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Abstract
High-performance tensor programs are crucial to guarantee

efficient execution of deep learning models. However, ob-
taining performant tensor programs for different operators
on various hardware platforms is notoriously difficult. Cur-
rently, deep learning systems rely on vendor-provided kernel
libraries or various search strategies to get performant tensor
programs. These approaches either require significant engi-
neering efforts in developing platform-specific optimization
code or fall short in finding high-performance programs due
to restricted search space and ineffective exploration strategy.

We present Ansor, a tensor program generation framework
for deep learning applications. Compared with existing search
strategies, Ansor explores much more optimization combina-
tions by sampling programs from a hierarchical representation
of the search space. Ansor then fine-tunes the sampled pro-
grams with evolutionary search and a learned cost model to
identify the best programs. Ansor can find high-performance
programs that are outside the search space of existing state-
of-the-art approaches. Besides, Ansor utilizes a scheduler to
simultaneously optimize multiple subgraphs in a set of deep
neural networks. Our evaluation shows that Ansor improves
the execution performance of deep neural networks on the
Intel CPU, ARM CPU, and NVIDIA GPU by up to 3.8×,
2.6×, and 1.7×, respectively.

1 Introduction

Low latency execution of deep neural networks (DNN) plays a
critical role in autonomous driving [13], augmented reality [3],
language translation [14], and other applications of AI. DNNs
can be expressed as a directed acyclic computational graph
(DAG), in which nodes represent the operators (e.g., convolu-
tion and matrix multiplication) and directed edges represent
the dependencies between operators. Existing deep learning
frameworks (e.g., Tensorflow [1], PyTorch [36], MXNet [9])
map the operators in DNNs to vendor-provided kernel li-
braries (e.g., CuDNN [12], MKL-DNN [24]) to achieve high

performance. However, these kernel libraries require signifi-
cant engineering efforts in manual tuning towards each hard-
ware platform and operator. The significant manual efforts
required to produce efficient operator implementations for
each target accelerator limit the development and innovation
of new operators [6] and specialized accelerators [32].

Given the importance of DNNs’ performance, researchers
and industry practitioners have turned to search-based com-
pilation [2, 10, 29, 45, 53] for automated generation of tensor
programs, i.e. low-level implementations of tensor operators.
For an operator or a (sub-)graph of multiple operators, users
define the computation in a high-level declarative language
(§2), and the compiler then searches for programs tailored
towards different hardware platforms.

To find performant tensor programs, it is necessary for a
search-based approach to explore a large enough search space
to cover all the useful tensor program optimizations. However,
existing approaches fail to capture many effective optimiza-
tion combinations, because they rely on either predefined
manually-written templates (e.g., TVM [11], FlexTensor [53])
or aggressive pruning by inaccurately evaluating incomplete
programs (e.g. Halide auto-scheduler [2]), which prevents
them from covering a large enough search space (§2). The
rules they use to construct the search space are also limited.

In this paper, we want to explore a novel search strategy
for generating high-performance tensor programs. It can auto-
matically generates a large search space with comprehensive
coverage of optimizations and gives every tensor program in
the space a chance to be chosen. It thus enables us to find
high-performance programs that existing approaches miss.

Realizing this goal faces multiple challenges. First, it re-
quires us to automatically construct a large search space to
cover as many tensor programs as possible for a given compu-
tation definition. Second, we need to search efficiently without
comparing incomplete programs in the large search space that
can be orders of magnitude larger than what existing tem-
plates can cover. Finally, when optimizing an entire DNN
with many subgraphs, we should recognize and prioritize the
subgraphs that are critical to the end-to-end performance.
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To this end, we design and implement Ansor, a framework
for automated tensor program generation. Ansor utilizes a
hierarchical representation to cover a large search space. This
representation decouples high-level structures and low-level
details, enabling flexible enumeration of high-level structures
and efficient sampling of low-level details. The space is con-
structed automatically for a given computation definition.
Ansor then samples complete programs from the search space
and fine-tunes these programs with evolutionary search and a
learned cost model. To optimize the performance of DNNs
with multiple subgraphs, Ansor dynamically prioritizes sub-
graphs of the DNNs that are more likely to improve the end-
to-end performance.

We evaluate Ansor on both standard deep learning bench-
marks and emerging new workloads against manual libraries
and state-of-the-art search frameworks. Experiment results
show that Ansor improves the execution performance of
DNNs on the Intel CPU, ARM CPU, and NVIDIA GPU by
up to 3.8×, 2.6×, and 1.7×, respectively. For most compu-
tation definitions, the best program found by Ansor is out-
side the search space of existing search-based approaches.
The results also show that, compared with existing search-
based approaches, Ansor has a more efficient search algorithm,
generating higher-performance programs in a shorter time,
despite its larger search space. Besides, Ansor enables auto-
matic extension to new operators without requiring manual
templates.

In summary, this paper makes the following contributions:

• A mechanism to generate a large search space with a
hierarchical representation, from which diverse tensor
programs can be sampled.
• An evolutionary strategy with a learned cost model to

fine-tune the performance of tensor programs.
• A scheduling algorithm based on gradient descent to

prioritize important subgraphs when optimizing the end-
to-end performance of one or more DNNs.
• An implementation and comprehensive evaluation of the

Ansor system demonstrating that the above techniques
outperform state-of-the-art systems on a variety of deep
learning models and hardware platforms.

2 Background

The deep learning ecosystem is embracing a rapidly growing
diversity of hardware platforms including CPUs, GPUs, FP-
GAs, and ASICs. In order to deploy DNNs on these platforms,
high-performance tensor programs are needed for the opera-
tors used in DNNs. The required operator set typically con-
tains a mixture of standard operators (e.g., matmul, conv2d)
and novel operators invented by machine learning researchers
(e.g., capsule conv2d [21], dilated conv2d [52]).

To deliver portable performance of these operators on a
wide range of hardware platforms in a productive way, multi-

C = compute((N, M), lambda i, j: sum(A[i, k]*B[k, j], [k]))

Matrix	Multiplication	 				𝐶",	% = ∑ 𝐴",	)𝐵),	%�
)

Figure 1: The computation definition of matrix multiplication.

ple compiler techniques have been introduced (e.g., TVM [10],
Halide [38], Tensor Comprehensions [45]). Users define the
computation in a form similar to mathematical expressions
using a high-level declarative language, and the compiler gen-
erates optimized tensor programs according to the definition.
Figure 1 shows the computation definition of matrix multipli-
cation in the TVM tensor expression language. Users mainly
need to define the shapes of the tensors and how each element
in the output tensor is computed.

However, automatically generating high-performance ten-
sor programs from a high-level definition is extremely diffi-
cult. Depending on the architecture of the targeted platform,
the compiler needs to search in an extremely large and com-
plicated search space containing combinatorial choices of
optimizations (e.g., tile structure, tile size, vectorization, par-
allelization). Finding high-performance programs requires
the search strategy to cover a large enough space and explore
it efficiently. We describe two recent and effective approaches
in this section and other related work in §8.

Template-guided search. In template-guided search, the
search space is defined by manual templates. As shown in
the Figure 2 (a), the compiler (e.g., TVM) requires the user
to manually write a template for a computation definition.
The template defines the structure of the tensor programs
with some tunable parameters (e.g., tile size, and unrolling
factor). The compiler then searches for the best values of
these parameters for a specific input shape configuration and
a specific hardware target. This approach has achieved good
performance on common deep learning operators. However,
developing templates requires substantial efforts. For exam-
ple, the code repository of TVM already contains more than
15K lines of code for these templates. This number continues
to grow as new operators and new hardware platforms emerge.
Besides, constructing a quality template requires expertise
in both tensor operators and hardware. It takes non-trivial
research efforts [29, 50, 53] to develop quality templates.
Despite the huge efforts in developing templates, existing
manual templates only cover limited program structures be-
cause manually enumerating all optimization choices for all
operators is prohibitive.

