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Abstract

Most compilers for machine learning (ML) frameworks need to solve many cor-
related optimization problems to generate efficient machine code. Current ML
compilers rely on heuristics based algorithms to solve these optimization problems
one at a time. However, this approach is not only hard to maintain but often
leads to sub-optimal solutions especially for newer model architectures. Existing
learning based approaches in the literature are sample inefficient, tackle a single
optimization problem, and do not generalize to unseen graphs making them in-
feasible to be deployed in practice. To address these limitations, we propose an
end-to-end, transferable deep reinforcement learning method for computational
graph optimization (GO), based on a scalable sequential attention mechanism over
an inductive graph neural network. GO generates decisions on the entire graph
rather than on each individual node autoregressively, drastically speeding up the
search compared to prior methods. Moreover, we propose recurrent attention layers
to jointly optimize dependent graph optimization tasks and demonstrate 33%-60%
speedup on three graph optimization tasks compared to TensorFlow default op-
timization. On a diverse set of representative graphs consisting of up to 80,000
nodes, including Inception-v3, Transformer-XL, and WaveNet, GO achieves on
average 21% improvement over human experts and 18% improvement over the
prior state of the art with 15× faster convergence, on a device placement task
evaluated in real systems.

1 Introduction

Increasingly, many applications are driven by large and complex neural network models [12, 28,
15, 18, 24]. The high computation requirements of training such models requires efficient use of
ML accelerator(like GPUs and TPUs). However, the effective use of such accelerators is largely
determined by device-specific optimization by compilers, like TensorFlow XLA, Glow, MLIR, and
AutoTVM [10, 26, 17, 4], which map the high-level computational graph to operations executable on
the device.

In mapping a computational graph to machine code that executes on a collection of devices, ML
compilers need to solve many optimization problems including graph rewriting, assignment of
operations on devices, operation fusion, layout and tiling of tensors, and scheduling. ML compilers
usually apply heuristics to solve these problems individually, which suffers from two key limitations.
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First, these heuristics often lead to sub-optimal configurations especially for previously unseen
model architectures. Second, by solving these problems in isolation, the compiler misses out on
opportunities for joint optimizations across tasks. To overcome these limitations of current approaches,
ML practitioners often rely on their domain knowledge and use manual hints (for example, explicit
device assignments) to guide the compiler’s decisions.

Prior RL-based approaches [21, 19, 9] outperform both human experts as well as heuristic algorithms.
However, they often require substantial computational resources to train and do not generalize well to
new graphs. Furthermore, most prior learning based approaches are targeted towards solving a single
optimization problem in the stack without any knowledge sharing across tasks. Many of the graph
optimization problems in the compiler stack are inherently coupled. For example, a seemingly well
optimized graph partitioning and device placement can lead to poor run time due to bad scheduling
decisions that induces a near-sequential execution. For making learned solutions practically viable
and competitive, we need designs that are not only resource efficient and fast but also are able to
jointly solve tightly coupled optimization problems in the stack.

In this paper, we propose an end-to-end deep RL method (GO) for ML compiler graph optimizations
where the learned policy is generalizable to new graphs and transferable across multiple tasks. Specif-
ically, GO consists of an inductive graph-embedding network that encodes operation features and
dependencies in a trainable graph representation, followed by a policy network of segmented recur-
rent attention layers. The policy network transforms the graph representations into an optimization
decision with soft attention. These two networks can be jointly trained in an end-to-end fashion using
a supervised reward. To generalize to arbitrary and held-out graphs, GO is trained jointly over a set of
computation graphs (instead of one at a time) and then fine-tuned on new graphs. By transferring the
learned graph embeddings and optimization policies, GO converges faster using less resources. We
also use super-positioning, a feature conditioning mechanism based on the input graph embeddings,
to effectively orchestrate the optimization dynamics of a batch containing graphs with drastically
different sizes. To jointly optimize multiple dependent graph optimization tasks, we propose a novel
recurrent attention, without introducing additional parameters or training overhead.

