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Abstract
Tensor computation plays a paramount role in a broad range
of domains, including machine learning, data analytics, and
scientific computing. The wide adoption of tensor computa-
tion and its huge computation cost has led to high demand
for flexible, portable, and high-performance library imple-
mentation on heterogeneous hardware accelerators such
as GPUs and FPGAs. However, the current tensor library
implementation mainly requires programmers to manually
design low-level implementation and optimize from the al-
gorithm, architecture, and compilation perspectives. Such
a manual development process often takes months or even
years, which falls far behind the rapid evolution of the appli-
cation algorithms.

In this paper, we introduce FlexTensor, which is a schedule
exploration and optimization framework for tensor compu-
tation on heterogeneous systems. FlexTensor can optimize
tensor computation programs without human interference,
allowing programmers to only work on high-level program-
ming abstraction without considering the hardware platform
details. FlexTensor systematically explores the optimization
design spaces that are composed of many different schedules
for different hardware. Then, FlexTensor combines differ-
ent exploration techniques, including heuristic method and
∗Corresponding author.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
ASPLOS ’20, March 16–20, 2020, Lausanne, Switzerland
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7102-5/20/03. . . $15.00
https://doi.org/10.1145/3373376.3378508

machine learning method to find the optimized schedule
configuration. Finally, based on the results of exploration,
customized schedules are automatically generated for differ-
ent hardware. In the experiments, we test 12 different kinds
of tensor computations with totally hundreds of test cases
and FlexTensor achieves average 1.83x performance speedup
on NVIDIA V100 GPU compared to cuDNN; 1.72x perfor-
mance speedup on Intel Xeon CPU compared to MKL-DNN
for 2D convolution; 1.5x performance speedup on Xilinx
VU9P FPGA compared to OpenCL baselines; 2.21x speedup
on NVIDIA V100 GPU compared to the state-of-the-art.

• Software and its engineering→ Source code gener-
ation; • Computer systems organization → Heteroge-
neous (hybrid) systems; • Computing methodologies
→ Machine learning.

code generation, compiler optimization, heterogeneous
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1 Introduction
Tensor computations are arithmetic operations among multi-
dimensional arrays. A tensor is a natural way to represent
multi-factor or multi-relational data and has found numerous
applications for machine learning [18, 25, 45], data analysis,
and data mining [42], social networks [39], and so on. The
tensor computations are often computing-intensive kernels
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composed of deeply-nested loops, which are perfect candi-
dates to be accelerated on high-performance and low-power
hardware accelerators such as GPUs and FPGAs. Therefore,
a central problem with tensor-oriented data analytics is how
to design a high-performance library for various tensor al-
gorithms on heterogeneous systems.

One of the most widely used approaches is to write hand-
optimized low-level kernels, where the programmers manu-
ally design high-performance libraries by manipulating the
optimization options, including compute, memory, intercon-
nect, and data bit-width, etc. This low-level implementation
approach entangles algorithm with hardware and compi-
lation options for a specific platform. This approach has
several drawbacks. First, the hand-tuned libraries such as
cuDNN [11] for GPUs, MKL [22] for Intel CPU, FBLAS [35]
for FPGAs take months or even years to develop, which
is much slower than the rapid evolution of the algorithms.
For example, the emerging shift convolution [59] operator
used in the neural networks for embedded devices currently
lacks high-performance library support. Consequently, fewer
researchers will continue to explore these new tensor oper-
ators, which may bury operators of high potential values.
Second, for a specific hardware architecture, there are many
optimization schedules and parameters to decide at applica-
tion, architectural, and compilation levels, forming a large
space with non-trivial performance trade-offs to explore.
Manual designs without systematic exploration can easily
lead to a sub-optimal implementation. Third, different hard-
ware systems vary hugely in terms of computation, memory,
and many other details, rendering manual implementation
on one platform hardly portable to other platforms.

In recent years, there has been a growing interest in lever-
aging high-level abstraction to describe tensor algorithms
and employing tensor compilers to generate the low-level im-
plementations automatically [8, 44, 53]. This is a promising
solution as it requires less manual effort and can potentially
be applied to new tensor operators and platforms where
the library support is not ready. For example, Halide [44]
separates compute from schedule and uses high-level ab-
stractions to generate codes for image processing pipelines.
TVM [8] is a whole compilation stack for deep learning. It
provides high-level domain-specific languages (DSLs) for
programmers to develop new operators and performs code
generation according to compute and schedule specifications
given by programmers. However, TVM still requires the pro-
grammers to design a schedule template for each tensor
operator manually [9]. The schedule template is composed
of different schedule primitives such as split, reorder, and
fuse. Designing a high-performance schedule template is as
difficult as writing a low-level implementation. The reason
is that though the high-level abstraction improves program-
ming productivity, the programmers should still carefully
decide how to manipulate loops using the primitives and rea-
son about the performance trade-offs of different schedules.

In this paper, we introduce FlexTensor, which is a schedule
exploration and optimization framework for tensor com-
putations on heterogeneous systems. Given a high-level
description of the tensor algorithms (only describe math-
ematical calculations), FlexTensor will automatically decide
how to map the tensor algorithms onto low-level implemen-
tations for different hardware platforms including CPUs,
GPUs, and FPGAs, providing high programming productiv-
ity, good platform portability, and high performance. There
is no need for users to write any schedule or template man-
ually. FlexTensor is composed of two parts: the front-end
and the back-end. The front-end of FlexTensor takes ten-
sor computations written in Python as inputs. It employs
static analysis to analyze the computation pattern and gen-
erates a hardware-specific schedule space. The back-end of
FlexTensor leverages a heuristic and machine learning com-
bined method to find the optimized schedule configuration.
Our heuristic method is based on simulated annealing and
our machine learning algorithm is based on Q-learning. For
schedule implementation, FlexTensor applies different opti-
mizations, including multi-level loop tiling, loop reordering,
loop parallelization, and memory customization based on
the schedule configurations for different hardware.

The contributions of this work are as follows,

• We develop a framework called FlexTensor to auto-
matically optimize tensor computations for CPU, GPU,
and FPGA without human interference.
• We propose static analysis in the front-end of FlexTen-
sor to analyze different tensor computation patterns
and form the design space for different hardware.
• We propose a heuristic and machine learning com-
bined approach in the back-end of FlexTensor to ex-
plore the design space and automatically implement
the optimized schedules for different hardware.

We evaluate FlexTensor using different tensor operators
on CPU, GPU, and FPGA. FlexTensor achieves average 1.83x
performance speedup on NVIDIA V100 GPU compared to
cuDNN; 1.72x performance speedup on Intel Xeon CPU com-
pared to MKL-DNN for 2D convolution; 1.5x performance
speedup on Xilinx VU9P FPGA compared to OpenCL base-
lines; 2.21x performance speedup on NVIDIA V100 GPU
compared to the state-of-the-art.