Sequential construction based search. This approach de-
fines the search space by decomposing the program construc-
tion into a fixed sequence of decisions. The compiler then
uses an algorithm such as beam search [31] to search for good
decisions (e.g., Halide auto-scheduler [2]). In this approach,
the compiler constructs a tensor program by sequentially un-
folding all nodes in the computational graph. For each node,
the compiler makes a few decisions on how to transform it
into low-level tensor programs. When all nodes are unfolded,
a complete tensor program is constructed. This approach
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(a) Template-guided Search

Fixed Manual Template

for i.0 in range(  ):
for j.0 in range(  ):
for k.0 in range(  ):

for i.1 in range(  ):
for j.1 in range(  ):

C[...] += A[...] * B[...]
for i.2 in range(  ):

for j.2 in range(  ):
D[...] = max(C[...], 0.0)

?
?
?
?
?

?

?
?

(b) Sequential Construction Based Search

...

Incomplete Program
for i.0 in range(512):

for j.0 in range(512):
D[...] = max(C[...], 0.0)

How	to	build	the	next	statement	 ?

Candidate	1

Candidate	2

Candidate	3

Candidate	4

Pruned

Pruned

Kept

Kept Evolutionary fine-tuning

Better	Programs

Low-level detail samping

...
for ...

for ...
for ...

for ...

...
for ...

for ...
for ...

for ...

...
for ...

for ...
for ...

for ...

(c) Ansor’s Hierarchical Approach

High-level structure generation

......
for i.0 in range(64):

for j.0 in range(64):
for k.0 in range(512):

for i.1 in range(8):
for j.1 in range(8):

D[...] = ...

Complete Programs

?
?

?

?

?

Beam Search with Early PruningParameter Serach

Figure 2: Search strategy comparison. The pseudo-code shows tensor programs with loop nests. The orange question marks
denote low-level parameters.
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Figure 3: Pairwise comparison accuracy and top-k recall curve
on random partial programs. In both diagrams, higher values
are better.

uses a set of general unfolding rules for every node, so it
can search automatically without requiring manual templates.
Because the number of possible choices of each decision is
large, to make the sequential process feasible, this approach
keeps only top-k candidate programs after every decision. The
compiler estimates and compares the performance of candi-
date programs with a learned cost model to select the top-k
candidates; while other candidates are pruned. During the
search, the candidate programs are incomplete because only
part of the computational graph is unfolded or only some of
the decisions are made. Figure 2 (b) shows this process.

However, estimating the final performance of incomplete
programs is difficult in several respects: (1) the cost model
trained on complete programs cannot accurately predict the
final performance of incomplete programs. The cost model
can only be trained on complete programs because we need
to compile programs and measure their execution time to get
the labels for training. Directly using this model to compare
the final performance of incomplete programs will result in
poor accuracy. As a case study, we train a cost model on
20,000 random complete programs from our search space and
use the model to predict the final performance of incomplete
programs. The incomplete programs are obtained by mask-
ing fractions of the 20,000 complete programs. We use two
ranking metrics for evaluation: the accuracy of pairwise com-
parison and the recall@k score of top-k programs 1. As shown
in Figure 3, the two curves start from 50% and 0% respec-

1recall@k of top-k = |G∩P|
k , where G is the set of top-k program according

to the ground truth and P is the set of top-k programs predicted by the model.

tively, meaning that random guess with zero information gives
50% pairwise comparison accuracy and 0% top-k recall. The
two curves go up quickly as the programs become complete,
which means the cost model performs very well for complete
programs but fails to accurately predict the final performance
of incomplete programs. (2) The fixed order of sequential
decisions limits the design of the search space. For example,
some optimization needs to add new nodes to the computa-
tional graph (e.g., adding cache nodes, using rfactor [42]).
The number of decisions for different programs becomes dif-
ferent. It is thus hard to align the incomplete programs for a
fair comparison. (3) Sequential construction based search is
not scalable. Enlarging the search space needs to add more
sequential construction steps, but this will result in a worse
accumulated error.

Ansor’s hierarchical approach As shown in Figure 2(c),
Ansor is backed by a hierarchical search space that decouples
high-level structures and low-level details. Ansor constructs
the space automatically, eliminating the manual efforts in de-
veloping templates. Ansor then samples complete programs
from the space and performs fine-tuning on complete pro-
grams, which avoids the inaccurate estimation of incomplete
programs. Figure 2 shows the key difference between Ansor’s
approach and existing approaches. Next, we give an overview
of all components of Ansor in §3.

3 Design Overview

Ansor is an automated tensor program generation framework.
Figure 4 shows the overall architecture of Ansor. The input
of Ansor is a set of to be optimized DNNs. Ansor has three
major components: (1) a program sampler that constructs a
large search space and samples diverse programs from it; (2) a
performance tuner that fine-tunes the performance of sampled
programs; (3) a task scheduler that allocates time resources
for optimizing multiple subgraphs in the DNNs.

Program sampler. One key challenge Ansor has to ad-
dress is to generate a large search space for a given computa-
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Deep	Learning	Models

Subgraph	1

Task Scheduler

Subgraph	2 Subgraph	3 · ·	·	

Program Sampler

Sketch	Generation Random	Annotation

Performance Tuner

Evolutionary	Search Learned	Cost	Model

Intel	CPU

Measurer

ARM	CPU NVIDIA	GPU · ·	·	

Section 6

Section 5

Section 4

Partitioned subgraphs

One subgraph 

A batch of initial programs 

A batch of opimized programs 

Execution time of programs

Figure 4: System Overview. The gray arrows show the flow
of extracting subgraphs from deep learning models and gen-
erating optimized programs for them. The green arrows mean
the measurer returns profiling data to update the status of all
components in the system.

tional graph. To cover diverse tensor programs with various
high-level structures and low-level details, Ansor utilizes a
hierarchical representation of the search space with two lev-
els: sketch and annotation (§4). Ansor defines the high-level
structures of programs as sketches and leave billions of low-
level choices (e.g., tile size, parallel, unroll annotations) as
annotations. This representation allows Ansor to enumerate
high-level structures flexibly and sample low-level details ef-
ficiently. Ansor includes a program sampler that randomly
samples programs from the space to provide comprehensive
coverage of the search space.

Performance tuner. The performance of randomly sam-
pled programs is not necessarily good. The next challenge
is to fine-tune them. Ansor employs evolutionary search and
a learned cost model to perform fine-tuning iteratively (§5).
At each iteration, Ansor uses re-sampled new programs as
well as good programs from previous iterations as the initial
population to start evolutionary search. Evolutionary search
fine-tunes programs by mutation and crossover which perform
out-of-order rewrite and break the limitation of sequential
construction. Querying the learned cost model is orders of
magnitude faster than actual measurement, so we can evaluate
thousands of programs in seconds via the cost model.

Task scheduler. Using program sampling and performance
fine-tuning allows Ansor to find high-performance tensor pro-
grams for a computational graph. Intuitively, treating a whole
DNN as a single computational graph and generating a full
tensor program for it could potentially achieve the optimal
performance. This, however, is inefficient because it has to
deal with the unnecessary exponential explosion of the search
space. Typically, the compiler partitions the large computa-
tional graph of a DNN into several small subgraphs [10]. This

partition has a negligible effect on the performance thanks to
the layer-by-layer construction nature of DNNs. This brings
the final challenge of Ansor: how to allocate time resources
when generating programs for multiple subgraphs. The task
scheduler (§6) in Ansor uses a scheduling algorithm based on
gradient descent to allocate resources to the subgraphs that
are more likely to improve the end-to-end DNN performance.

