted tradeoff curves
generated using Paleo, we can automatically limit the num-
ber of GPUs per configuration to control efficiency relative
to perfect linear scaling, e.g., if the desired level of effi-
ciency is at least 75%, then we would limit the number of
GPUs per configuration for Inception to at most 16 GPUs.

5.3 Resource Allocation

Whereas research clusters often require users to specify the
number of workers requested and allocate workers on a first-
in-first-out (FIFO) fashion, this scheduling mechanism is
poorly suited for production settings for two main reasons.
First, as we discuss below in the context of ASHA, machine
learning workflows can have variable resource requirements
over the lifetime of a job, and forcing users to specify static
resource requirements can result in suboptimal cluster uti-
lization. Second, FIFO scheduling can result in poor sharing
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of cluster resources among users, as a single large job could
saturate the cluster and block all other user jobs.

We address these issues with a centralized fair-share sched-
uler that adaptively allocates resources over the lifetime of
each job. Such a scheduler must both (i) determine the appro-
priate amount of parallelism for each individual job, and (ii)
allocate computational resources across all user jobs. In the
context of an ASHA workload, the scheduler automatically
determines the maximum resource requirement at any given
time based on the inputs to ASHA and the parallel scaling
profile determined by Paleo. Then, the scheduler allocates
cluster resources by considering the resource requirements
of all jobs while maintaining fair allocation across users.
We describe each of these components in more detail below.

Algorithm level resource allocation. Recall that we pro-
pose to use the number of configurations, n, as a stopping
criteria for ASHA in production settings. Crucially, this de-
sign decision limits the maximum degree of parallelism for
an ASHA job. If n is the number of desired configurations
for a given ASHA bracket and κ the maximum allowable
training parallelism, e.g., as determined by Paleo, then at
initialization, the maximum parallelism for the bracket is
nκ. We maintain a stack of training tasks S that is popu-
lated initially with all configurations for the bottom rung
n. The top task in S is popped off whenever a worker re-
quests a task and promotable configurations are added to the
top of S when tasks complete. As ASHA progresses, the
maximum parallelism is adaptively defined as κ|S|. Hence,
an adaptive worker allocation schedule that relies on κ|S|
would improve cluster utilization relative to a static alloca-
tion scheme, without adversely impacting performance.

Cluster level resource allocation. Given the maximum de-
gree of parallelism for any ASHA job, the scheduler then al-
locates resources uniformly across all jobs while respecting
these maximum parallelism limits. We allow for an optional
priority weighting factor so that certain jobs can receive a
larger ratio of the total computational resources. Resource
allocation is performed using a water-filling scheme where
any allocation above the maximum resource requirements
for a job are distributed evenly to remaining jobs.

For concreteness, consider a scenario in which we have a
cluster of 32 GPUs shared between a group of users. When
a single user is running an ASHA job with 8 configurations
in S1 and a maximum training parallelism of κ1 = 4, the
scheduler will allocate all 32 GPUs to this ASHA job. When
another user submits an ASHA job with a maximum par-
allelism of κ2|S2| = 64, the central scheduler will then
allocate 16 GPUs to each user. This simple scenario demon-
strate how our central scheduler allows jobs to benefit from
maximum parallelism when the computing resources are
available, while maintaining fair allocation across jobs in
the presence of resource contention.

5.4 Reproducibility in Distributed Environments

Reproducibility is critical in production settings to instill
trust during the model development process; foster collab-
oration and knowledge transfer across teams of users; and
allow for fault tolerance and iterative refinement of models.
However, ASHA introduces two primary reproducibility
challenges, each of which we describe below.

Pausing and restarting configurations. There are many
sources of randomness when training machine learning mod-
els; some source can be made deterministic by setting the
random seed, while others related to GPU floating-point
computations and CPU multi-threading are harder to avoid
without performance ramifications. Hence, reproducibility
when resuming promoted configurations requires carefully
checkpointing all stateful objects pertaining to the model.
At a minimum this includes the model weights, model op-
timizer state, random number generator states, and data
generator state. We provide a checkpointing solution that fa-
cilitates reproducibility in the presence of stateful variables
and seeded random generators. The availability of determin-
istic GPU floating-point computations is dependent on the
deep learning framework, but we allow users to control for
all other sources of randomness during training.