2 Background & Motivation
In this section, we first introduce tensor computation, sched-
ule, and heterogeneous hardware. Then, we present the mo-
tivation of automated tensor optimization for the heteroge-
neous systems.
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Table 1. Definitions of different tensor computations

Operator Definition Description
GEMV O𝑖 = A𝑖,𝑘 ◦ B𝑘 Matrix-vector multiply
GEMM O𝑖, 𝑗 = A𝑖,𝑘 ◦ B𝑘,𝑗 Matrix-matrix multiply
Bilinear O𝑖, 𝑗 = A𝑖,𝑘 ◦ B𝑗,𝑘,𝑙 ◦ C𝑖,𝑙 Bilinear transformation

1D convolution O𝑏,𝑘,𝑖 = I𝑏,𝑟𝑐,𝑖+𝑟𝑥 ◦W𝑘,𝑟𝑐,𝑟𝑥 1D sliding window convolution
Transposed 1D convolution O𝑏,𝑘,𝑖 = I𝑏,𝑟𝑐,𝑖+𝑟𝑥 ◦W𝑟𝑐,𝑘,𝐿−𝑟𝑥−1 Transposed convolution for 1D array

2D convolution O𝑏,𝑘,𝑖, 𝑗 = I𝑏,𝑟𝑐,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ◦W𝑘,𝑟𝑐,𝑟𝑥,𝑟𝑦 2D sliding window convolution
Transposed 2D convolution O𝑏,𝑘,𝑖, 𝑗 = I𝑏,𝑟𝑐,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ◦W𝑟𝑐,𝑘,𝑋−𝑟𝑥−1,𝑌−𝑟𝑦−1 Transposed convolution for 2D matrix

3D convolution O𝑏,𝑘,𝑑,𝑖, 𝑗 = I𝑏,𝑟𝑐,𝑑+𝑟𝑑,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ◦W𝑘,𝑟𝑐,𝑟𝑑,𝑟𝑥,𝑟𝑦 3D sliding window convolution
Transposed 3D convolution O𝑏,𝑘,𝑑,𝑖, 𝑗 = I𝑏,𝑟𝑐,𝑑+𝑟𝑑,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ◦W𝑟𝑐,𝑘,𝐷−𝑟𝑑−1,𝑋−𝑟𝑥−1,𝑌−𝑟𝑦−1 Transposed convolution for 3D cube

Group convolution O𝑔

𝑏,𝑘,𝑖, 𝑗
= I𝑔

𝑏,𝑟𝑐,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ◦W
𝑔

𝑘,𝑟𝑐,𝑟𝑥,𝑟𝑦
2D convolution separated into groups

Depthwise convolution O𝑏,𝑘,𝑖, 𝑗 = I𝑏,𝑐,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ◦W𝑐
𝑘,𝑟𝑥,𝑟𝑦

2D convolution separated by channels
Dilated convolution O𝑏,𝑘,𝑖, 𝑗 = I𝑏,𝑟𝑐,𝑖+𝑟𝑥×𝑑𝑥,𝑗+𝑟𝑦×𝑑𝑦 ◦W𝑘,𝑟𝑐,𝑟𝑥,𝑟𝑦 2D convolution with kernel dilation

2.1 Tensor Computation & Schedules
A tensor is a multi-dimensional array of data. It can be dense
or sparse. In this paper, we only consider dense tensors. Oper-
ations among tensors such as addition and multiplication are
examples of tensor computation. We list the mathematical
definitions of tensor operators considered in this paper in Ta-
ble 1, which include matrix multiplication and convolution.
To save space, we avoid presenting long formulas and use
the Einstein summation convention to express each operator.
We use ◦ to express multiply and sum operation, and the sub-
scripts that appear on the right side but don’t appear on the
left side represent for reduction. For example, the 2D convo-
lution definition O𝑏,𝑘,𝑖, 𝑗 = I𝑏,𝑟𝑐,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ◦W𝑘,𝑟𝑐,𝑟𝑥,𝑟𝑦 can be in-
terpreted as O𝑏,𝑘,𝑖, 𝑗 =

∑
𝑟𝑐

∑
𝑟𝑥

∑
𝑟𝑦 I𝑏,𝑟𝑐,𝑖+𝑟𝑥,𝑗+𝑟𝑦 ×W𝑘,𝑟𝑐,𝑟𝑥,𝑟𝑦 .

Some operators have special parameters. For instance, in
group convolution P𝑔, I𝑔,W𝑔 are tensors of group 𝑔; for
depthwise convolution, W𝑐 is the filter tensor for channel 𝑐 ;
dilated convolution uses 𝑑𝑥, 𝑑𝑦 as dilation factors.

Traditional implementation of these tensor computations
entangles themathematical calculationswith hardware-specific
optimizations, which is very difficult to program and takes a
long time to develop. To ease the process, [8, 44] leverages
the idea of writing compute and schedule separately to im-
plement algorithms. Compute is the description of tensor
computations, while schedule is a list of optimization primi-
tives for compute. Different schedule primitives considered
in this paper are listed in Table 2. In practice, writing a sched-
ule is non-trivial because programmers have to choose the
right set of schedule primitives and proper parameters from
millions of possible combinations.

2.2 Heterogeneous Systems
Recently, it is prevalent to use heterogeneous hardware to
accelerate tensor computation. Different hardware varies in
architecture, programming model, and optimization.
On CPUs, two critical optimizations that impact the per-

formance are parallelism and locality. To exploit parallelism,

we can split the workload among CPU cores using a parallel
programming model. For example, OpenMP [14] provides
pragmas to enable parallel execution of loops (#pragma omp
parallel) and barrier among parallel threads (#pragma omp
barrier). We use tiling to exploit data locality.
GPUs employ massive threading for high throughput.

NVIDIA CUDA [40] programming model provides an ab-
straction of grid, block, and thread hierarchy to expose par-
allelism for programming. Parallel programming on GPUs
is challenging because the final performance depends on
both thread-level parallelism and single-thread performance.
Besides, GPUs allow programmers to explicitly configure
on-chip memory (shared memory) within thread blocks, pro-
viding opportunities for better locality optimization but at
the same time adding extra difficulty to programming.

FPGAs are reconfigurable hardware, which allow program-
mers to tailor the hardware for tensor computations by cus-
tomizing pipeline, parallelism, and data bit-width. However,
FPGAs are very difficult to program and optimize. Tradi-
tional FPGA programming requires RTL (register transfer
level) implementation, but writing RTL is tedious and time-
consuming. Though HLS (high level synthesis) [13] lowers
the programming barriers for FPGAs by using high-level
programming models such as C and C++, it still requires
high expertise and significant effort to optimize.