4 Program Sampling

The search space an algorithm explores determines the best
programs it can find. The considered search spaces in existing
approaches are limited by the following factors: (1) Manual
enumeration (e.g., TVM [11]). It is impractical to manually
enumerate all possible choices by templates, so existing man-
ual templates only cover a limited search space heuristically.
(2) Aggressive early pruning (e.g., Halide auto-scheduler [2]).
Aggressive early pruning based on evaluating incomplete pro-
grams prevents the search algorithm from exploring certain
regions in the space.

In this section, we introduce techniques to push the bound-
ary of the considered search space by addressing the above
limitations. To solve (1), we automatically expand the search
space by recursively applying a set of flexible derivation rules.
To avoid (2), we randomly sample complete programs in the
search space. Since random sampling gives an equal chance
to every point to be sampled, our search algorithm can po-
tentially explore every program in the considered space. We
do not rely on random sampling to find the optimal program,
because every sampled program is later fined-tuned (§5).

To sample programs that can cover a large search space, we
define a hierarchical search space with two levels: sketch and
annotation. We define the high-level structures of programs
as sketches and leave billions of low-level choices (e.g., tile
size, parallel, unroll annotations) as annotations. At the top
level, we generate sketches by recursively applying a few
derivation rules. At the bottom level, we randomly annotate
these sketches to get complete programs. This representation
summarizes a few basic structures from billions of low-level
choices, enabling the flexible enumeration of high-level struc-
tures and efficient sampling of low-level details.

While Ansor covers both CPU and GPU, we explain the
sampling process for CPUs in the rest of this section as an
example. The sampling rules for GPUs are mostly the same
with minor modifications.

4.1 Sketch Generation

The first column in Figure 5 shows two examples of the input
of our problem. The input has three equivalent forms: the
mathematical expression, the corresponding naive program
got by directly expanding the loop indices, and the correspond-
ing computational graph (directed acyclic graph, or DAG).
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* The mathmetical expression:

𝐶 𝑖, 𝑗 = &𝐴[𝑖,𝑘]
�

,

	×	𝐵[𝑘, 𝑗]

𝐷 𝑖, 𝑗 = max	(𝐶 𝑖, 𝑗 , 0.0)
where 0 ≤ 𝑖, 𝑗, 𝑘 < 512

* The corresponding naïve program:
for i in range(512):

for j in range(512):
for k in range(512):

C[i, j] += A[i, k] * B[k, j]
for i in range(512):

for j in range(512):
D[i, j] = max(C[i, j], 0.0)

* The corresponding DAG:

Example Input 1:
parallel i.0@j.0@i.1@j.1 in range(256):

for k.0 in range(32):
for i.2 in range(16):

unroll k.1 in range(16):
unroll i.3 in range(4):

vectorize j.3 in range(16):
C[...] += A[...] * B[...]

for i.4 in range(64):
vectorize j.4 in range(16):

D[...] = max(C[...], 0.0)

Sampled program 1  

parallel i.2 in range(16):
for j.2 in range(128):
for k.1 in range(512):

for i.3 in range(32):
vectorize j.3 in range(4):

C[...] += A[...] * B[...]
parallel i.4 in range(512):

for j.4 in range(512):
D[...] = max(C[...], 0.0)

Sampled program 2

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
C[...] += A[...] * B[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
D[...] = max(C[...], 0.0)

Generated sketch 1

for i in range(8):
for k in range(512):
C[i, k] = max(A[i, k], 0.0) if k < 400 else 0

for i in range(8):
for j in range(4):
for k_o in range(TILE_K0):

for k_i in range(TILE_KI):
E.rf[...] += C[...] * D[...]

for i in range(8):
for j in range(4):

for k_i in range(TILE_KI):
E[...] += E.rf[...]

Generated sketch 3

parallel i in range(8):
for k in range(512):

C[i, k] = ...
for j in range(4):
unroll k_o in range(32):

vectorized k_i in range(16):
E.rf[...] += C[...] * D[...]

parallel i in range(8):
for j in range(4):
unroll k_i in range(16):

E[...] += E.rf[...]

Sampled  program 4  

* The mathmetical expression:
𝐵 𝑖, 𝑙 = max	(𝐴 𝑖, 𝑙 , 0.0)

𝐶[𝑖, 𝑘] = >	𝐵[𝑖, 𝑘], 𝑘 < 400
							0			, 𝑘 ≥ 400

𝐸 𝑖, 𝑗 = &𝐶[𝑖, 𝑘]
�

,

	×	𝐷[𝑘, 𝑗]

where 0 ≤ 𝑖 < 8, 0 ≤ 𝑗 < 4,		
0 ≤ 𝑘 < 512,	0 ≤ 𝑙 < 400

* The corresponding naïve program:
for i in range(8):

for l in range(400):
B[i, l] = max(A[i, l], 0.0)

for i in range(8):
for k in range(512):
C[i, k] = B[i, k] if k < 400 else 0

for i in range(8):
for j in range(4):
for k in range(512):

E[i, j] += C[i, k] * D[k, j]

* The corresponding DAG:

Example Input 2:

parallel i.0 in range(8):
for k in range(512):
C[i, j] = max(A[i,k], 0.0) 

if k < 400 else 0
for k.0 in range(512):
vectorize j.3 in range(4):

E.cache[...] += C[...] * D[...]
vectorize j.4 in range(4):

E[...] = E.cache[...]

Sampled program 3

for i in range(8):
for k in range(512):
C[i, j] = max(A[i,k], 0.0) if k<400 else 0

for i.0 in range(TILE_I0):
for j.0 in range(TILE_J0):
for i.1 in range(TILE_I1):

for j.1 in range(TILE_J1):
for k.0 in range(TILE_K0):

for i.2 in range(TILE_I2):
for j.2 in range(TILE_J2):

for k.1 in range(TILE_I1):
for i.3 in range(TILE_I3):

for j.3 in range(TILE_J3):
E.cache[...] += C[...] * D[...]

for i.4 in range(TILE_I2 * TILE_I3):
for j.4 in range(TILE_J2 * TILE_J3):
E[...] = E.cache[...]

Generated sketch 2A

B
C D

A

D

B C
E

Figure 5: Examples of generated sketches and sampled programs. This figure shows two example inputs, three generated sketches
and four sampled programs.

To generate sketches for a DAG with multiple nodes, we
visit all the nodes in a topological order and build the structure
iteratively. For computation nodes that are compute-intensive
and have a lot of data reuse opportunities (e.g., conv2d, mat-
mul), we build basic tile and fusion structures for them as the
sketch. For simple element-wise nodes (e.g., ReLU, element-
wise add), we can safely inline them. Note that new nodes
(e.g., caching nodes, layout transform nodes) may also be
introduced to the DAG during the sketch generation.

We propose a derivation-based enumeration approach to
generate all possible sketches by recursively applying several
basic rules. This process takes a DAG as an input and returns
a list of sketches. We define the State σ = (S, i), where S is
the current partially generated sketch for the DAG, and i is the
index of the current working node. The nodes in a DAG are
sorted in a topological order from output to input. The deriva-
tion begins from the initial naive program and the last node, or
the initial state σ = (naive program, index o f the last node).
Then we try to apply all derivation rules to the states re-

cursively. For each rule, if the current state satisfies the ap-
plication condition, we apply the rule to σ = (S, i) and get
σ′ = (S′, i′) where i′ ≤ i. This way the index i (working node)
decreases monotonically. A state becomes a terminal state
when i = 0. During enumeration, multiple rules can be ap-
plied to one state to generate multiple succeeding states. One
rule can also generate multiple possible succeeding states.
So we maintain a queue to store all intermediate states. The
process ends when the queue is empty. All σ.S in terminal
states form a sketch list at the end of the sketch generation.