Asynchronous promotions. To allow for full reproducibil-
ity of ASHA, we track the sequence of all promotions made
within a bracket. This sequence fixes the nondeterminism
from asynchrony, allowing subsequent replay of the exact
promotions as the original run. Consequently, we can re-
construct the full state of a bracket at any point in time, i.e.
which configurations are on which rungs and which training
tasks are in the stack.

Taken together, reproducible checkpoints and full bracket
states allow us to seamlessly resume hyperparameter tuning
jobs when crashes happen and allow users to request to
evaluate more configurations if desired. For ASHA, refining
hyperparameter selection by resuming an existing bracket is
highly beneficial, since a wider rung gives better empirical
estimates of the top 1/η configurations.

6 CONCLUSION

In this paper, we addressed the problem of developing a
production-quality system for hyperparameter tuning by
introducing ASHA, a theoretically principled method for
simple and robust massively parallel hyperparameter op-
timization. We presented empirical results demonstrating
that ASHA outperforms state-of-the-art methods Fabolas,
PBT, BOHB, and Vizier in a suite of hyperparameter tuning
benchmarks. Finally, we provided systems level solutions
to improve the effectiveness of ASHA that are applicable to
existing systems that support our algorithm.
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A APPENDIX

As part of our supplementary material, (1) compare the
impact of stragglers and dropped jobs on synchronous SHA
and ASHA, (2) present the comparison to Fabolas in the
sequential setting and (3) provide additional details for the
empirical results shown in Section 4.

A.1 Comparison of Synchronous SHA and ASHA

We use simulated workloads to evaluate the impact of strag-
glers and dropped jobs on synchronous SHA and ASHA.
For our simulated workloads, we run synchronous SHA
with η = 4, r = 1, R = 256, and n = 256 and ASHA
with the same values and the maximum early-stopping rate
s = 0. Note that BOHB (Falkner et al., 2018), one of the
competitors we empirically compare to in Section 4, is also
susceptible to stragglers and dropped jobs since it uses syn-
chronous SHA as its parallelization scheme but leverages
Bayesian optimization to perform adaptive sampling.

For these synthetic experiments, we assume that the ex-
pected training time for each job is the same as the allocated
resource. We simulate stragglers by multiplying the ex-
pected training time by (1 + |z|) where z is drawn from a
normal distribution with mean 0 and a specified standard
deviation. We simulated dropped jobs by assuming that
there is a given p probability that a job will be dropped at
each time unit, hence, for a job with a runtime of 256 units,
the probability that it is not dropped is 1− (1− p)256.

Figure 7 shows the number of configurations trained to com-
pletion (left) and time required before one configuration
is trained to completion (right) when running synchronous
SHA and ASHA using 25 workers. For each combination
of training time standard deviation and drop probability, we
simulate ASHA and synchronous SHA 25 times and report
the average. As can be seen in Figure 7a, ASHA trains many
more configurations to completion than synchronous SHA
when the standard deviation is high; we hypothesize that
this is one reason ASHA performs significantly better than
synchronous SHA and BOHB for the second benchmark in
Section 4.2. Figure 7b shows that ASHA returns a config-
uration trained for the maximum resource R much faster
than synchronous SHA when there is high variability in
training time (i.e., stragglers) and high risk of dropped jobs.
Although ASHA is more robust than synchronous SHA to
stragglers and dropped jobs on these simulated workloads,
we nonetheless compare synchronous SHA in Section 4.4
and show that ASHA performs better.