2 Related Work

Model Level Parallelism Mesh-TensorFlow is a language that provides a general class of distributed
tensor computation, where users can specify any tensor-dimension to be split across any dimension
of a multi-dimensional mesh of processors. FlexFlow [14] introduces SOAP, a more comprehensive
search space of parallelization strategies for DNNs which allows parallelization of a DNN in the
Sample, Operator, Attribute, and Parameter dimensions. GPipe [13] proposed pipeline parallelism
by partitioning a model across multiple accelerators and automatically splitting a mini-batch of
training examples into smaller micro-batches. PipeDream [22] introduced pipeline parallelism with
asynchronous training, allowing gradient updates of multiple mini-batches to happen in parallel. In
addition to the model parallelism primitives, GO provides a learning-based optimization that can
generalize across different graphs and transfer to new tasks.

RL for Graph Optimization Reinforcement learning has been used for device placement [21, 9, 19]
and has demonstrated run time reduction over human-crafted placements and conventional heuristics.
Hierarchical Device Placement (HDP) [19], Spotlight [9], and Placeto [1] progressively generate
decisions on a per-node basis, so they have difficulty capturing long-distance dependencies over
large graphs and are slow in training. Placeto [1] represents the first attempt to generalize device
placement using a graph embedding network. However, like HDP, Placeto relies on hierarchical
grouping and only generates placement for one node at each time step. NeuRewriter [5] is a generic
rewriting system that uses RL to solve combinatorial optimization problems. It performs a series of
local rewrites until reaching a final solution. In contrast, our approach generates decisions for the
entire graph at once, significantly reducing the policy training time. We also tackle a wider set of
graph optimization problems.

ML Compiler Optimization Machine learning has been applied to optimize the execution time of
tensor computation graphs [23, 34, 2]. Out of all these works, only REGAL[23] leverages the learned
policy’s ability to transfer knowledge to new graphs. However, we demonstrate generalization on
substantially larger and varied set of graphs, Unlike REGAL, we evaluate GO with performance
measurements on real systems in addition to using a performance model. TASO [36] automatically
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generates graph substitutions for DNN computational graphs. However, TASO is not learning-based
and does not generalize to unseen graphs. FlexFlow [14] introduces SOAP, a more comprehensive
search space of parallelization strategies for DNNs which allows parallelization of a DNN in the
Sample, Operator, Attribute, and Parameter dimensions.

3 Tasks and Problem Formulation

ML computations are usually expressed as computation graphs, G(V,E), where nodes V represent
computations and edges E represent data flows. We consider three related computational graph
optimization problems from the ML compiler optimization stack. We first explain how each of these
problems can be formulated as learning a policy for classification of nodes in the graph. We then
discuss the specific training objectives used in GO.

Device Placement: Given a computational graph, the goal of device placement is to learn a policy
π : G 7→ D that assigns a device D ∈ D for all nodes in the given graph G ∈ G, to maximize a
reward rG,D defined based on the run time.

Operation Scheduling: An op in a dataflow graph is ready to run when its incoming tensors are
present in the device memory. A frequently used scheduling strategy is to maintain a ready queue
of operations for each device and schedule operations in first-in-first-out order. However, such
schedules can be sub-optimal especially when the operations are distributed across a set of devices.
As demonstrated through detailed profiles in Supp. Mat. B.1, the sub-optimal schedules typically
exhibit underutilized devices since ops for these devices are blocked on producer ops in ready queues
of other devices. We propose a priority-based scheduler where the scheduler maintains a priority
queue of ready operations for each device and schedules the highest priority operation in the queue
first. Similar to device placement, operation scheduling can be formulated as the problem of learning
a policy π : G 7→ P that assigns a scheduling priority P ∈ P for all ops in the graph to maximize a
reward rG,P defined based on run time.