Table 1 lists derivation rules we used for the CPU. We
first provide the definition of the used predications and then
describe the functionality of each rule. We statically ana-
lyze the computation definitions to get the values for these
predications. IsStrictInliable(S, i) indicates if the node i in
S is a simple element-wise operator that can always be in-
lined (e.g. element-wise add, ReLU). HasDataReuse(S, i)
indicates if the node i in S is a compute-intensive op-
erator and has plentiful data reuse opportunity (e.g., mat-
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mul, conv2d). HasFusibleConsumer(S, i) indicates if the
node i in S has only one consumer j and node j can be
fused into node i (e.g., matmul + bias_add, conv2d + relu).
HasMoreReductionParallel(S, i) indicates if the node i in S
has little parallelism in space dimensions but has ample paral-
lelism opportunity in reduction dimensions. (e.g. computing
2-norm of a matrix, matmul C2×2 = A2×512 ·B512×2). Next
we introduce the functionality of each derivation rule.

Rule 1 just simply skips a node if it is not strictly inlinable.
Rule 2 always inlines strictly inlinable nodes. Since the condi-
tions of rule 1 and rule 2 are mutually exclusive, a state with
i > 1 can always satisfy one of them and continue to derive.

Rules 3, 4, and 5 deal with the multi-level tiling and fusion
for nodes that have data reuse. Rule 3 performs multi-level
tiling for data reusable nodes. For CPU, we use a “SSRSRS”
tile structure, where “S” stands for one tile level of space
loops and “R” stands for one tile level of reduction loops. For
example, in the matmul C(i, j) = ∑k A[i,k]×B[k, j], i and j
are space loops and k is a reduction loop. The “SSRSRS” tile
structure for matmul expands the original 3-level loop (i, j,k)
into a 10-level loop (i0, j0, i1, j1,k0, i2, j2,k1, i3, j3). Although
we do not permute the loop order, this multi-level tiling can
also cover reorder cases. For example, the above 10-level
loop can be specialized to just a simple reorder (k0, j2, i3)
by setting the length of other loops to one. Rule 4 performs
multi-level tiling and also fuse the fusible consumers. For
example, we fuse the element-wise nodes (e.g., ReLU, bias
add) into the tiled nodes (e.g., conv2d, matmul). Rule 5 adds a
caching node if the current data-reusable node does not have
a fusible consumer. For example, the final output node in a
DAG does not have any consumer, so it directly writes results
into main memory by default and this is inefficient due to the
high latency of memory accesses. By adding a cache node,
we introduce a new fusible consumer into the DAG, then rule
4 can be applied to fuse this newly added cache node into the
final output node. With the cache node fused, now the final
output node writes its results into a cache block, and the cache
block will be written to the main memory at once when all
data in the block is computed.

Rule 6 can use rfactor [42] to factorize a reduction loop
into a space loop to bring more parallelism.

Figure 5 shows three examples of the generated sketches.
The sketches are different from the manual templates in TVM.
Because the manual templates specify both high-level struc-
tures and low-level details while sketches only define high-
level structures. For the example input 1, the sorted order
of the four nodes in the DAG is (A,B,C,D). To derive the
sketches for the DAG, we start from output node D(i = 4)
and apply rules to the nodes one by one. Specifically, the
derivation for generated sketch 1 is:

Input 1→σ(S0, i = 4) Rule 1−−−→ σ(S1, i = 3) Rule 4−−−→

σ(S2, i = 2) Rule 1−−−→ σ(S3, i = 1) Rule 1−−−→ Sketch 1

For the example input 2, the sorted order of the five nodes

is (A,B,C,D,E). Similarly, we start from the output node
E(i = 5) and apply rules recursively. The generated sketch 2
is derived by:

Input 2→σ(S0, i = 5) Rule 5−−−→ σ(S1, i = 5) Rule 4−−−→

σ(S2, i = 4) Rule 1−−−→ σ(S3, i = 3) Rule 1−−−→

σ(S4, i = 2) Rule 2−−−→ σ(S5, i = 1) Rule 1−−−→ Sketch 2

Similarly, the generated sketch 3 is derived by:

Input 2→σ(S0, i = 5) Rule 6−−−→ σ(S1, i = 4) Rule 1−−−→

σ(S2, i = 3) Rule 1−−−→ σ(S3, i = 2) Rule 2−−−→

σ(S4, i = 1) Rule 1−−−→ Sketch 3

While the presented rules are practical enough to cover the
structures for most operators, there are always exceptions. For
example, some special algorithms (e.g., Winograd convolu-
tion [27]) and accelerator intrinsics (e.g., TensorCore [34])
require special tile structures to be effective. Although the
template-guided search approach (in TVM) can craft a new
template for every new case, it needs a great amount of de-
sign effort. It is not straightforward for the sequential con-
struction based search with a fixed predefined order to ex-
pand its construction sequence either. On the other hand, the
derivation-based sketch generation in Ansor is flexible enough
to generate the required structures for emerging algorithms
and hardware, as we allow users to register new derivation
rules and integrate them seamlessly with existing rules.

4.2 Random Annotation
The sketches generated by the previous subsection are incom-
plete programs because they only have tile structures without
specific tile sizes and loop annotations, such as parallel, unroll,
and vectorization. In this subsection, we annotate sketches to
be complete programs for fine-tuning and evaluation.

Given a list of generated sketches, we randomly pick one
sketch, randomly fill out tile sizes, parallelize some outer
loops, vectorize some inner loops, and unroll a few inner
loops. We also randomly change the computation location of
some nodes in the program to make a slight tweak to the tile
structure. If some special algorithms (e.g., Winograd convolu-
tion [27]) require special annotation policy to be effective, we
allow users to give simple hints in the computation definition
to adjust the annotation policy. Finally, since it is valid to ar-
bitrarily change the layout of constant tensors, we rewrite the
layouts of the constant tensors according to the multi-level
tile structure to make them most cache-friendly and elimi-
nate layout transformation overheads between nodes. This
optimization is effective because the weight tensors of convo-
lution or dense layers are constants for inference applications.

Examples of random sampling are shown in Figure 5. The
sampled program might have a different number of loops than
the sketch because the loops with length one are simplified.
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No Rule Name Condition Application
1 Skip ¬IsStrictInlinable(S, i) S′ = S; i′ = i−1
2 Always Inline IsStrictInlinable(S, i) S′ = Inline(S, i); i′ = i−1
3 Multi-level Tiling HasDataReuse(S, i) S′ = MultiLevelTiling(S, i); i′ = i−1
4 Multi-level Tiling with Fusion HasDataReuse(S, i)∧HasFusibleConsumer(S, i) S′ = FuseConsumer(MultiLevelTiling(S, i), i); i′ = i−1
5 Add Cache Stage HasDataReuse(S, i)∧¬HasFusibleConsumer(S, i) S′ = AddCacheWrite(S, i); i = i′

6 Reduction Factorization HasMoreReductionParallel(S, i) S′ = AddR f actor(S, i); i′ = i−1
... User Defined Rule ... ...

Table 1: Derivation rules used to generate sketches. The condition runs on the current state σ = (S, i). The application derives the
next state σ′ = (S′, i′) from the current state σ. Note that some function (e.g., AddR f actor, FuseConsumer) can return multiple
possible values of S′. In this case we collect all possible S′, and return multiple next states σ′ for a single input state σ.