A.2 Comparison with Fabolas in Sequential Setting

(Klein et al., 2017a) showed that Fabolas can be over an
order of magnitude faster than existing Bayesian optimiza-
tion methods. Additionally, the empirical studies presented

in (Klein et al., 2017a) suggest that Fabolas is faster than
Hyperband at finding a good configuration. We conducted
our own experiments to compare Fabolas with Hyperband
on the following tasks:

1. Tuning an SVM using the same search space as (Klein
et al., 2017a).

2. Tuning a convolutional neural network (CNN) with the
same search space as Li et al. (2017) on CIFAR-10
(Krizhevsky, 2009).

3. Tuning a CNN on SVHN (Netzer et al., 2011) with
varying number of layers, batch size, and number of
filters (see Appendix A.4 for more details).

In the case of the SVM task, the allocated resource is number
of training datapoints, while for the CNN tasks, the allocated
resource is the number of training iterations.

We note that Fabolas was specifically designed for data
points as the resource, and hence, is not directly applica-
ble to tasks (2) and (3). However, freeze-thaw Bayesian
optimization (Swersky et al., 2014), which was specifically
designed for models that use iterations as the resource, is
known to perform poorly on deep learning tasks (Domhan
et al., 2015). Hence, we believe Fabolas to be a reason-
able competitor for tasks (2) and (3) as well, despite the
aforementioned shortcoming.

We use the same evaluation framework as Klein et al.
(2017a), where the best configuration, also known as the
incumbent, is recorded through time and the test error is
calculated in an offline validation step. Following Klein
et al. (2017a), the incumbent for Hyperband is taken to be
the configuration with the lowest validation loss and the
incumbent for Fabolas is the configuration with the lowest
predicted validation loss on the full dataset. Moreover, for
these experiments, we set η = 4 for Hyperband.

Notably, when tracking the best performing configuration
for Hyperband, we consider two approaches. We first con-
sider the approach proposed in Li et al. (2018) and used
by Klein et al. (2017a) in their evaluation of Hyperband. In
this variant, which we refer to as “Hyperband (by bracket),”
the incumbent is recorded after the completion of each SHA
bracket. We also consider a second approach where we
record the incumbent after the completion of each rung of
SHA to make use of intermediate validation losses, similar
to what we propose for ASHA (see discussion in Section 3.3
for details). We will refer to Hyperband using this account-
ing scheme as “Hyperband (by rung).” Interestingly, by
leveraging these intermediate losses, we observe that Hyper-
band actually outperforms Fabolas.

In Figure 8, we show the performance of Hyperband, Fabo-
las, and random search. Our results show that Hyperband
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(b) Average time before a configuration is trained on R resource.

Figure 7. Simulated workloads comparing impact of stragglers and dropped jobs. The number of configurations trained for R
resource (left) is higher for ASHA than synchronous SHA when the standard deviation is high. Additionally, the average time before a
configuration is trained for R resource (right) is lower for ASHA than for synchronous SHA when there is high variability in training
time (i.e., stragglers). Hence, ASHA is more robust to stragglers and dropped jobs than synchronous SHA since it returns a completed
configuration faster and returns more configurations trained to completion.

(by rung) is competitive with Fabolas at finding a good con-
figuration and will often find a better configuration than
Fabolas with less variance. Note that Hyperband loops
through the brackets of SHA, ordered by decreasing early-
stopping rate; the first bracket finishes when the test error for
Hyperband (by bracket) drops. Hence, most of the progress
made by Hyperband comes from the bracket with the most
aggressive early-stopping rate, i.e. bracket 0.

A.3 Experiments in Section 4.1 and Section 4.2

We use the usual train/validation/test splits for CIFAR-10,
evaluate configurations on the validation set to inform al-
gorithm decisions, and report test error. These experiments
were conducted using g2.2xlarge instances on Amazon
AWS.

For both benchmark tasks, we run SHA and BOHB with
n = 256, η = 4, s = 0, and set r = R/256, where R =
30000 iterations of stochastic gradient descent. Hyperband
loops through 5 brackets of SHA, moving from bracket
s = 0, r = R/256 to bracket s = 4, r = R. We run ASHA
and asynchronous Hyperband with the same settings as the
synchronous versions. We run PBT with a population size
of 25, which is between the recommended 20–40 (Jaderberg
et al., 2017). Furthermore, to help PBT evolve from a good
set of configurations, we randomly sample configurations

until at least half of the population performs above random
guessing.

