
Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

BAYESIAN GENERATIONAL
POPULATION-BASED TRAINING

Xingchen Wan1, Cong Lu1, Jack Parker-Holder1, Philip J. Ball1
Vu Nguyen2, Binxin Ru1, Michael A. Osborne1
1Machine Learning Research Group, University of Oxford, Oxford, UK
2Amazon, Adelaide, Australia
{xwan,conglu,jackph,ball,robin,mosb}@robots.ox.ac.uk, vu@ieee.org

ABSTRACT

Reinforcement learning (RL) offers the potential for training generally capable
agents that can interact autonomously in the real world. However, one key limitation
is the brittleness of RL algorithms to core hyperparameters and network architecture
choice. Furthermore, non-stationarities such as evolving training data and increased
agent complexity mean that different hyperparameters and architectures may be
optimal at different points of training. This motivates AutoRL, a class of methods
seeking to automate these design choices. One prominent class of AutoRL methods
is Population-Based Training (PBT), which have led to impressive performance
in several large scale settings. In this paper, we introduce two new innovations in
PBT-style methods. First, we employ trust-region based Bayesian Optimization,
enabling full coverage of the high-dimensional mixed hyperparameter search
space. Second, we show that using a generational approach, we can also learn
both architectures and hyperparameters jointly on-the-fly in a single training run.
Leveraging the new highly parallelizable Brax physics engine, we show that these
innovations lead to large performance gains, significantly outperforming the tuned
baseline while learning entire configurations on the fly.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto, 2018) has proven to be a successful paradigm for train-
ing agents across a variety of domains and tasks (Mnih et al., 2013; Silver et al., 2017; Kalashnikov
et al., 2018; Nguyen et al., 2021a), with some believing it could be enough for training generally
capable agents (Silver et al., 2021). However, a crucial factor limiting the wider applicability of RL to
new problems is the notorious sensitivity of algorithms with respect to their hyperparameters (Hen-
derson et al., 2018; Andrychowicz et al., 2021; Engstrom et al., 2020), which often require expensive
tuning. Indeed, it has been shown that when tuned effectively, good configurations often lead to
dramatically improved performance in larger, more open-ended settings (Chen et al., 2018).

To address these challenges, recent work in Automated Reinforcement Learning (AutoRL, Parker-
Holder et al. (2022)) has shown that rigorously searching these parameter spaces can lead to previously
unseen levels of performance, even capable of breaking widely used simulators (Zhang et al., 2021).
However, AutoRL contains unique challenges, as different tasks even in the same suite are often
best solved with different network architectures and hyperparameters (Furuta et al., 2021; Xu et al.,
2022). Furthermore, due to the non-stationarities present in RL (Igl et al., 2021), such as changing
data distributions and the requirement for agents to model increasingly complex behaviors over time,
optimal hyperparameters and architectures may not remain constant. To address this, works have
shown adapting hyperparameters through time (Paul et al., 2019; Zhang et al., 2021; Parker-Holder
et al., 2021; Jaderberg et al., 2017) and defining fixed network architecture schedules (Czarnecki et al.,
2018) can be beneficial for performance. However, architectures and hyperparameters are inherently
linked (Park et al., 2019), and to date, no method combines the ability to jointly and continuously
adapt both on the fly.

In this paper we focus on Population-based Training (PBT) (Jaderberg et al., 2017) methods, where a
population of agents is trained in parallel, copying across stronger weights and enabling adaption of

1

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

1

2

3

On-policy
Distillation

On-policy
Distillation

𝜋-net:

Learning rate: 0.001
Batch size: 64

V-net:

𝜋-net:

Learning rate: 0.00025
Batch size: 256

V-net:

𝜋-net:

Learning rate: 0.0001
Batch size: 256

V-net:

= 32 neurons

Figure 1: An example run of BG-PBT on the HalfCheetah task in BRAX: BG-PBT combines population-based
training with high-dimensional Bayesian optimization, generational training (different generations marked with
numbers in the figure) and on-policy distillation between generations to transfer across RL agents with different
neural architectures: at different points during training, both hyperparameters and the architectures of policy &
value networks are tuned on-the-fly, leading to significant improvement over the PPO baseline.

hyperparameters in a single training run. This allows PBT methods to achieve impressive performance
on many large-scale settings (Jaderberg et al., 2019; Liu et al., 2021). However, PBT-style methods are
typically limited in scope due to two key factors: 1) they only optimize a handful of hyperparameters,
either due to using random search (Jaderberg et al., 2017), or model-based methods that do not scale
to higher dimensions (Parker-Holder et al., 2020; 2021); 2) PBT methods are usually restricted to the
same fixed architecture since weights are copied between agents.