5 Performance Fine-tuning
The programs sampled by the program sampler have good cov-
erage of the search space, but their qualities are not guaranteed.
This is because the optimization choices, such as tile struc-
ture and loop annotations, are all randomly sampled. In this
section, we introduce the performance tuner that fine-tunes
the performance of the sampled programs via evolutionary
search and a learned cost model.

The fine-tuning is performed iteratively. At each iteration,
we first use evolutionary search to find a small batch of promis-
ing programs according to a learned cost model. We then mea-
sure these programs on hardware to get the actual execution
time cost. Finally, the profiling data got from measurement is
used to re-train the cost model to make it more accurate.

The evolutionary search uses randomly sampled programs
as well as high-quality programs from the previous mea-
surement as the initial population and applies mutation and
crossover to generate the next generation. The learned cost
model is used to predict the fitness of each program, which is
the throughput of one program in our case. We run evolution
for a fixed number of generations and pick the best programs
found during the search. We leverage a learned cost model be-
cause the cost model can give relatively accurate estimations
of the fitness of programs while being orders of magnitudes
faster than the actual measurement. It allows us to compare
tens of thousands of programs in the search space in seconds,
and pick the promising ones to do actual measurement.

5.1 Evolutionary Search

Evolutionary search [49] is a generic meta-heuristic algorithm
inspired by biological evolution. By iteratively mutating high-
quality programs, we can generate new programs with poten-
tially higher quality. The evolution starts from the sampled
initial generation. To generate the next generation, we first se-
lect some programs from the current generation according to
certain probabilities. The probability of selecting a program is
proportional to its fitness predicted by the learned cost model
(§5.2), meaning that the program with a higher performance
score has a higher probability to be selected. For the selected
programs, we randomly apply one of the evolution operations
to generate a new program. Basically, for every decision we

made during sampling (§4.2), we design corresponding evolu-
tion operations to rewrite and fine-tune it. We highlight some
of them as follows.

Tile size mutation. This operation scans the program and
randomly selects a tiled loop. For this tiled loop, it divides a
tile size of one tile level by a random factor and multiplies this
factor to another level. Since this operation keeps the product
of tile sizes equal to the original loop length, the mutated
program is always valid.

Parallel, vectorization mutation. This operation scans
the program and randomly selects a loop annotated with par-
allel or vectorization. For this loop, this operation changes the
granularity by either fusing its adjacent loop levels or splitting
it by a factor.

Node-based crossover. Crossover is an operation to gener-
ate new offspring by combining the genes from two or more
parents. The genes of a program in Ansor are its rewriting
steps. Every program generated by Ansor is rewritten from
its initial naive implementation. Ansor preserves a complete
rewriting history for each program during sketch generation
and random annotation. We can treat rewriting steps as the
genes of a program because they describe how this program is
formed from the initial naive one. Based on this, we can gen-
erate a new program by combining the rewriting steps of two
existing programs. However, arbitrarily combining rewriting
steps from two programs might break the dependencies in
steps and create an invalid program. For example, a rewriting
step annotates vectorization to the innermost loop, and the
innermost loop may be generated by a previous tiling step.
As a result, the granularity of crossover operation in Ansor is
based on nodes in the DAG, because the rewriting steps for
different nodes usually have less dependency. Ansor uses the
cost model to estimate the performance scores of each node
in the two programs and merges the rewriting steps of nodes
with higher scores. When there are dependencies between
nodes, Ansor try to analyze and adjust the steps with simple
heuristics. Ansor further verifies the merged programs to guar-
antee the functional correctness. The verification is simple
because Ansor only uses a small set of loop transformation
rewriting steps, and the underlying code generator can check
the correctness by dependency analysis.

The evolutionary search leverages mutation and crossover
to generate a new set of candidates repeatedly for several
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rounds and outputs a small set of programs with the highest
scores. These programs will be compiled and measured on the
target hardware to obtain the real running time cost. The col-
lected measurement data is then used to update the cost model.
In this way, the accuracy of the learned cost model is grad-
ually improved to match the target hardware. Consequently,
the evolutionary search gradually generates higher-quality
programs for the target hardware platform.

5.2 Learned Cost Model
A cost model is necessary for estimating the performance of
programs during the search. We adopt a learned cost model
similar to related works [2, 11] with newly designed program
features. A learned cost model has great portability because
a single model design can be reused for different hardware
targets by feeding in different training data.

Since our target programs are mainly data parallel tensor
programs, which are made by multiple interleaved loop nests
with several assignment statements as the innermost state-
ments, we train the cost model to predict the score of one in-
nermost non-loop statement in a loop nest. For a full program,
we make predictions for each innermost non-loop statement
and add the predictions up as the score. We build the feature
vector for an innermost non-loop statement by extracting fea-
tures in the context of a full program. The extracted features
include arithmetic features and memory access features. A
detailed list of extracted features is in the Appendix B.

We use weighted squared error as the loss function. Be-
cause we mostly care about identifying the well-performing
programs from the search space, we put more weight on
the programs that run faster. Specifically, the loss func-
tion of the model f on a program P with throughput y is
loss( f ,P,y) = wp(∑s∈S(P) f (s)− y)2 = y(∑s∈S(P) f (s)− y)2

where S(P) is the set of innermost non-loop statements in
P. We directly use the throughput y as weight. We train a
gradient boosting decision tree [8] as the underlying model f .
A single model is trained for all tensor programs coming from
all DAGs, and we normalize the throughput of all programs
come from the same DAG to be in the range of [0,1].

6 Task Scheduler

A DNN can be partitioned into many independent subgraphs
(e.g., conv2d + relu). For some subgraphs, spending time in
tuning them does not improve the end-to-end DNN perfor-
mance significantly. This is due to two reasons: either (1) the
subgraph is not a performance bottleneck, or (2) tuning brings
only minimal improvement in the subgraph’s performance.

To avoid wasting time on tuning unimportant subgraphs,
Ansor dynamically allocates different amounts of time re-
sources to different subgraphs. Take ResNet-50 for example,
it has 29 unique subgraphs among all 50 convolution layers.
Most of these subgraphs are convolution layers with different

shapes configurations (input size, kernel size, stride, etc). We
need to generate different programs for different convolution
layers because the best tensor program depends on these shape
configurations. We define a task as a process performed to
generate high-performance programs for a subgraph. It means
that optimizing a single DNN requires finishing dozens of
tasks (e.g., 29 tasks for ResNet-50). In reality, we may even
want to optimize a set of DNNs, which leads to even more
tasks. A subgraph can also appear multiple times in a DNN
or across different DNNs.

Ansor’s task scheduler allocates time resources to tasks in
an iterative manner. At each iteration, Ansor selects a task,
generates a batch of promising programs for the subgraph,
and measures the program on hardware. We define such an
iteration as one unit of time resources. When we allocate one
unit of time resources to a task, the task obtains an oppor-
tunity to generate and measure new programs, which also
means the chance to find better programs. We next present
the formulation of the scheduling problem and our solution.

6.1 Problem Formulation
When tuning a DNN or a set of DNNs, a user can have var-
ious types of goals, for example, reducing a DNN’s latency,
meeting latency requirements for a set of DNNs, minimizing
tuning time when tuning no longer improves DNN perfor-
mance significantly. We thus provide users a set of objective
functions to express their goals. Users can also provide their
own objective functions.

Suppose there are n tasks in total. Let t ∈ Zn be the allo-
cation vector, where ti is the number of time units spent on
task i. Let the minimum subgraph latency task i achieves be
a function of the allocation vector gi(t). Let the end-to-end
cost of the DNNs be a function of the latency of the sub-
graphs f (g1(t),g2(t), ...,g3(t)). Our objective is to minimize
the end-to-end cost:

minimize f (g1(t),g2(t), ...,g3(t))
To minimize the end-to-end latency of a single DNN, we

can define f (g1,g2, ...,gn) = ∑
n
i=1 wi×gi, where wi is the

number of appearances of task i in the DNN. This formu-
lation is straightforward because f is an approximation of the
end-to-end DNN latency.