2.3 Motivation
Here we use two examples to illustrate the challenges in
writing schedules on heterogeneous systems. First, different
combinations of schedule primitives lead to different per-
formance. In Figure 1a, we use three different schedules to
optimize 2D convolutions on NVIDIA V100 GPU. We choose
three different input shapes (C2, C8, and C13 listed in Ta-
ble 4) for illustration and the batch size is 8. Schedule-a splits
the batch dimension for tiling, while schedule-b binds batch
dimension to different thread blocks, and schedule-c simply
fuses all loops together. The difference in these schedules is
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Table 2. Different schedule primitives for different target platforms and their parameters.

Target Name Description Parameter

All

split divide a loop into several sub-loops loop to split and split factors
fuse merge several loops into a hyper-loop adjacent loop to fuse

reorder change execution orders of loops loops to reorder and new order
unroll unroll a loop by given depth which loop to unroll and unroll depth

vectorize apply vector operation to a loop which loop to vectorize
inline inline a function which node to inline

compute at put producer in the body of consumer which node and how deep to compute at
CPU parallel use multithreading which loop to parallel

GPU
cache use shared memory to store inputs/results which tensor to cache and how much data to cache
bind assign a loop to parallel blocks/threads which loop to bind to block/thread

FPGA
buffer how much input to buffer at a time rows and columns of inputs to buffer
pipeline pipeline of data read/write and computation. number of stages in pipeline and number of pipelines
partition memeory partition to increase available bandwidth partion number

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C2 C8 C13

R
e

la
ti

ve
 P

e
rf

o
rm

an
ce

schedule-a schedule-b

schedule-c

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1

512 256 128 64 32 16 8

N
o

rm
al

iz
e

d
 P

e
rf

o
rm

an
ce

Loop Split Factor

V100

Xeon

VU9P

(b)

Figure 1. (a) Relative performance of three different
schedules for 2D convolutions on the same platform. (b)
Normalized performance of different split factors for 2D

convolution on V100, Xeon E5 and VU9P.

very small (only different in the order of the primitives or
simply omit some primitives), but impacts the performance
noticeably. We also find that for different input shapes, differ-
ent schedules are favorable. For C2, schedule-a is the best; for
C8, the best one is schedule-c; for C13, schedule-b performs
the best. Second, the hardware heterogeneity further adds
complexity. In Figure 1b, we compare three different plat-
forms: NVIDIA V100 GPU, Intel Xeon E5 CPU, and Xilinx
VU9P FPGA. We vary the split factor (8 to 512) of the inner
loop for 2D convolution on the three platforms. As shown,
the performance trend and the optimal factor are different
on the three platforms.
From the above examples, it’s clear that writing an op-

timized schedule on heterogeneous systems presents huge
challenges for programmers. Recent approaches [8, 9] tend
to rely on schedule templates to automatically optimize ten-
sor computations. They can only auto-tune the parameters
for schedule templates. But the schedule templates are still
written manually by the programmers and new templates

Conv2d
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Pruning Reorganization

Generated Schedule 
Space

Statistical 
Information

Heuristic 
Method

Structural
Information

Machine 
Learning

Schedule Generation

Optimized ScheduleCompute.py

Conv3dConv1d …………

Tensor Computations

Exploration

Adapter
Performance

Evaluation

Front-end

GPU FPGACPU …………

Hardware

1

2

3

4

5

Back-end

Figure 2. Overview of FlexTensor.

should be developed for new operators. In this paper, we pro-
pose to use automatic schedule space generation along with
an efficient search to generate schedules for tensor compu-
tations, which is a template-free, fully-automatic framework
without human interference.

3 Overview of FlexTensor
Figure 2 presents the overview of FlexTensor. To work with
FlexTensor, users describe the tensor computation in math-
ematical form using Python and register the optimization
task into FlexTensor. The flow of FlexTensor can be divided
into two parts: the front-end and the back-end.

The front-end analysis employs a static analyzer to extract
useful statistical information as well as structural informa-
tion of operators. Statistical information includes number
of loops, trip counts of loops, and structural information
includes number of nodes in the graph and number of ten-
sors of each node. FlexTensor relies on these information to
generate a schedule space. In the front-end analysis, Flex-
Tensor will also prune the schedule space by eliminating the
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suboptimal designs and rearrange the schedules based on
their structural similarities.

The back-end analysis adopts an exploration basedmethod
to find the optimized schedule. In the huge schedule space,
FlexTensor explores with a heuristic and machine learning
combined approach. Different points in the space are evalu-
ated by either measuring the performance on target device
or querying an analytical model to estimate performance.
Then FlexTensor generates customized schedules for dif-
ferent hardware based on hardware-specific characteristics.
At last, FlexTensor automatically generates low-level code
for different hardware including NVIDIA GPUs, Intel Xeon
CPUs, and Xilinx FPGAs based on the final schedule gen-
erated by the back-end. We leverage existing tensor com-
piler [8] for code generation on GPUs and CPUs and extend
it to FPGAs.

4 Front-end Analysis and Schedule Space
This section explains the front-end of FlexTensor. The front-
end mainly comprises two parts: static analysis of tensor
computations and generation of schedule space. In the static
analysis phase, FlexTensor collects useful statistical informa-
tion and structural information, and the subsequent phase
uses the information to generate schedule space.

4.1 Static Analysis
A tensor computation can be represented as a mini-graph
where nodes represent nested-loops, and edges represent
data organized in tensor format. Each node in the graph has
some input tensors and output tensors, for simplicity, we
just consider one output tensor. If node P’s output tensor is
used as input by node Q, then node Q is called the consumer
of node P. We denote input tensors as I1, I2, . . . , IN, and out-
put tensor as O. Then the computation can be expressed as
follows,

O[𝑖1, 𝑖2, . . . , 𝑖𝑀 ] = F (I1, I2, . . . , IN)
where 𝑀 is the dimension of output tensor, and 𝑁 is the
number of input tensors. The function F is used to compute
each point in the output tensor. In general, there are two
types of loops in each node (nested-loops): spatial loops and
reduce loops. Spatial loops are the loops without data depen-
dency, so they are the best candidates for parallelization,
while reduce loops have data dependency and usually run
in serial.
To characterize a tensor computation, we need to know

how the mini-graph is constructed and how the nested-loops
are organized. The information we need falls into two cat-
egories: statistical information and structural information,
which correspond to the characteristics of graph nodes and
edges, respectively. In details, statistical information includes
number of spatial loops (noted as #sl), number of reduce loops
(noted as #rl), trip counts of spatial loops (noted as stc), trip

counts of reduce loops (noted as rtc) and loop orders (noted
as order). Structural information includes number of nodes
in mini-graph (noted as #node), number of input tensors of
each node (noted as #in), number of output tensors of each
node (noted as #out) and number of consumer nodes of each
node (noted as #cs).
Figure 3 presents an example using GEMM. Figure 3 (a)

shows the mini-graph of GEMM, the nodes op A and op
B represent for operations that produce tensor A and B,
respectively; tensor A and tensor B are used by GEMM node
to produce tensor C. Inside the GEMM node, the nested-
loops are shown in Figure 3 (b), loop i and loop j have no
data dependency, so they are spatial loops, and loop k has
data dependency, so it’s a reduce loop. Figure 3 (c) shows the
statistical and structural information of GEMM example.