Operation Fusion: Op fusion is the process of merging multiple ops into a single op. Figure 1
showcases an example of op fusion. Op K1 is producing an output which is consumed by op K2. If
these two ops are fused, the intermediate data produced by K1 is immediately used for K2 when K1
finishes on the device, without the need to perform read and write transactions with the global memory,
thereby reducing the communication overhead. Figure 2 shows an example of how the decision
of which ops to fuse can change application performance. In this case, we have an element-wise
multiplication (Mul), a reduction, and a sigmoid function connected to each other as shown. Should
the algorithm choose Reduce and Sigmoid for fusion (left), the performance will not improve much,
since the amount of intermediate values transferred to/from the memory will not change significantly.
On the other hand, if the fusion algorithm selects Mul and Reduce (right), the intermediate tensor
after the multiplication will stay in the faster scratchpad memory for the Reduce op. Therefore, the
amount of transferred data from/to global memory has decreased dramatically. Simple strategies like
considering ops in topological order can make inefficient fusion decisions and lead to suboptimal
performance. We can reformulate op fusion as a priority-based ordering problem: learning a policy
π : G 7→ F that assigns a fusion priority F ∈ F for all ops in the graph to maximize a reward rG,F
defined based on run time. rG,F . Each node is associated with a fusion priority score F ∈ F , where
the size of F is a hyperparameter. The scores determine the order in which nodes are fused.

Generalization across graphs: In contrast to prior works that focus on a single graph only, the
training objective for GO is to simultaneously reduce the expected run time of the optimization over

K1 K2 Fused_K1_K2

Op Fusion

Figure 1: An op fusion example.
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Mul Reduce SigmoidMul Reduce Sigmoid

Core MemoryCore Memory

Figure 2: Inefficient fusion with unnecessary memory traffic (left), and better fusion (right).

multiple dataflow graphs: J(θ) = EG∼G,T∼πθ(G)[rG,T ], where T ∈ {D,P, F} denotes the task, θ
denotes the parameters of the RL policy, and G denotes the empirical distribution of dataflow graphs.
Figure 3 demonstrates the overall network design for a single task.

Joint optimization across tasks: Our method can be extended to handle multiple tasks jointly.
The multi-task objective is defined as: J(θ) = EG∼G,D∼πθD (G),P∼πθP (G),F∼πθF (G)[rG,D,P,F ].
Parameters across the three tasks can be partially shared: θT = (φ, ψT ) where T ∈ {D,P, F}, φ
denotes the shared parameters and φT denotes the task-specific parameters. The shared policies can
be parameterized in the form of multiple recurrent attention layers (Section 4.4).

4 Network Architecture
In this section, we first present the architecture of a policy network that can be adapted to solve each
of the fore-mentioned optimization problems one at a time. In Section 4.4, we further present the
augmentation with recurrent attention layers to learn multiple tasks jointly.

Figure 3 shows an overview of the proposed end-to-end graph policy network. Our proposed policy
network πθ consists a graph embedding network that learns the graphical representation hG of any
computational graph, and a scalable decision network that learns a optimization strategy p(y|G) over
the given graph representation. The two components are jointly trained in an end-to-end fashion.

Let yi be the action for the i-th node. Ideally, we would like to compute the action distribution of the
current node based on the actions of all previous nodes in an auto-regressive manner:

p(y|G) =
∏

i=1..N

p (yi|hG, yi−1, yi−2, ...) (1)

However, the above is infeasible in practice because N can be as large as 10K, and computing the
yi’s sequentially can be extremely expensive. To address this issue, we propose an iterative but
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Figure 3: Overview of GO: An end-to-end graph policy network that combines graph embedding and
sequential attention. N : Number of Nodes, a: Size of the action space (number of devices, number
of priority levels, etc.). Node features are sorted in topological order.
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non-autoregressive process as an approximation:

p(y(t)|G) =
∏

i=1..N

p
(
y
(t)
i |hG,y

(t−1)
)

(2)

Although the N sampling procedures are now carried out in parallel within each iteration t, decisions
over the N nodes are allowed to mutually influence each other because the process above will be
repeated for T times (T � N ). Note the distribution of y(t) is informed about y(t−1), the actions
made over all the nodes in the previous iteration.