When tuning a set of DNNs, there are several options. Ta-
ble 2 shows a number of example objective functions for
tuning multiple DNNs. Let m be the number of DNNs, S( j) is
the set of tasks that belong to DNN j. f1 adds up the latency
of every DNN, which means to optimize the cost of a pipeline
that sequentially runs all DNNs once. In f2, we define L j as
the latency requirement of DNN j, meaning that we do not
want to spend time on a DNN if its latency has already met
the requirement. In f3, we define B j as the reference latency
of a DNN j. As a result, our goal is to maximize the geo-
metric mean of speedup against the given reference latency.
Finally in f4, we define a function ES(gi, t) that returns an
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f1 = ∑
m
j=1 ∑i∈S( j) wi×gi(t)

f2 = ∑
m
j=1 max(∑i∈S( j) wi×gi(t),L j)

f3 =−(∏m
j=1

B j
∑i∈S( j) wi×gi(t)

)
1
m

f4 = ∑
m
j=1 ∑i∈S( j) wi×max(gi(t),ES(gi, t))

Table 2: Examples of objective functions for multiple neural
networks

early stopping value by looking at the history of latency of
task i. It can achieve the effect of per task early stopping.

6.2 Optimizing with Gradient Descent
We propose a scheduling algorithm based on gradient descent
to efficiently optimize the objective function. Given the cur-
rent allocation t, the idea is to approximate the gradient of
the objective function ∂ f

∂ti
in order to choose the task i such

that i = argmaxi |
∂ f
∂ti
|. We approximate the gradient by do-

ing optimistic guess and considering the similarity between
tasks. The derivation can be found in the Appendix A. We
approximate the gradient by

∂ f
∂ti
≈ ∂ f

∂gi
(α

gi(ti)−gi(ti−∆t)
∆t

+

(1−α)(min(−gi(ti)
ti

,β
Ci

maxk∈N(i)Vk
−gi(ti))))

where ∆t is a small backward window size, gi(ti) and gi(ti−
∆t) are known from the history allocations. N(i) is the set of
similar tasks of i, Ci is the number of floating point operations
in task i and Vk is the number of floating point operation
per second we can achieve in task k. The parameter α and β

controls the weight to trust some predictions.
To run the algorithm, Ansor starts from t = 0 and warms

up with a round of round-robin to get an initial allocation
vector t = (1,1, ...,1). After the warm-up, at each iteration, we
compute the gradient of each task and pick argmaxi |

∂ f
∂ti
|. Then

we allocate the resource unit to task i and update the allocation
vector ti = ti + 1. The optimization process continues until
we run out of the time budget. To encourage exploration, we
adopt a ε-greedy strategy [43], which preserves a probability
of ε to randomly select a task.

Take the case of optimizing for a single DNN’s end-to-end
latency for example, Ansor prioritizes a subgraph that has
a high initial latency because our optimistic guess says we
can reduce its latency quickly. Later, if Ansor spends many
iterations on it without observing a decrease in its latency,
Ansor leaves the subgraph because its | ∂ f

∂ti
| decreases.

7 Evaluation

The core of Ansor is implemented in C++ with about 10K
lines of code (3K for the search policy, 7K for other infras-
tructures). Ansor generates programs in its own intermediate

representation (IR). These programs are then lowered to TVM
IR for code generation targeting various hardware platforms.
Ansor only utilizes TVM as a deterministic code generator.

We evaluate Ansor on three levels: single operator, sub-
graph, and entire neural network. For each level of evaluation,
we compare Ansor against the state-of-the-art search frame-
works and hardware-specific manual libraries.

The generated tensor programs were benchmarked on
three hardware platforms: an Intel CPU (20-core Platinum
8269CY@3.1 GHz), an NVIDIA GPU (V100 ), and an ARM
CPU (4-core Cortex-A53@1.4GHz on the Raspberry Pi 3b+).
We use float32 as the data type for all evaluations.

7.1 Single Operator Benchmark

We first evaluate Ansor on a set of common deep learning oper-
ators, including 1D, 2D and 3D convolution (C1D, C2D, C3D
respectively), matrix multiplication (GMM), group convolu-
tion (GRP), dilated convolution (DIL) [52], depth-wise convo-
lution (DEP) [22], transposed 2D convolution (T2D) [37], cap-
sule 2D convolution (CAP) [21] and matrix 2-norm (NRM).
For each operator, we select 4 different shape configurations
from common DNNs and evaluate them with two batch sizes
(1 and 16). In total, there are 10 operators ×4 shape config-
urations ×2 batch size (= 80) test cases. We run these test
cases on the Intel CPU.

We include PyTorch [36], Halide auto-scheduler [2], Flex-
Tensor [53] and AutoTVM [11] as baseline frameworks.
PyTorch is backed by the vendor-provided kernel library
MKL-DNN [24]. Halide auto-scheduler is a sequential con-
struction based search framework for Halide. AutoTVM and
FlexTensor are template-guided search frameworks based on
TVM. Since Halide auto-scheduler does not have a pre-trained
cost model for AVX-512, we disabled AVX-512 for search-
based frameworks, while the MKL-DNN in PyTorch utilizes
AVX-512 by default.

For each test case in this evaluation, we let search frame-
works (i.e., Halide auto-scheduler, FlexTensor, AutoTVM,
and Ansor) run search or auto-tuning with at most 1,000 mea-
surement trials. This means each framework can measure
at most 80× 1000 programs for auto-tuning in this evalua-
tion. Using the same number of measurement trials makes it
a fair comparison without involving implementation details.
For a single operator, 1,000 measurement trials are typically
enough for the search to converge in these frameworks.

Figure 6 shows the normalized performance. For each op-
erator, we compute the geometric mean of the throughputs
on four shapes and normalize the geometric means of all
frameworks relative to the best one. As shown in the figure,
Ansor performs the best on 19 out of 20 test cases. Ansor
outperforms existing search frameworks by 1.1−32.7×. The
performance improvements of Ansor come from both its large
search space and effective exploration strategy. For most op-
erators, we found the best program generated by Ansor is out-
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Figure 6: Single operator performance benchmark on a 20-
core Intel-Platinum-8269CY. The y-axis is the throughput
normalized to the best throughput for each operator.
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Figure 7: Ablation study of four variants of Ansor on a con-
volution operator. The y-axis is the throughput relative to the
throughput of the best program.

side the search space of existing search frameworks because
Ansor is able to explore more optimization combinations. For
example, the significant speedup on NRM is because Ansor
can parallelize reduction loop, while other frameworks do not.
The large speedup on T2D is because Ansor can use correct
tile structures and unrolling strategies to let the code generator
simplify the multiplication of zeros in strided transposed con-
volution. In contrast, other frameworks fail to capture many
effective optimizations in their search space, making them
unable to find the programs that Ansor does. For example,
the unfolding rules in Halide does not split the reduction loop
in GMM and does not split reduction loops in C2D when
padding is computed outside of reduction loops. The manual
templates in AutoTVM have limited tile structures, as they
cannot cover the structure of “Generated Sketch 1” in Fig-
ure 5. The manual template in FlexTensor does not change
the computation location of padding and has a fixed unrolling
policy. Finally, for the only case (GMM with batch size 16)
that Ansor performs worse than PyTorch, it is due to the dis-
abling of AVX-512. Ansor can match PyTorch after utilizing
AVX-512.