4.2 Schedule Space Generation
The schedule space is generated by enumerating different
combinations of schedule primitives and corresponding pa-
rameters using statistical and structural information. The
enumeration process follows a specific order in the sched-
ule space. In particular, we try the split, reorder, and fuse
primitives in Table 2 first, and then other primitives. This
ensures that the configuration points with the same number
of parameters are put together.

Each point in the schedule space is encoded using a vector,
and each value in the vector represents a specific choice of
primitive or parameter. Example in Figure 3 (d) is a schedule
for GEMM. The schedule splits the three loops of GEMM
into twelve sub-loops, then reorders them and generates a
larger outer-most loop by fusion. The outer-most loop is
parallelized, and the inner-most loop is vectorized. Figure 3
(e) shows how to encode the schedule in (d) as a point in
schedule space. We refer to a loop by its nested depth in the
loop-nests (1 for the outer-most loop). For split, we record
the split factors. For reorder, we record the new order of
loops. For fuse, the loops not recorded are meant to be fused
with their neighboring outer loops. For unroll, each loop
corresponds to a value 0 (not to unroll) or 1 (unroll). Parallel
and vectorize are not encoded as we always parallelize the
outer-most loop and vectorize the inner-most loop.
To explore this large space efficiently, we first propose

to prune the design space by deleting the points that are
unlikely to lead to good performance and then rearrange
the space by exploiting structural similarity. We prune the
space in three ways: 1) limit the depth of primitives com-
bination; 2) prune the parameter space, 3) pre-determine
certain decisions for different hardware. First, some of the
primitive combinations can be used recursively, which will
lead to an infinite number of configurations (e.g., a single
loop can use split and fuse recursively). To avoid this, we set
a threshold on the depth of primitive combinations (e.g., at
most use split and fuse for four times). Second, for parameter
pruning, we mainly consider pruning split factors because
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split factors account for most of the parameter space. We
find that divisible split is efficient in most cases, while other
split choices have inferior results. Hence, we limit the split
factors to divisible split choices for each loop. At last, we fix
certain decisions for different hardware based on the previ-
ous optimization studies [8, 37, 66]. For example, on CPU,
we only parallelize the outer-most loop (after fusion) and
vectorize the inner-most loop; on GPU, we bind outer loops
to thread blocks and inner loops to threads; on FPGA, we
use three-stage pipeline design, etc.

Besides pruning, we also consider rearranging the sched-
ule space for the subsequent exploration. The rearranging
process starts after pruning so that the pruned points will
never appear in the exploration process. The schedule space
can be represented using a 1D list. However, systematic ex-
ploration needs to exploit a local region in the search space
(ideally knowing which direction to search along) instead
of random sampling. The 1D list has poor locality because
there are only two directions to search along. So we propose
to change the original 1D list to a high-dimensional space.
In the high-dimensional space, the local region has more
points. For example, considering splitting a loop of size 𝐿 to
𝑁 parts, different choices are generated by 𝑁 -factorization
of integer 𝐿, and they can be represented as [𝑓1, 𝑓2, ..., 𝑓𝑁 ]
where 𝑓1 × 𝑓2... × 𝑓𝑁 = 𝐿. We rearrange the 1D list of choices
into a 𝑁×(𝑁−1)

2 -dimensional space by adding directions to
space. For any point 𝑝 = [𝑓1, 𝑓2, ...𝑓𝑁 ], the neighboring point
at direction (𝑖, 𝑗) is [𝑔1, 𝑔2, ...𝑔𝑁 ] where 𝑔𝑖 > 𝑓𝑖 , 𝑔 𝑗 < 𝑓𝑗 and
∀𝑘 ≠ 𝑖, 𝑘 ≠ 𝑗, 𝑔𝑘 = 𝑓𝑘 . In this rearrangement, the neighbor-
ing points will have a similar structure. Thus there is a high
possibility that these points can lead to similar performance.

5 Back-end Exploration and Optimization
The back-end of FlexTensor explores the schedule space and
generates an optimized schedule. Our exploration techniques
combine heuristic and machine learning methods, and our
schedule implementation is customized for different hard-
ware.

5.1 Exploration with Heuristics and Machine
learning

The schedule space generated by the front-end is enormous
(e.g., often larger than 1011), which renders exhaustive search
infeasible. For an efficient search, we combine heuristics
methods with machine learning methods. To explain our
method clearly, we denote the searching space as 𝐺 . Each
point in 𝐺 is represented as a vector, as illustrated in sec-
tion 4.2. Recall that the front-end reorganizes the original
schedule space into a space of higher dimension, and each
point in the schedule space has multiple neighboring points.
For each point 𝑝 in 𝐺 , its adjacent points are different from
𝑝 at only one position of 𝑝 (for example, modifying the split

for i in range ( 1024 ):    

for j  in range ( 1024 ):       

C [ i, j ] = 0  # initialize C

for k  in range ( 1024 ):            

C [ i, j ] += A [ i , k ] * B [ k, j ] 

# sl 2

# rl 1

stc [ 1024, 1024 ]

rtc [1024]

order [ i, j, k ]

# node 3

# in 2

# out 1

# cs 0

statistical structural

(b) (c)

op A

GEMM
tensor B

tensor A

op B

(a)

tensor C

“split”: 𝑖(1024)→[𝑖1(4), 𝑖2 (4), 𝑖3 (8), 𝑖4 (8)]

“split”: 𝑗(1024)→[𝑗1(4), 𝑗2 (4), 𝑗3 (8), 𝑗4 (8)]

“split”: 𝑘(1024)→[𝑘1(8), 𝑘2 (4), 𝑘3 (8), 𝑘4 (4)]

“reorder”: 𝑖1, 𝑗1, 𝑖2, 𝑗2, 𝑘1, 𝑖3, 𝑘2, 𝑗3, 𝑘3, 𝑖4, 𝑘4, 𝑗4
“fuse”: (𝑖1, 𝑗1, 𝑖2, 𝑗2)→𝑜𝑢𝑡𝑒𝑟
“parallel”: 𝑜𝑢𝑡𝑒𝑟
“vectorize”: 𝑗4
“unroll”: 𝑖4

[

[4, 4, 8, 8], [4, 4, 8, 8], [8, 4, 8, 4], 

[1,5,2,6,9,3,10,7,11,4,12,8],

[1, 5, 6, 7, 8, 9, 10, 11, 12],

[0, 0, 0, 0, 0, 1, 0, 0]

]

split
reorder
fuse
unroll

(d) (e)

Figure 3. GEMM Example. (a) GEMM mini-graph structure.
(b) GEMM code example. (c) Statistical and structural

information of GEMM example. (d) A schedule example. (e)
Encode schedule in (d) as a point in schedule space.

factor only or changing a value from 0 to 1 to enable/disable
one schedule primitive).
In the back-end, FlexTensor explores the schedule space

to find good schedule configurations. It maintains a set 𝐻 ,
each point in 𝐻 has already been evaluated, and we asso-
ciate a performance value 𝐸 with each point. To obtain the
performance value, we can either run the program on the
target device to collect the real performance or use an ana-
lytic model to obtain an estimated performance (illustrated
in Section 5.2). During exploration, two critical decisions
need to be made: first, which point in 𝐻 is selected as the
starting point for the next step; second, given the starting
point 𝑝 , which direction 𝑑 to move along to get a new point
in 𝐺 . For the first decision, we use a heuristic method, and
for the second decision, we use a machine learning method.