In terms of network implementation, the temporal dependencies between actions in multiple RL steps
are carried out by state embedding such that the state of the previous step is used as an input to the
network in the next step. In Eq. 1, the actions are produced by the final layer in Figure 3. Figure 3 is
an illustration of a single task, while Figure 4 demonstrates the extension of the same framework for
multiple tasks. We add a few more Transformer layers with residual connections as task heads.

The architecture is designed to be invariant over the underlying graph topology, enabling us to apply
the same learned policy to a wide set of input graphs. GO optimizes the objective described in
Section 3 using Proximal Policy Optimization (PPO) [27] for improved sample efficiency.

4.1 Graph Embedding Network

We leverage graph neural networks (GNNs) [11, 32, 33] to capture the topological information
encoded in the dataflow graph. GraphSAGE [11] is an inductive network that leverages node attribute
information to generalize to previously unseen data. While our proposed framework is generic, we
adopt the feature aggregation scheme proposed in GraphSAGE and build a general, end-to-end graph
optimization method for a wide set of dataflow graphs.

In GO, nodes and edges in the dataflow graph are represented as the concatenation of their meta
features (e.g., operation type, output shape) and are further encoded by the graph embedding network
into a trainable representation. The graph embedding process consists of multiple iterations, and
the computation procedure for the l-th iteration can be outlined as follows: First, each node v ∈ V
aggregates the feature representations of its neighbors, {h(l)u ,∀u ∈ N (v)}, into a single vector h(l)N (v).
This aggregation outcome is a function of all previously generated representations, including the
initial representations defined based on the input node features. In this work, we use the following
aggregation function with max pooling:

h
(l)
N (v) = max(σ(W (l)h(l)u + b(l)),∀u ∈ N (v)) (3)

where (W (l), b(l)) define an affine transform and σ stands for the sigmoid activation function. We
then concatenate the node’s current representation, h(l)v , with the aggregated neighborhood vector,
h
(l)
N (v), and feed this concatenated vector through a fully connected layer f (l+1)

h(l+1)
v = f (l+1)(concat(h(l)v , h

(l)
N (v))) (4)

Different from GraphSAGE, parameters in our graph embedding network are trained jointly with a
decision network via stochastic gradient descent with PPO, in a supervised fashion. Enhanced with a
global attention network discussed in Section 4.2, the optimal GS layers is smaller.

4.2 Scalable Decision Network

In graph optimization tasks, the optimal actions for a node are often influenced by actions for other
nodes in the graph. While the graph neural network works as a feature aggregation network, it lacks
the ability of tracking global node dependencies in a scalable fashion. Intuitively, an attention network
can learn this dependency and the relative importance of dependencies across an entire graph.

In addition to tracking dependencies in a scalable fashion, handling large computational graphs
in the compilation stacks is another practical concern when designing the network. The decision
network should be able to handle computational graphs from realistic workloads consisting over
10,000 nodes. As compared in Table 1, LSTM-based models proposed for language tasks usually
target a shorter sequence length, incurring vanishing (and exploding) gradients or substantially longer
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Architectures Handle over 10k nodes Capture topological info Global node dependencies Generalizable Fast

No GraphSAGE - - - No -
GS+MLP Yes Yes No Yes Yes

GS+LSTM No Yes No Yes No
GS+VanillaTransformer No Yes Yes Yes Yes

Graph Attention No Yes No Yes Yes
GO Yes Yes Yes Yes Yes

Table 1: Network Comparison. GO is composed of a GraphSAGE with a segmented Transformer
Network that can satisfy all the listed requirements.

training time. Although hierarchical grouping has been used [19, 1] to address longer sequences in a
LSTM-based network, the proposed grouper network comes with limited flexibility and generality.
The non-differentiable grouping procedure prevents training the networks end-to-end.