Ablation study. We run four variants of Ansor on a con-
volution operator and report the performance curve. We pick
the last convolution operator in ResNet-50 with batch size=16
as the test case, because it has a large enough interesting
search space to evaluate the search algorithms. Other oper-
ators share a similar pattern. In Figure 7, each curve is the
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Figure 8: Subgraph performance benchmark on a 20-core
Intel-Platinum-8269CY and an NVIDIA V100. "@C" de-
notes CPU results and "@G" denotes GPU results. The y-axis
is the throughput normalized to the best throughput for each
subgraph.

median of 5 runs. “Ansor (ours)” uses all our introduced tech-
niques. “Beam Search” means we prune incomplete programs
with the cost model during the sampling process and do not
use fine-tuning. “No fine-tuning” is based on “Ansor (ours)”
but disables fine-tuning and only relies on random sampling.
“Limited space” is also based on “Ansor (ours)” but limits the
search space to make it similar to the space in existing manual
templates. As demonstrated by Figure 7, dropping either the
large search space or efficient fine-tuning decreases the final
performance significantly. The aggressive early pruning in
“Beam search” throws away incomplete programs with good
final performance due to inaccurate estimation.

7.2 Subgraph Benchmark
We perform subgraph benchmark on two common subgraphs
in DNNs. The “ConvLayer” is a subgraph consisting of 2D
convolution, batch normalization [25] and ReLU activation,
which is a common pattern in convolutional neural networks.
The “TBG” is a subgraph consisting of two matrix transposes
and one batch matrix multiplication, which is a common pat-
tern in the multi-head attention [46] in language models. Sim-
ilar to single operator benchmark, we select four different
shape configurations and two batch sizes and run auto-tuning
with up to 1,000 measurement trails per test case. We use the
same set of baseline frameworks and run the benchmark on
the Intel CPU and the NVIDIA GPU. We do not report the
performance of Halide auto-scheduler on GPU because its
GPU support is still in an experimental stage.

Figure 8 shows that Ansor outperforms manual libraries
and other search frameworks by 1.1−1.8×. Ansor can gen-
erate high-performance programs consistently for these sub-
graphs on both platforms. In comparison, other frameworks
perform poorly on certain cases. For example, the template in
FlexTensor is mainly designed for a single operator, so it lacks
the ability to perform GPU kernel fusion in some cases. Rela-
tively, FlexTensor performs worse on “ConvLayer@G” than
on “TBG@G"" because it cannot fuse batch normalization
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and ReLU into the convolution operator.

7.3 End-to-End Network Benchmark

We benchmark the end-to-end inference execution time of
several DNNs, which include ResNet-50 [20] and MobileNet-
V2 [40] for image classification, 3D-ResNet-18 [19] for action
recognition, DCGAN [37] generator for image generation, and
BERT [14] for language understanding. We benchmark these
DNNs on three hardware platforms. For the server-class Intel
CPU and NVIDIA GPU, we report the results for batch size
1 and batch size 16. For the ARM CPU in the edge device,
real-time feedback is typically desired, so we only report the
results for batch size 1.

We include PyTorch, TensorFlow, TensorRT (TensorFlow
integration) [35], TensorFlow Lite and AutoTVM as base-
line frameworks. We do not include Halide auto-scheduler
or FlexTensor because they lack the support of widely-used
deep learning model formats (e.g., the formats in PyTorch
and TensorFlow) and high-level graph optimizations. As a
result, we expect that the end-to-end execution time they can
achieve will be the sum of the latency of all subgraphs in a
DNN. In contract, AutoTVM can optimize a whole DNN with
its manual templates and various graph-level optimizations
(e.g., graph-level layout search [29], graph-level constant fold-
ing [39]). We let both AutoTVM and Ansor run auto-tuning
with up to 1000×n measurement trials on each DNN, where
n is the number of subgraphs in the DNN. They have similar
search overhead, so it roughly takes the same amount of time
for them to do the same number of measurements. We set
the objective of the task scheduler as minimizing the total
latency of one DNN and generate programs for these test
cases one by one. On the other hand, PyTorch, TensorFlow,
TensorRT, and TensorFlow Lite are all backed by static ker-
nel libraries (MKL-DNN on Intel CPU, CuDNN on NVIDIA
GPU, and Eigen on ARM CPU) and do not need auto-tuning.
We enabled AVX-512 for all frameworks on the CPU in this
network benchmark.

Figure 9 shows the results on the Intel CPU, NVIDIA GPU
and ARM CPU 2. Compared with search-based AutoTVM,
Ansor matches or outperforms it on all cases with 1.0−9.4×
speedup. Compared with the best alternative, Ansor improves
the execution performance of DNNs on the Intel CPU, ARM
CPU, and NVIDIA GPU by up to 3.8×, 2.6×, and 1.7×,
respectively. Overall, Ansor performs the best or equally the
best on 24 out of 25 cases. The only exception is BERT with
batch size 16 on the GPU. This is because BERT consists of
many matrix multiplications with large input sizes. It is hard
for compilation-based approaches to beat manually-written
assembly code on large matrix multiplications [5, 10, 45], as
the code has been hand-optimized for decades.

23D-ResNet and DCGAN are not yet supported by TensorFlow Lite on
the ARM CPU.
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Figure 9: Network inference performance benchmark on three
hardware platforms. The y-axis is the throughput relative to
the best throughput for each network.
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Figure 10: Network performance auto-tuning curve. The y-
axis is the speedup relative to AutoTVM.

Ablation study. We run variants of Ansor on two test cases
in Figure 10. In the left figure, we run four variants of Ansor to
generate programs for a single mobilenet-V2. In the right fig-
ure, we run these variants for both mobilenet-V2 and ResNet-
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50. We set the objective function of the task scheduler to be the
geometric mean of speedup against AutoTVM. As shown in
Figure 10, “No task scheduler” means we use a round-robin
strategy to allocate equal time resources to all subgraphs.
“Limited space” is based on “Ansor (ours)” but limits the
search space. “No fine-tuning” is also based on “Ansor (ours)”
but disables fine-tuning and relies on random sampling only.
As can be seen in Figure 10, “Limited space” performs the
worst in terms of the final achieved performance, proving that
the best programs are not included in the limited space. The
final achieved performance can be improved by enlarging the
search space, as depicted in “No fine-tuning”. However, in
the right figure, randomly assigning tile sizes and annotations
still cannot beat AutoTVM in the given time budget. After
enabling fine-tuning, “No task scheduler” outperforms Au-
toTVM in both cases. Finally, “Ansor (ours)” employs the
task scheduler to prioritize performance bottlenecks (e.g., sub-
graphs contain 3x3 convolution), so it performs the best in
both search efficiency and the final achieved performance.

Search time. Ansor searches efficiently and can outper-
form or match AutoTVM with less search time. AutoTVM
does not have a task scheduler so it generates programs for
all subgraphs sequentially with a predefined budget of mea-
surement trials. To get the reference results in Figure 10, it
requires around 30,000 measurement trials for mobilenet-V2
and 50,000 measurement trials for mobilenet-V2 and ResNet-
50. However, Ansor can match its performance on these two
cases with 10× less measurement trials, thanks to the task
scheduler, efficient fine-tuning and comprehensive coverage
of effective optimizations. As a reference, depending on the
target platforms and the complexity of the subgraph, it takes
about one to two seconds to compile one program and mea-
sure it with other search overhead amortized. Therefore, it
takes several hours to generate programs for a DNN. This is
acceptable for inference applications, because we only need
to run program generation for the DNNs once before deploy-
ment. Comparing Ansor against AutoTVM on other network
benchmark cases, we observe similar significant reductions
in the wall clock search time up to 10×.