HeuristicMethod.Our heuristic method is based on sim-
ulated annealing [26]. For a point 𝑝 in 𝐻 , its performance
value is denoted as 𝐸𝑝 . During the exploration, FlexTensor
tracks the best point (with the highest 𝐸 value) in 𝐻 , and we
denote its performance value as 𝐸∗. FlexTensor chooses a
point 𝑝 in 𝐻 as the starting point for next step with proba-

bility exp−𝛾
(𝐸∗−𝐸𝑝 )

𝐸∗ where 𝛾 is a hyperparameter. The closer
𝐸𝑝 is to 𝐸∗, the more likely 𝑝 is chosen as the starting point.
We can also choose more than one starting point at a time.

Machine Learning Method. Once a point 𝑝 is chosen
as the starting point, there are many possible directions to
move along. If we try out all the directions, the exploration
process will take extremely long. Instead, we want to try the
"best" direction 𝑑 in𝐺 . The "best" direction should ultimately
lead the the best performance.
To do this, we design a method based on reinforcement

learning to predict the "best" direction. The problem of find-
ing the best direction for a certain point is similar to finding
the best action for a certain state, and can be solved by rein-
forcement learning algorithm [50]. In reinforcement learning
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(a) Schedule for CPU.
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(c) Schedule for FPGA

Figure 4. FlexTensor’s schedule generation for CPU, GPU and FPGA. Use group convolution as example for illustration.

theory, there is a state set 𝑆 , an action set 𝐴, and a reward
function 𝑟 . For a state 𝑠 ∈ 𝑆 , taking action 𝑎 ∈ 𝐴 results
reward value 𝑟 (𝑠, 𝑎). Every time an action is performed, the
current state 𝑠𝑡 changes to a new state 𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡 ), where
𝑡 is current time step and 𝑓 is transformation function. The
aim of reinforcement learning is to maximize

∑
𝑡 ≤𝑇 𝑟 (𝑠𝑡 , 𝑎𝑡 )

by always finding good actions 𝑎𝑡 , where 𝑇 is the maxi-
mum attempted step. Accordingly, we treat point 𝑝 as a
state, directions 𝑑s in 𝐺 are actions, and a new point 𝑒 is
obtained if we move from 𝑝 along direction 𝑑 . Our purpose
is to always find a series of good direction 𝑑s to finally reach
the optimal point. So the reward value can be designed as
𝑟 (𝑝, 𝑑) = 𝐸𝑒 − 𝐸𝑝 where 𝐸𝑒 is the performance value of
point 𝑒 and 𝐸𝑝 is the performance value of point 𝑝 , thus∑

𝑡 ≤𝑇 𝑟 (𝑠𝑡 , 𝑎𝑡 ) = 𝐸𝑠𝑇 . Maximizing 𝐸𝑠𝑇 is equivalent to finding
the optimal point. In practice, we normalize reward value
for stability, so 𝑟 (𝑝,𝑑) = 𝐸𝑒−𝐸𝑝

𝐸𝑝
.

In this paper, we use a Q-learning algorithm to maximize
the objective function. Q-learning is a special reinforcement
learning algorithm proposed in [57]. The idea of Q-learning is
to assign a value to each action (the direction in our problem),
which is called Q-value. The bigger the Q-value is, the better
the action is. The crucial part of Q-learning is to calculate
Q-values. To do this, we design a neural network to predict
the Q-values. More clearly, we build a network composed
of four fully connected layers and use ReLU [3] activation.
Our algorithm can start with multiple starting points. In fact,
the number of starting points can be set by the user. For
each starting point 𝑝 , we query the neural network (use 𝑝
as input feature) to obtain the Q-values of all the directions
that can be reached from 𝑝 . We choose the direction with

the biggest Q-value and move from 𝑝 to its neighbor point 𝑒
along this direction (i.e., single step). The searching process
can involve multiple steps, which can be set by the user.
During the search process, we record the visited points to
avoid repeated searching, and there is no back-tracing. We
evaluate the new point 𝑒 and record the results as a tuple (𝑝 ,
𝑒 , 𝐸𝑒−𝐸𝑝

𝐸𝑝
).

Q-learning is an online learning algorithm, so the neu-
ral network training is conducted during exploration. The
training process is similar to that of [36]. To train our four-
layer network (denoted as 𝑋 ), we create another network
(denoted as 𝑌 ) with the same structure. In the beginning,
both networks are initialized with the same parameters, and
they are not accurate because the parameters are not trained.
The training process happens periodically (every five trials),
and we use the collected data to train the network 𝑋 . For
each data tuple (𝑝 , 𝑒 , 𝐸𝑒−𝐸𝑝

𝐸𝑝
), we first calculate target value

(i.e. label) using the formula: 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝛼 ×max𝑌 (𝑒) + 𝐸𝑒−𝐸𝑝
𝐸𝑝

where 𝛼 is a hyperparameter; then we use mean squared
error (𝑋 (𝑒) − 𝑡𝑎𝑟𝑔𝑒𝑡)2 as loss value and run AdaDelta algo-
rithm [64], which is an optimizing algorithm used to perform
backward process and update network 𝑋 ; at last, the param-
eters of 𝑋 are copied to network 𝑌 as a backup. The network
𝑌 is used to make the training procedure stable [36].

5.2 Performance Comparison
There are two ways to obtain the performance value for
the points to evaluate during exploration. One is to mea-
sure the real performance by executing the program on the
target device, while another is to use analytical models to
estimate the performance. Real measurement returns the
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precise performance and thus gives accurate starting points
and directions to search. Also, it is easy to implement and
portable to different devices. However, this approach could
take a very long time to complete if the compilation and
execution overhead is not small. On the other hand, using
an analytical model is very fast, which is very useful when
the target platform is not available, or the real measurement
takes a long time to complete. However, it is non-trivial to
build an analytical model as it depends on many parameters
in application, architecture, and compilation level, which
vary a lot for different hardware platforms.