The above requirements and considerations led us to propose a Transformer-based attentive network
to generate the optimization decision in an end-to-end fashion as shown in Figure 3. As the graph
embedding already contains spatial (topological) information for each node, we remove the positional
embedding in the original transformer to prevent the model from overfitting node identifications.
To capture long-term dependencies efficiently among a large set of nodes, we adopt segment-level
recurrence introduced in Transformer-XL [8, 7], where hidden states computed for the previous set of
nodes are cached (with gradient flows disabled) and reused as an extended context during the training
of the next segment. Besides achieving extra long context, we empirically find the segment-level
recurrent attention much faster than a LSTM-based method. In our experimental evaluation, we
compare both the performance and speed up of our policy network with that of the LSTM-based
hierarchical policy network. More ablation study is presented in Supp. Mat. C.1.

4.3 Generalization with Parameter Superposition

One of the key goals of this work is to ensure the generalizability of the the policy network over a
wide variety of graphs from potentially different application domains (e.g. computer vision, language,
and speech). Not only do these graphs vary in the number of operations from a few thousand to
a million, but they also have drastically different network architectures, in terms of computational
operations, data shape, and network topology. As an example, recurrent networks have completely
different operation types and connections compared to convolutional networks that are widely used in
computer vision. A naïve strategy of training the shared policy network with batches of heterogeneous
graphs is unlikely to perform as well as networks exclusively trained for a particular type of graph.

To overcome this limitation, we propose a feature modulation mechanism similar to parameter
superposition [6]. The idea is to re-weight network parameters by generating a feature modulation
layer based on the input graph features as shown in Figure 3, to mitigate the potentially undesirable
interference among different input graphs. The feature modulation layer is dot multiplied with all
intermediate feature maps in the decision network: x(l+1) = a(l)(m(hG)� x(l)), where a(l) stands
for an attention layer in our policy network, m stands for the feature modulation layer, and hG is the
feature representation of the input graph generated by the graph-embedding network. The feature
modulation layer is implemented with minimum overhead by adding an additional transformer layer
to our decision network. The output of the modulation layer is defined as the last-layer features of the
additional transformer.

4.4 Multi-task Policy

Given the generality of the policy network presented in the previous section, it is easy to now extend it
jointly solve multiple dependent graph optimization tasks without introducing significant parameters
or training time. We propose a recurrent attention policy network that not only applies a segment-
level recurrent attention to the graph representation spatially, but also generates recurrent actions
for multiple tasks through residual connections and parameter sharing across multiple recurrent
attention layers. Compared to the single-task policy net, Figure 4 shows that multi-task GO only
introduces one recurrent attention layer for each task added and the parameters are shared across
different tasks. The recurrent attention layers with residual connections of actions enables tracking
inter-task dependencies.
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Figure 4: Multi-task policy network with additional recurrent attention layers for each task and
residual connections. LN and FC stand for layer normalization and fully-connected layer, respectively.

Figure 4 shows the multi-task policy network consisting of a spatial recurrent attention that attend
to the input sequence (the recurrent attention policy network) and temporal recurrent attention that
attend to the task sequence (the multi-task recurrent attention layers). For the t-th task, the recurrent
attention layer computes the its hidden state Ht and action At as follows

Ht = LN(Concat(At−1, Ht−1)) (5)

At = FC(MultiHeadAttn(Ht)) (6)
where LN stands for layer normalization [3], MultiHeadAttn stands for a multi-head attention layer
whose parameters are shared across layers. FC is a fully-connected layer that consists of a single
rectified-linear activation between two affine transformations, applied position-wise, that projects the
hidden state to the task action space.

5 Experimental Evaluation

For each of the computational graph optimization tasks, the end goal is to minimize the step time of
the graph or a batch of dataflow graphs for a target system configuration (e.g. a 8-GPU cluster or a
TPU cluster), by learning a policy that generates optimization decisions on a per-node basis.