We implement PBT with truncation selection for the exploit
phase, where the bottom 20% of configurations are replaced
with a uniformly sampled configuration from the top 20%
(both weights and hyperparameters are copied over). Then,
the inherited hyperparameters pass through an exploration
phase where 3/4 of the time they are either perturbed by
a factor of 1.2 or 0.8 (discrete hyperparameters are per-
turbed to two adjacent choices), and 1/4 of the time they are
randomly resampled. Configurations are considered for ex-
ploitation/exploration every 1000 iterations, for a total of 30
rounds of adaptation. For the experiments in Section 4.2, to
maintain 100% worker efficiently for PBT while enforcing
that all configurations are trained for within 2000 iterations
of each other, we spawn new populations of 25 whenever a
job is not available from existing populations.

Vanilla PBT is not compatible with hyperparameters that
change the architecture of the neural network, since inher-
ited weights are no longer valid once those hyperparameters
are perturbed. To adapt PBT for the architecture tuning task,
we fix hyperparameters that affect the architecture in the
explore stage. Additionally, we restrict configurations to be
trained within 2000 iterations of each other so a fair compar-
ison is made to select configurations to exploit. If we do not
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Figure 8. Sequential Experiments (1 worker) with Hyperband running synchronous SHA. Hyperband (by rung) records the incumbent
after the completion of a SHA rung, while Hyperband (by bracket) records the incumbent after the completion of an entire SHA bracket.
The average test error across 10 trials of each hyperparameter optimization method is shown in each plot. Dashed lines represent min and
max ranges for each tuning method.

Hyperparameter Type Values
batch size choice {26, 27, 28, 29}
# of layers choice {2, 3, 4}
# of filters choice {16, 32, 48, 64}

weight init std 1 continuous log [10−4, 10−1]
weight init std 2 continuous log [10−3, 1]
weight init std 3 continuous log [10−3, 1]
l2 penalty 1 continuous log [10−5, 1]
l2 penalty 2 continuous log [10−5, 1]
l2 penalty 3 continuous log [10−3, 102]
learning rate continuous log [10−5, 101]

Table 1. Hyperparameters for small CNN architecture tuning task.

impose this restriction, PBT will be biased against configu-
rations that take longer to train, since it will be comparing
these configurations with those that have been trained for
more iterations.

A.4 Experimental Setup for the Small CNN
Architecture Tuning Task

This benchmark tunes a multiple layer CNN network with
the hyperparameters shown in Table 1. This search space
was used for the small architecture task on SVHN (Sec-
tion A.2) and CIFAR-10 (Section 4.2). The # of layers
hyperparameter indicate the number of convolutional layers
before two fully connected layers. The # of filters indicates
the # of filters in the CNN layers with the last CNN layer
having 2× # filters. Weights are initialized randomly from
a Gaussian distribution with the indicated standard devi-
ation. There are three sets of weight init and l2 penalty
hyperparameters; weight init 1 and l2 penalty 1 apply to the
convolutional layers, weight init 2 and l2 penalty 2 to the
first fully connected layer, and weight init 3 and l2 penalty
3 to the last fully connected layer. Finally, the learning rate
hyperparameter controls the initial learning rate for SGD.
All models use a fixed learning rate schedule with the learn-
ing rate decreasing by a factor of 10 twice in equally spaced
intervals over the training window. This benchmark is run
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Figure 9. Modern LSTM benchmark with DropConnect (Merity
et al., 2018) using 16 GPUs. The average across 5 trials is shown,
with dashed lines indicating min/max ranges.

on the SVHN dataset (Netzer et al., 2011) following Ser-
manet et al. (2012) to create the train, validation, and test
splits.