In this work, we choose to use a measurement approach on
CPUs and GPUs as the compilation and measurement over-
head is relative small on these platforms (≤ 1s). However, on
FPGAs, it may take hours to synthesize a high-level schedule
to a netlist [49]. This lengthy synthesis process prevents us
from real measurement on FPGAs. Instead, we use the per-
formance models from [32, 49] to predict the performance
on FPGAs. The performance on FPGAs can be estimated
by multiplying the number of rounds of parallel processing
with the execution time of one round. The execution time of
one round is bounded by the maximum time of computation,
data read, and data write. We only present the simplified
model and omit the details:

𝐸𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑡𝑖𝑚𝑒 =
𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑

#𝑃𝐸
×max (𝑅,𝐶,𝑊 )

where 𝑅 is the data read time, 𝑊 is the data write time,
𝐶 is the computation time, #𝑃𝐸 is the number of parallel
processing elements (PEs). This model is derived from our
three-stage pipeline for FPGA PE design, as illustrated in
Figure 4c. The final time cost is determined by the workload
size, the longest stage in the pipeline (max(𝑅,𝐶,𝑊 )), and the
number of PEs (#𝑃𝐸).

5.3 Optimized Schedule Implementation
After we find a good schedule point, we use the primitives
listed in Table 2 to implement the schedule on the target de-
vice. We can choose different orders to generate the schedule
depending on the priority given to the graph and the nodes.
Alternative orders are bottom-up order, top-down order and
recurrent order. The bottom-up order generates a schedule for
each node in a mini-graph first and then generates schedules
for the whole graph. The top-down order is on the opposite.
And the recurrent order is to repeat bottom-up order or top-
down order for several times. Here we adopt bottom-up order
because it’s straight forward and efficient inmost cases. Algo-
rithm 1 shows the outline of our algorithm. The mini-graph
structure of the tensor computation is obtained by get_graph
function in line 1. And the graph is traversed in post-order
to obtain each node in line 2. We implement schedule for
each node by invoking function Schedule_for_node in line

1: graph← get_graph(operator)
2: node_lst← post_order_traverse(graph);
3: op_config_lst← [];
4: for every node in node_lst do
5: op_config← Schedule_for_node(node);
6: op_config_lst.append(op_config)
7: end for
8: graph_config← Schedule_for_graph(graph);
9: config← Config(op_config_lst, graph_config);
10: return config

Algorithm 1: FlexTensor schedule outline

5, then function Schedule_for_graph is used to implement
schedule for the mini-graph in line 8.

Schedule for CPU. Figure 4a illustrates CPU schedule
generation for a group convolution example. For CPU, regis-
ter blocking and vectorization are of critical importance. Reg-
ister blocking can be enabled through multi-level tiling [24].
Multi-level tiling uses split primitive and reorder primitive
recursively to produce a series of small tiles. We split spatial
loops and reduce loops according to the split factors from
exploration results. After splitting, the loops become smaller
and can be potentially held by the cache to exploit data local-
ity. To exploit parallelism, we dynamically fuse several outer
loops into one outer-most loop and parallelize it. Vectoriza-
tion is applied to the inner-most loop. The trip counts of
the inner-most loop are determined by the split factors and
tuned in the exploration phase. FlexTensor can dynamically
decide the vectorization length to adapt to different instruc-
tion sets such as AVX2 and AVX512. In Figure 4a, splitting
along channel dimension produces two sub-convolutions,
and each thread takes one sub-convolution workload. Loop
unroll, loop reordering and loop vectorization are performed
after that.

Schedule for GPU. Figure 4b is a GPU schedule gener-
ation example. For GPU, block/thread decomposition and
configuration of shared memory are important. Block and
thread decomposition is reflected in split factors and imple-
mented by multi-level tiling. The tiling process can produce
many sub-loops. Outer loops are bound to thread blocks, and
some inner loops are bound to threads so that each thread
block can handle only a small part of outputs. The explo-
ration phase tunes different split factors and order of loops, so
different decomposition strategies are tried. For shared mem-
ory configuration, each block always loads data to shared
memory before computation. The size of shared memory
used in each block is determined by the trip counts of inner
loops, which are also tuned during exploration. To further
improve performance, we always use a tile of registers to
store the intermediate results of computation and only write
back the results after computation is done. For the group
convolution example, we use two blocks and twelve threads
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Table 3. Benchmark specifications.

Tensor Computations Analysis Results Library Support FLOPs Precision Test CasesOperator Abbr. #sl/rl #node CPU GPU
GEMV GMV 1/1 1 MKL cuBlas 16K-1M float32 6
GEMM GMM 2/1 1 MKL cuBlas 32K-8.6G float32 7
Bilinear BIL 2/2 1 MKL cuBlas 1G float32 5

1D convolution C1D 6/2 2 MKL-DNN cuDNN 50M-200M float32 7
Transposed 1D convolution T1D 9/2 3 PyTorch cuDNN 50M-200M float32 7

2D convolution C2D 8/3 2 MKL-DNN cuDNN 77M-3.7G float32 15
Transposed 2D convolution T2D 12/3 3 PyTorch cuDNN 77M-3.7G float32 15

3D convolution C3D 10/4 2 PyTorch cuDNN 77M-6.6G float32 8
Transposed 3D convolution T3D 15/4 3 PyTorch cuDNN 77M-6.6G float32 8

Group convolution GRP 4/3 2 MKL-DNN cuDNN 20M-900M float32 14
Depthwise convolution DEP 4/3 2 MKL-DNN cuDNN 250K-3.6M float32 7
Dilated convolution DIL 4/3 2 MKL-DNN cuDNN 100M-1.2G float32 11

per block. For inner loops, unroll and reorder primitives are
used to fine-tune performance.

Schedule for FPGA. Figure 4c shows schedule genera-
tion for FPGA. We leverage a widely used three-stage coarse-
grained pipeline architecture to build tensor computation
accelerators on FPGAs. The three-stage pipeline is composed
of three parts which are data read, compute, and write stages.
On one hand, the schedule for data read and write stages are
built and configured based on the DDR bandwidth, on-chip
memory buffer size, and the total size of transferred data.
On the other hand, the schedule for the compute pipeline
stage is determined based on the available DSP resources for
parallel data processing and the BRAM memories for local
on-chip memory buffer.

6 Experiments
6.1 Experiments Setup
We implement FlexTensor in Python and use TVM [8] tools
(version 0.6.dev) for code generation.We evaluate FlexTensor
for a variety of tensor computations on different hardware.
The details of the tensor computations are shown in Ta-
ble 3. Their mathematical definitions have been introduced
in Table 1. Operators examined in the experiments find ap-
plications in various domains. For example, GMV, C2D, T2D
are used in image processing [30, 45]; GMM, C1D, T1D are
used in natural language processing [25]; C3D, T3D are used
in video processing [18, 51]; DEP [12] is used for mobile and
embedded devices [47].