The performance of an optimized graph is evaluated by the resulting step time, run time for a single
iteration through the graph measured either by executing the graph on real hardware or using an
accurate simulator. We use the negative square root of the normalized run time as the reward, where
the run time is normalized with the best run time from a baseline. We use a value network to generate
the bias term. The advantage value is computed by subtracting the return by the bias turn. During the
search, we apply a large negative reward (-10) for invalid optimizations (e.g. a violation of co-location
constraint, out of memory, etc.).

For better sample efficiency, we adopted a Proximal Policy Optimization (PPO) [27] algorithm.
Within a loop, PPO continuously samples actions from the distribution and evaluates the step times.
For a rollout of K, we perform a minibatch of m stochastic gradient ascent steps with respective to
the objective of PPO. We find a set of optimized hyper parameters and keep them fixed for all the
experiments presented. The optimal found PPO hyper parameters are presented in Supp. Mat. A.1.

Workloads: We evaluate GO using the computational graphs of six diverse architectures from differ-
ent domains. Specifically, we use LSTM-based RNN Language Model [35, 15], GNMT [29], and
Transformer-XL [8] from language domain; InceptionV3 [30] and AmoebaNet [25] from computer
vision; and finally WaveNet [31] from the speech domain. To create a larger set of workloads we vary
architectural parameters like the number of layers for each of these workloads. All our workloads are
implemented in TensorFlow. Further details about the graphs is in Supp. Mat. A.2.

Run Time Measurement: For placement task, where TensorFlow provides an API for device
assignment, our experiments are evaluated on actual hardware with configuration of one Intel
Broadwell CPU and up to eight Nvidia P100 GPUs. For fusion and scheduling tasks, where an API
for setting nodes’ priorities is not available in TensorFlow, we instead use an analytical performance
model based on roofline estimates (details in Supp. Mat. A.3) for evaluation. For all results presented,
we use an average result over six runs for both baseline models and our method.

Baselines: We choose four different baselines against which we compare the performance of GO
along various metrics. They are the default heuristics-based optimizations used in TensorFlow(GPU),
a human-expert solution, solutions found using non-learning search techniques like simulated anneal-
ing, and finally solutions found using a learning based strategy like HDP [19].
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Model (#devices) GO-one
(s)

HP
(s)

METIS
(s)

HDP
(s)

Run time
speed up

over HP / HDP

Search
speed up
over HDP

2-layer RNNLM (2) 0.173 0.192 0.355 0.191 9.9% / 9.4% 2.95x
4-layer RNNLM (4) 0.210 0.239 0.503 0.251 13.8% / 16.3% 1.76x
8-layer RNNLM (8) 0.320 0.332 OOM 0.764 3.8% / 58.1% 27.8x
2-layer GNMT (2) 0.301 0.384 0.344 0.327 27.6% / 14.3% 30x
4-layer GNMT (4) 0.350 0.469 0.466 0.432 34% / 23.4% 58.8x
8-layer GNMT (8) 0.440 0.562 OOM 0.693 21.7% / 36.5% 7.35x

2-layer Transformer-XL (2) 0.223 0.268 0.37 0.262 20.1% / 17.4% 40x
4-layer Transformer-XL (4) 0.230 0.27 OOM 0.259 17.4% / 12.6% 26.7x
8-layer Transformer-XL (8) 0.350 0.46 OOM 0.425 23.9% / 16.7% 16.7x

Inception (2) b32 0.229 0.312 OOM 0.301 26.6% / 23.9% 13.5x
Inception (2) b64 0.423 0.731 OOM 0.498 42.1% / 29.3% 21.0x
AmoebaNet (4) 0.394 0.44 0.426 0.418 26.1% / 6.1% 58.8x

2-stack 18-layer WaveNet (2) 0.317 0.376 OOM 0.354 18.6% / 11.7% 6.67x
4-stack 36-layer WaveNet (4) 0.659 0.988 OOM 0.721 50% / 9.4% 20x

GEOMEAN - - - - 20.5% / 18.2% 15x

Table 2: Run time comparison between GO-one, human expert, TensorFlow METIS, and hierarchical
device placement (HDP) on six graphs (RNNLM, GNMT, Transformer-XL, Inception, AmoebaNet,
and WaveNet). Search speed up is the policy network training time speed up compared to HDP
(reported values are averages of six runs).