A.5 Experimental Setup for Neural Architecture
Search Benchmarks

For NAS benchmarks evaluated in Section 4.3, we used
the same search space as that considered by Liu et al.
(2019) for designing CNN and RNN cells. Following Li
& Talwalkar (2019), we sample architectures from the as-
sociated search space randomly and train them using the
same hyperparameter settings as that used by Liu et al.
(2019) in the evaluation stage. We refer the reader to
the following code repository for more details: https:
//github.com/liamcli/darts_asha.

A.6 Tuning Modern LSTM Architectures

As a followup to the experiment in Section 4.3, we consider
a search space for language modeling that is able to achieve
near state-of-the-art performance. Our starting point was
the work of Merity et al. (2018), which introduced a near
state-of-the-art LSTM architecture with a more effective
regularization scheme called DropConenct. We constructed
a search space around their configuration and ran ASHA and
PBT, each with 16 GPUS on one p2.16xlarge instance
on AWS. The hyperparameters that we considered along
with their associated ranges are shown in Table 2.

Then, for ASHA, SHA, and BOHB we used η = 4, r = 1
epoch, R = 256 epochs, and s = 0. For PBT, we use a
population size to 20, a maximum resource of 256 epochs,
and perform explore/exploit every 8 epochs using the same
settings as the previous experiments.

Figure 9 shows that while PBT performs better initially,
ASHA soon catches up and finds a better final configura-

tion; in fact, the min/max ranges for ASHA and PBT do not
overlap at the end. We then trained the best configuration
found by ASHA for more epochs and reached validation and
test perplexities of 60.2 and 58.1 respectively before fine-
tuning and 58.7 and 56.3 after fine-tuning. For reference,
Merity et al. (2018) reported validation and test perplexi-
ties respectively of 60.7 and 58.8 without fine-tuning and
60.0 and 57.3 with fine-tuning. This demonstrates the ef-
fectiveness of ASHA in the large-scale regime for modern
hyperparameter optimization problems.

Hyperparameter Type Values
learning rate continuous log [10, 100]
dropout (rnn) continuous [0.15, 0.35]

dropout (input) continuous [0.3, 0.5]
dropout (embedding) continuous [0.05, 0.2]

dropout (output) continuous [0.3, 0.5]
dropout (dropconnect) continuous [0.4, 0.6]

weight decay continuous log [0.5e− 6, 2e− 6]
batch size discrete [15, 20, 25]
time steps discrete [65, 70, 75]

Table 2. Hyperparameters for 16 GPU near state-of-the-art LSTM
task.

A.7 Experimental Setup for Large-Scale Benchmarks

Hyperparameter Type Values
batch size discrete [10, 80]

# of time steps discrete [10, 80]
# of hidden nodes discrete [200, 1500]

learning rate continuous log [0.01, 100.]
decay rate continuous [0.01, 0.99]

decay epochs discrete [1, 10]
clip gradients continuous [1, 10]

dropout probability continuous [0.1, 1.]
weight init range continuous log [0.001, 1]

Table 3. Hyperparameters for PTB LSTM task.

The hyperparameters for the LSTM tuning task compar-
ing ASHA to Vizier on the Penn Tree Bank (PTB) dataset
presented in Section 4.4 is shown in Table 3. Note that
all hyperparameters are tuned on a linear scale and sam-
pled uniform over the specified range. The inputs to the
LSTM layer are embeddings of the words in a sequence.
The number of hidden nodes hyperparameter refers to the
number of nodes in the LSTM. The learning rate is decayed
by the decay rate after each interval of decay steps. Finally,
the weight initialization range indicates the upper bound of
the uniform distribution used to initialize all weights. The
other hyperparameters have their standard interpretations
for neural networks. The default training (929k words) and
test (82k words) splits for PTB are used for training and
evaluation (Marcus et al., 1993). We define resources as

https://github.com/liamcli/darts_asha
https://github.com/liamcli/darts_asha
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the number of training records, which translates into the
number of training iterations after accounting for certain
hyperparameters.