Different operators have different numbers of spatial loops
and reduce loops, and their mini-graphs contain different
numbers of nodes. For example, T1D requires expansion
and padding before convolution, so its mini-graph has three
nodes. The columnAnalysis Results in Table 3 gives details
of the structural and statistical information of each opera-
tor. We evaluate each operator using multiple test cases,

which vary in the input size and computation workload. The
columns Test Cases and FLOPS show the number of test
cases and computation workload, respectively.
We compare FlexTensor with the hand-tuned libraries

in PyTorch [43] (version 1.0). PyTorch integrates multiple
libraries such as MKL, MKL-DNN, cuBlas, and cuDNN. For
the operators with no or poor library support, PyTorch [43]
uses its native implementation (called native library). On
GPU, cuDNN backend for PyTorch can be enabled by setting
torch.backends.cudnn.enabled = True, and we use cuDNN v7
for PyTorch. When cuDNN is disabled, PyTorch uses the
native library [21] on GPU. For each benchmark, we use
float32 precision with batch size 1 for inference. For GPU
experiments, we use NVIDIA V100 (16GB device memory),
P100 (16 GB device memory), and Titan X (Pascal). For CPU
experiments, we use Intel Xeon E5-2699 v4 CPU. For FPGA
experiments, we use Xilinx VU9P FPGA.

6.2 Overall Speedups on GPUs
We test all the benchmarks on GPUs with different test cases.
The geometric mean speedups (normalized performance) of
different test cases for each benchmark are shown in Fig-
ure 5. We compare FlexTensor with native PyTorch (without
cuDNN) and cuDNN. CuDNNhas no support for GMV, GMM,
and BIL, so we only compare to cuBlas. FlexTensor outper-
forms both native PyTorch and cuDNN for most operators,
and the average speedup of all benchmarks to cuDNN is 1.83x
on V100, 1.68x on P100 and 1.71x on Titan X. FlexTensor
achieves good speedups thanks to the exploration of huge
schedule space (the size ranges from 3.9×109 to 2.4×1012) for
choosing proper schedule primitives and parameters as well
as the target-specific optimization process for implementing
high-performance schedules on GPU.
We notice FlexTensor falls short for operators T2D and

T3D. The reason is that our implementation is based on
the direct spatial convolution, while cuDNN uses implicit
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Figure 5. Normalized performance of native PyTorch, cuDNN and FlexTensor on different GPUs.
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Figure 6. Performance for 2D convolution on heterogeneous hardware.

GEMM algorithm and fast algorithms [52]. This needs algo-
rithm level transformations, which are not supported by our
schedule primitives.
Currently, some operators are not well supported by the

libraries, which reflects the fact that it is very challenging to
design a high-performance hand-tuned library. For example,

GRP, DEP, and DIL have library support in PyTorch and
cuDNN, but the performance is poor. Actually, in cuDNN,
GRP and DIL reuse the kernels of C2D. For DEP operator,
the implementation in cuDNN is even slower than that of
PyTorch, and PyTorch doesn’t use cuDNN for this operator
internally. So we only compare to native PyTorch for DEP.
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As shown in Figure 5, FlexTensor outperforms cuDNN for
GRP and DIL, ranging from 1.54x to 21.35x speedup on GPUs.
For DEP, the speedup of FlexTensor to PyTorch ranges from
4.39x to 8.53x.

6.3 Detailed Performance on Heterogeneous
Hardware

We use C2D as a case study to evaluate FlexTensor on dif-
ferent hardware. The C2D test cases are taken from all the
15 different convolution layers in YOLO-v1 [45] as shown
in Table 4, where C is input channel, K is output channel, H
and W are input height and width, k is kernel size, and st is
stride.

On GPU, FlexTensor exceeds native PyTorch and cuDNN
for almost all the layers. The geometric mean speedup to
PyTorch and cuDNN is 1.56x and 1.5x, respectively. The ab-
solute performances are shown in Figure 6a. FlexTensor can
achieve an average throughput of 3519.71 GFLOPS. Flex-
Tensor can achieve high performance because it strikes a
balance between inter-thread and intra-thread workload de-
composition by exploring numerous schedules. FlexTensor
can dynamically adapt to different input shapes and search
for proper schedules, so for most layers, it is better than
hand-optimized results. We also notice that FlexTensor fails
to speed up some layers such as C4 and C6 because FlexTen-
sor only uses a direct convolution algorithm for them, while
cuDNN uses the Winograd algorithm, which greatly reduces
the computation complexity [29].
Figure 6b presents the results on CPU in absolute perfor-

mance. On CPU, FlexTensor also exceeds PyTorch (which
is using MKL-DNN backend) for most layers. The geomet-
ric speedup to the library is 1.72x. FlexTensor uses NCHWc
layout [17] for C2D to exploit the vectorization feature on
CPU. FlexTensor can achieve high-performance thanks to
efficient tiling and vectorization. We allow FlexTensor to au-
tomatically decide vectorization length to adapt to different
platforms, and find that the schedules generated by FlexTen-
sor all use a vectorization length of eight in our experiments
because Xeon E5-2699 v4 uses AVX2 instructions and allows
vectorization of at most eight floating-point operations.

On FPGA, the baseline uses schedules in [65] for perfor-
mance optimization. The absolute results are shown in Fig-
ure 6c. The geometric speedup is 1.5x. The reasons behind
the better performance of FlexTensor are two folds. On one
hand, FlexTensor enables a larger design space exploration
by solving an optimization problem under certain FPGA re-
source constraints. On the other hand, FlexTensor provides
a better schedule strategy to reduce the off-chip memory
access overhead by overlapping data communication and
computation operations.

6.4 Performance for New Operators
We also evaluate FlexTensor using two new tensor oper-
ators, which lack of good library support. They are block

circulant matrix [10, 56] (abbreviated as BCM) and shift oper-
ation [59] (abbreviated as SHO). BCM is used for embedded
devices to prune parameters, and SHO is a parameter-free
operator used in Shift-Net [63]. We compare FlexTensor with
our hand-tuned implementation for these two operators. In
our hand-tuned implementation, we use 4-level tiling with
hand-optimized split factors and unroll loops to a maximum
depth of 200. For BCM, FlexTensor achieves an average 2.11x
speedup compared to the GPU baseline on V100. For SHO,
FlexTensor achieves 1.53x speedup compared to the GPU
baseline on Titan X. Therefore, users of these new oper-
ators can rely on FlexTensor to automatically generate a
high-performance implementation.

6.5 Comparison to State-of-the-Art
We compare with AutoTVM [9] to show the performance
and exploration efficiency. AutoTVM requires users to write
schedule-templates to optimize operatorsmanually. AutoTVM
generates schedule space according to the template and ex-
plores the space for optimized schedules. It uses XGBoost [6]
to build a cost model to guide the searching process. To
build such a model, AutoTVM tries thousands of implemen-
tations previously, and the data recorded from these trials
are used to train the cost model. We compare FlexTensor
with AutoTVM using C1D, T1D, C2D, T2D, C3D, T3D, and
GRP. AutoTVM has no template support for C1D, T1D, C3D,
T3D currently, so we design optimized templates for these
operators manually. FlexTensor exceeds AutoTVM for all the
operators except for T2D (0.95x), and the average speedup
of these benchmarks is 2.21x. FlexTensor achieves better
performance because it systematically explores the space
of schedule primitives while AutoTVM relies on static tem-
plates. By comparing the schedule space size of AutoTVM
and FlexTensor for the C2D operator, we find that FlexTensor
explores a space 2027x larger than AutoTVM on average.