Speedup TF default SA GO-one Speedup TF default SA GO-one

NMT (2GPU) 2.82 3 3.19 (+0.37) RNNLM (8GPU) -2.39 -2.38 -2.27 (+0.11)
NMT (4GPU) -0.89 5.34 12.03 (+12.92) TRF-XL (2GPU) 24.27 25.1 28.51 (+4.24)
NMT (8GPU) 10.47 10.47 12.65 (+2.18) TRF-XL (4GPU) 17.05 19.32 19.99 (+2.94)
RNNLM (4GPU) 1.04 1.06 1.23 (+0.19) TRF-XL (8GPU) 21.66 26.25 31.48 (+9.82)

Table 3: Speedup of each fusion policy normalized to the no-fusion case (reported in %). The number
in the parentheses is the improvement of our work over the default fusion.

5.1 Single Task Performance

Device Placement for Individual Graphs: To demonstrate that GO’s policy network architecture
is better suited for graph optimization problems, we first train the model separately on each of our
workloads. We name this approach GO-one. Since TensorFlow provides an API for assigning
operation placement, all reported measurements for placement task are on real hardware. As shown
in Table 2, GO-one consistently outperforms human expert placement (HP), TensorFlow METIS [16]
placement, and Hierarchical Device Placement (HDP). GO is designed in a way to scale up to
extremely large graphs, consisting of over 80,000 nodes (8-layer GNMT). Therefore unlike any
of the prior works including HDP [19], REGAL [23], and Placeto [1], we can demonstrate super
human performance on large graphs such as 8-layer GNMT (21.7%/36.5% better than HP/HDP)
and 8-layer RNNLM (3.8%/58.1% better than HP/HDP). Overall, GO-one achieves on average
20.5% and 18.2% run time reduction across the evaluated 14 graphs, compared to HP and HDP
respectively. Importantly, with the efficient end-to-end single-shot placement, GO-one has a 15x
speedup in convergence time of the placement network over HDP.

Op Fusion for Individual Graphs: We apply the same GO network to a operation fusion task for a
subset of our workload graphs (namely, Transformer-XL, GNMT, and RNNLM). We estimate the run
time with the the performance model described in Supp. Mat. A.3 for V100 GPUs for the following
cases: no-fusion, TensorFlow GPU default fusion, priority fusion via Simulated Annealing (SA), and
GO-one. Table 3 showcases the resulting speedups normalized with respect to the no-fusion run time.
Compared to TensorFlow default fusion, GO improves the training step time on average by 5.7%.
Compared with SA, which takes 20x1 longer to search, GO outperforms by an average of 4.6%.

Generalization Across Graphs: GO enables the training of multiple heterogeneous graphs in
a single batch, sharing parameters in the networks. Inspired by the pre-training and fine-tuning
method, we pretrain GO over all but one workloads. We randomly sample from this set of input
graphs to construct a batch. We train GO for 1000 steps for each batch before switching to the
next batch. We then fine-tune the pre-trained model on the hold-out graphs (i.e., graphs from the

1SA takes around 24 hours to converge in our evaluated tasks. For a smaller graph, GO takes less than an
hour to converge. For a large graph over 10k nodes, GO can take 1-4 hours to converge.
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Figure 5: Generalization across heterogeneous workload graphs. The figure shows a comparison of
two different generalization strategies for GO when trained with graphs from 5 of the 6 workloads,
and evaluated on the held-out workload (x-axis).