8 Related Work

Automatic tensor programs generation based on schedul-
ing languages. Halide [38] introduces a scheduling language
that can describe loop optimization primitives. This language
is suitable for both manual optimization and automatic search.
Halide has three versions of auto-scheduler based on differ-
ent techniques [2, 28, 33]. The latest one with beam search
and learned cost model performs the best among them, which
is also used in our evaluation. TVM [10] utilizes a similar
scheduling language and includes a template-guided search
framework AutoTVM [11]. Similar to the motivation of this
paper, FlexTensor [53] attempts to reduce human efforts in
writing templates. It proposes more general templates target-

ing a set of operators so that the required number of templates
could be reduced. Its templates are still manually designed,
so it fails to cover certain operators and is lacking the support
for some important optimizations (e.g., operator fusion).

Polyhedral compilation models. Polyhedral compilation
model [7, 47, 48] formulates the optimization of programs
as an integer linear programming (ILP) problem. It opti-
mizes a program with affine loop transformation that min-
imizes the data reuse distance between dependent statements.
Tiramisu [5] and TensorComprehensions [45] are two polyhe-
dral compilers that also target deep learning domain. Tiramisu
provides a scheduling language similar to Halide language,
and it needs manual scheduling. TensorComprehensions can
search for GPU code automatically, but it is not yet meant to
be used for compute-bounded problems [10]. It cannot out-
perform TVM on operators like conv2d and matmul [10, 44].
This is because of the lack of certain optimizations and the
inaccurate implicit cost model in the polyhedral formulation.

Graph level optimization for deep learning. Graph level
optimizations treat an operator in the computational graph
as a basic unit and perform optimization at graph level with-
out changing the internal implementations of operators. The
common optimizations at graph level include layout optimiza-
tions [29], operator fusion [10, 35], constant folding [39],
auto-batching [30], automatic generation of graph substitu-
tion [26] and so forth. The graph-level optimizations are
typically orthogonal to operator-level optimizations. It can
also benefit from high-performance implementations of oper-
ators. For example, general operator fusion relies on the code
generation ability of Ansor. We leave the joint optimization
of Ansor and more graph level optimization as future work.

Search-based compilation and auto-tuning. Search
based compilation and auto-tuning have already shown its ef-
fectiveness in domains other than deep learning. Stock [41] is
a super-optimizer based on random search. Stock searches for
loop-free hardware instruction sequences, while Ansor gener-
ates tensor programs with nests of loops. OpenTuner [4] is a
general framework for program auto-tuning based on multi-
armed bandit approaches. OpenTuner relies on user-specified
search space, while Ansor constructs the search space au-
tomatically. Traditional high-performance libraries such as
ATLAS [51] and FFTW [16] also utilizes auto-tuning. More
recent works NeuroVectorizer [17] and AutoPhase [18, 23]
use deep reinforcement learning to automatically vectorize
programs and optimize the compiler phase ordering.

9 Conclusion
We proposed Ansor, an automated search framework that
generates high-performance tensor programs for deep neural
networks. By efficiently exploring a large search space, Ansor
finds high-performance programs that are outside the search
space of existing approaches. Ansor outperforms existing
manual libraries and search-based frameworks on a diverse
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set of neural networks and hardware platforms by up to 3.8×.
All of Ansor’s source code will be publicly available.
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A Gradient Approximation for the Task
Scheduler

Now we show how to approximate the gradient for the ob-
jective function f . First, do the approximation gi(t)≈ gi(ti).
This means we assume the best cost of task i depends only on
the resource units spent on it. This may not be true because
all tasks share a cost model. Different resource allocations
lead to different collections of training data, which then leads
to different cost models. Here we make this approximation to
continue derivation:

∂ f
∂ti

=
∂ f
∂gi

∂gi

∂ti

≈ ∂ f
∂gi

(α
gi(ti)−gi(ti−∆t)

∆t
+(1−α)

gi(ti +∆t)−gi(ti)
∆t

)

≈ ∂ f
∂gi

(α
gi(ti)−gi(ti−∆t)

∆t
+(1−α)(gi(ti +1)−gi(ti)))

In this expression, ∆t is a small backward window size, gi(ti)
and gi(ti−∆t) are known from the history allocations. But
gi(ti + 1) is unknown because we have not allocated ti + 1
units of resource to this task. So we have to predict this value.
The parameter α controls the weight to trust the prediction.
We predict gi(ti+1) in two ways. First, we have an optimistic
guess that if we spend extra ti, we can decrease the latency of
task i to 0. This means gi(ti + 1) ≈ gi(ti)− gi(ti)

ti
. Second, if

subgraphs are structurally similar, their latency is also similar
per floating point operation. Considering both factors, we
have the following approximation:

gi(ti +1)≈min(gi(ti)−
gi(ti)

ti
,β

Ci

maxk∈N(i)Vk
)

where N(i) is the set of similar tasks of i, Ci is the number
of floating point operations in task i and Vk is the number of
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floating point operation per second we can achieve in task k.
The parameter β controls the weight to trust the prediction
based on similarity.

B The List of Extracted Features

We extract the following features for one innermost non-loop
statement in the context of a full tensor program. The features
include categorical features and numerical features. We use
one-hot encoding to encode category features. The length
of a feature vector including all the listed features for one
statement is 164. We use the same set of features for both
CPU and GPU.

• Numbers of float operationrs. The numbers of addi-
tion, subtraction, division, modulo operation, compar-
ison, intrinsic math function call (e.g. exp, sqrt) and
other math function call respectively, with floating point
operands.
• Number of integer operators. Similar to the above one,

but for operations with integer operands.
• Vectorization related features. The length of the inner-

most vectorized loop. The type of vectorization position
(InnerSpatial, MiddleSpatial, OuterSpatial, InnerReduce,
MiddleReduce, OuterReduce, Mixed, None). The prod-
uct of the lengths of all vectorized loops. The number of
vectorized loops.
• Unrolling related features. Similar to the vectorization

related features, but for unrolling.
• Parallelization related features. Similar to the vector-

ization related features, but for parallelization.
• GPU thread binding related features. The lengths of

blockIdx.x, blockIdx.y, blockIdx.z, threadIdx.x, threa-
dIdx.y, threadIdx.z and virtual threads [10].
• Arithmetic intensity curve. Arithmetic intensity is de-

fined as The number of floating point operations
The number of bytes accessed . We compute the

arithmetic intensity for each loop level and draw a curve
with linear interpolation. Then we sample 10 points from
this curve.

• Buffer Access Feature For each buffer this statement
accesses, we extract features for it. While different state-
ment can access different numbers of buffers, we per-
form feature extraction for at most five buffers. We pad
zeros if a statement accesses less then five buffers and
remove small buffers if a statement accesses more than
five buffers.

– Access type. The type of access (read, write, read
+ write).

– Bytes. The total number of bytes accessed by this
statement.

– Unique bytes. The total number of unique bytes
accessed by this statement.

– Lines. The total number of cache lines accessed by
this statement.

– Unique lines. The total number of unique cache
lines accessed by this statement.

– Reuse type. The type of data reuse (LoopMulti-
pleRead, SerialMultipleRead, NoReuse).

– Reuse distance. The distance between data reuse
in terms of number of for loop iterations and total
accessed bytes.

– Reuse counter. The number of the happening of
data reuse.

– Stride. The stride of access.

– Accessed bytes divided by reuse. We com-
pute the following values: Bytes

Reuse counter , Unique bytes
Reuse counter ,

Lines
Reuse counter , Unique lines

Reuse counter .

• Allocation related features The size of the allocated
buffer for the output buffer of this statement. The number
of allocations.
• Other features The number of outer loops. The prod-

uct of the lengths of outer loops. The value of the
“auto_unroll_max_step”’ specified by the pragma in

outer loops.
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