We name our Q-learning based method as Q-method. We
compare Q-method with another method called P-method,
which doesn’t use Q-learning to guide search and tries all
possible directions at each trial. For each trial, P-method
explores all the directions for each starting point, while Q-
method queries the Q-learning algorithm to get one direction
for each starting point and only explores that direction. For
AutoTVM, it randomly gets a new point to explore for each
trial. We use C2D on V100 as a case study. Figure 6d shows
the exploration time taken by P-method, Q-method, and Au-
toTVMwhen a similar performance is achieved. More clearly,
we first run AutoTVM and let it converge to a stable perfor-
mance, then run P-method and Q-method to reach a similar
performance and record the time cost. On average, Q-method
takes 27.6% and 52.9% of the time of P-method and AutoTVM
to achieve a similar performance, respectively. We also col-
lect the stable performance of P-method and Q-method. The
final performance of P-method is 1.41x better than AutoTVM
and Q-method is 1.54x better than AutoTVM.
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Table 4. Configurations of 15 distinctive convolution layers in YOLO v1.

Name C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12 C13 C14 C15
C 3 64 192 128 256 256 512 256 512 512 1024 512 1024 1024 1024
K 64 192 128 256 256 512 256 512 512 1024 512 1024 1024 1024 1024
H/W 448 112 56 56 56 56 28 28 28 28 14 14 14 14 7
k, st 7,2 3,1 1,1 3,1 1,1 3,1 1,1 3,1 1,1 3,1 1,1 3,1 3,1 3,2 3,1
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Figure 7. Performance vs. Exploration time

Figure 7 shows how the performance improves as the ex-
ploration time increases for test cases C1, C6, C8, and C9. As
shown, Q-method always converges to a good performance
in a short time, while P-method and AutoTVM take longer.

6.6 Case Study of DNNs
So far, we have evaluated FlexTensor using stand-alone op-
erators only. Here, we test FlexTensor using two real-world
DNNs: YOLO-v1 [45] (24 conv-layers; totally 30 layers) and
OverFeat [48] (5 conv-layers; totally 8 layers) with batch size
1. FlexTensor can be used for full DNNs with multiple opera-
tors by partitioning the DNNs into sub-graphs and applying
fusion techniques to fuse sub-graphs into operators [46]. The
fused operators are fed to FlexTensor to generate schedules.
We test the two networks on NVIDIA V100 GPU, and the
end-to-end speedups of FlexTensor are 1.07x for YOLO-v1
and 1.39x for OverFeat compared to AutoTVM.

7 Related Works
Accelerating tensor computations on heterogeneous hard-
ware is of critical importance and has attracted a lot of atten-
tion from both academia and industry. The best practice cur-
rently is still optimizing algorithmsmanually and developing
libraries for different hardware. Most deep learning frame-
works [1, 7, 23, 43] rely on these libraries to achieve high per-
formance. On CPUs, high-performance library MKL [22] is
designed to accelerate linear algebra applications, and MKL-
DNN [20] is designed for deep learning applications. MKL-
DNN integrates optimization techniques from [17], which
uses JIT techniques to optimize CNN on Intel Xeon CPUs.
Besides, SWIRL [54] can generate high-quality fused, vector-
ized, and parallelized code for DNN on CPUs. On GPUs, there
are optimized libraries such as cuBlas [41] and cuDNN [11].

CuBlas [41] can accelerate linear algebra kernels to extreme
high-performance, while cuDNN [11] accelerates deep learn-
ing applications by assembling a set of efficient algorithms
such as Winograd [29] and FFT [34]. Optimizing algorithms
on GPU is challenging as the final performance depends on
both single thread performance and the thread level par-
allelism [31, 61, 62]. On FPGAs, prior works [33, 60] imple-
ment high-performance convolutions by manually designing
hardware architecture and dataflow. All these works require
manual design of high-performance implementation, which
requires years of experience and expertise in both algorithms
and hardware.

However, as deep-learning algorithms rapidly evolve, the
long developing time and heavy labor cost of libraries be-
come a bottleneck. To solve this problem, prior works design
frameworks to lower the programming barrier using high-
level abstractions and compilation techniques. ATLAS [58],
BTO [4] FFTW [16], and Leo [15] use auto-tuning to achieve
high-performance. Halide [44] can generate high-performance
codes for image processing pipelines. TACO [27] focuses on
sparse operators and generates codes from high-level expres-
sions. TVM [8] generates codes for deep learning networks
onmany different kinds of hardware. HeteroCL [28] provides
a code generation backend for FPGA. However, these frame-
works still require the programmers to write the schedules
manually, which is non-trivial.
Recently, researchers have tried to integrate automation

into the code generation process. Halide auto-scheduler [2]
provides fully automatic approaches by using tree search-
ing and random programs, which can scale to whole graph
level, but its main focus is still code-generation for image
processing pipelines. PlaidML [19] leverages an analytical
model to achieve high performance for tensor operators
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automatically. Tensor Comprehensions [53] uses polyhe-
dral model [5, 38, 55] to automatically optimize algorithms.
PlaidML and Tensor Comprehensions are fully automatic,
but they are limited to a narrow range of hardware and
only achieve limited performance speedup. AutoTVM [9]
can auto-tune operators on heterogeneous hardware with
good portability, and achieve high performance for a wide
range of operators. But AutoTVM still requires program-
mers to write schedule templates manually. Compared to
AutoTVM, FlexTensor achieves better performance without
human interference. FlexTensor can be used to generate ar-
bitrary dense tensor operators.

8 Conclusion
Accelerating tensor computations on heterogeneous systems
is urgently demanded in numerous applications. Designing
high-performance libraries manually for different hardware
is time-consuming and hardware-specific. In this paper, we
propose an automatic optimization framework called Flex-
Tensor, which uses pruning techniques andmachine learning
techniques to generate high-performance schedules for ten-
sor computations on CPU, GPU, and FPGA. Experiments
on CPU, GPU, and FPGA show that FlexTensor is able to
achieve competitive or better performance than hand-tuned
libraries. Compared to cuDNN on NVIDIA V100 GPU, the
average speedup is 1.83x; compared to MKL-DNN on Intel
Xeon CPU, the average speedup for 2D convolution is 1.72x;
compared to OpenCL baselines on VU9P FPGA, the average
speedup is 1.5x; compared to the state-of-the-art on NVIDIA
V100 GPU, the average speedup is 2.21x.
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