2-layer TRF-XL 4-layer TRF-XL 8-layer TRF-XL 2-layer RNNLM 4-layer RNNLM 8-layer RNNLM
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Ru
n 

tim
e 

(s
ec

)

pl+sch+fu
pl | sch | fu
sch+fu
pl+sch
pl | sch
pl-only
hp-only
TF-default
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placement, fusion, and scheduling. hp-only: human placement only with default scheduling and
fusion. pl-only: GO placement only with default scheduling and fusion. pl|sch: GO optimizes
placement and scheduling individually with default fusion. pl+sch: multi-task GO co-optimizes
placement and scheduling with default fusion. sch+fu: multi-task GO co-optimizes scheduling and
fusion with human placement. pl|sch|fu: GO optimizes placement, scheduling, and fusion separately.
pl+sch+fu: multi-task GO co-optimizes placement, scheduling, and fusion.

sixth workload not included in the training set) for fewer than 50 steps, which takes less than one
minute. We name this GO-generalization+finetune. Figure 5 shows that GO fine-tuning for hold-
out graphs outperforms human expert placement and HDP consistently on all datasets, and on average
matches GO-one. We test on unseen graphs from different workloads by pre-training the model on
different workloads, excluding the entire workload of the unseen graph. For example, for 2-layer
RNNLM, all RNNLM models are excluded from the pre-training dataset. RNNLM, 2-layer TRFXL,
2-layer GNMT even outperfrm GO-one by 1-4%. We also run inference directly on the pre-trained
model for the target hold-out graphs, and name this GO-generalization-zeroshot. We find that GO-
generalization-zeroshot only marginally hurts performance compared to GO-generalization+finetune,
while being slightly better than human placement and HDP. This indicates that both graph embedding
and the learned policies transfer and generalize to the unseen data.

5.2 Multi-task Performance
As shown in Figure 6, co-optimizing placement, scheduling, and fusion (pl+sch+fu) provides 33%−
60% speedup compared to TensorFlow default placement, scheduling, and fusion. Comparing to
optimizing each tasks individually, multi-task GO (pl+sch+fu) outperforms single-task GO (pl|sch|fu)
— optimizing all tasks, one at a time — by an average of 7.8%. Furthermore, for all workloads,
co-optimizing all three tasks offers faster run time than optimizing any two of them and using the
default policy for the third.

6 Conclusion
In this paper, we present a generalized deep RL method for computation graph optimizations that
generalizes to arbitrary and held out graphs. We propose recurrent attention layers to jointly optimize
dependent graph optimization tasks and demonstrate 33%-60% speedup over TensorFlow’s default
strategy on three tasks.
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7 Broader Impact

The increasing complexity and diversity of hardware accelerators has made the development of robust
and adaptable ML frameworks onerous and time-consuming, often requiring multiple years of effort
from hundreds of engineers. In this paper, we demonstrated that many of the optimization problems in
such frameworks can be solved efficiently and optimally using a carefully designed learned approach.
This has two significant benefits over a heuristic based hand-tuned approach. First, it can potentially
save years worth of engineering effort needed to design and maintain the set of heuristics with each
new generation of hardware. And second, the improved solutions found using a learned approach
can have a multiplicative effect by improving hardware utilization and computational efficiency for
all workloads. This increased efficiency may eventually lead to a reduction in the overall carbon
footprint for many applications.

We also want to highlight a broader effort in the community to use machine learning in the hardware
design process[20]. The techniques presented in this paper can be instrumental in evaluating the
behavior of benchmark workloads on new and unseen hardware architectures without requiring
significant redesign of compilers. Therefore, we believe that the ideas introduced in this paper are an
important step that can positively impact the larger ML for Systems research directions.

One of the potential downside of the work is the loss of explainability for the choices made by the
learned model. An advantage of heuristic based approaches deployed in current systems is the ability
to explain the choices made by the algorithm based on the heuristics used. Often it is feasible to "fix"
a poor decision by designing a customized heuristic. The current learned approaches to optimization
problems including the ones presented in this paper do not lend themselves to explainable results.
However, a principled approach to integrating domain specific knowledge of compiler developers
with the learning based approach with the goal of improving explainability is an interesting direction
for future research.
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