We seek to overcome both of these issues in this paper, and propose Bayesian Generational Population-
based Training (BG-PBT), with an example run demonstrated in Fig. 1. BG-PBT is capable of tuning
a significantly greater proportion of the agent’s configuration, thanks to two new ideas. First, we
introduce a new model-based hyperparameter and architecture exploration step motivated by recent
advances in local Bayesian optimization (Wan et al., 2021). Second, we take inspiration from
Stooke et al. (2021) who showed that PBT can be particularly effective when combined with network
distillation (Igl et al., 2021), in an approach known as generational learning. As prior works in
generational training (Vinyals et al., 2019; Stooke et al., 2021) show, the use of successive generations
of architectures with distillation results in significantly reduced training time for new agents. This
provides us with an algorithm-agnostic framework to create agents which continuously discover their
entire configuration. Thus, for the first time, we can tune hyperparameters and architectures during
one training run as part of a single unified algorithm.

We run a series of exhaustive experiments tuning both the architectures and hyperparameters for a
Proximal Policy Optimization (PPO) (Schulman et al., 2017) agent in the newly introduced BRAX
environment suite (Freeman et al., 2021). BRAX enables massively parallel simulation of agents,
making it perfect for testing population-based methods without vast computational resources. Our
agents significantly outperform both the tuned baseline and a series of prior PBT methods. Notably,
we observe that BG-PBT often discovers a schedule of networks during training—which would be
infeasible to train from scratch. We believe that given access to more compute, and a sufficiently
challenging task, that BG-PBT is a significant step towards agents that never stop learning, as
the hyperparameters and architecture search component makes the agent amenable to learning in
open-ended environments. Furthermore, BG-PBT discovers entirely new modes of behavior for these
representative environments, which we show at https://sites.google.com/view/bgpbt.

To summarize, the main contributions of this paper are as follows:
1. We show for the first time it is possible to select architectures as part of a general-purpose PBT

framework, using generational training with policy distillation with Neural Architecture Search
(NAS).

2. We propose a novel and efficient algorithm, BG-PBT, especially designed for high-dimensional
mixed search spaces, which can select both architectures and hyperparameters on-the-fly with
provable efficiency guarantees.

3. We show in a series of experiments our automatic architecture curricula make it possible to achieve
significantly higher performance than previous methods.

2

https://sites.google.com/view/bgpbt

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

2 PRELIMINARIES

We begin by introducing the reinforcement learning framework, population-based training, which our
method is based on, and the general problem setup we investigate in this paper.

Reinforcement Learning. We model the environment as a Markov Decision Process (MDP) (Sutton &
Barto, 2018), defined as a tuple M = (S,A, P,R, ρ0, γ), where S and A denote the state and action
spaces respectively, P (st+1|st, at) the transition dynamics, R(st, at) the reward function, ρ0 the
initial state distribution, and γ ∈ (0, 1) the discount factor. The goal is to optimize a policy π(at|st)
that maximizes the expected discounted return Eπ,P,ρ0

[
∑∞

t=0 γ
tR(st, at)]. Given a policy π, we

may define the state value function V π(s) = Eπ,P [
∑∞

t=0 γ
tR(st, at)|s0 = s] and the state-action

value-function Qπ(s, a) = Eπ,P [
∑∞

t=0 γ
tR(st, at)|s0 = s, a0 = a]. The advantage function is then

defined as the difference Aπ(s, a) = Qπ(s, a)− V π(s).

A popular algorithm for online continuous control that we use is PPO (Schulman et al., 2017).
PPO achieves state-of-the-art results for popular benchmarks (Cobbe et al., 2020) and is hugely
parallelizable, making it an ideal candidate for population-based methods (Parker-Holder et al., 2020).
PPO approximates TRPO (Schulman et al., 2015) and uses a clipped objective to stabilize training:

LPPO(θ) = min

(
πθ(a | s)
πµ(a | s)

Aπµ , g(θ, µ)Aπµ

)
, where g(θ, µ) = clip

(
πθ(a | s)
πµ(a | s)

, 1− ϵ, 1 + ϵ

)
(1)

where πµ is a previous policy and ϵ is the clipping parameter.

Population-Based Training. RL algorithms, including PPO, are typically quite sensitive to their
hyperparameters. PBT (Jaderberg et al., 2017) is an evolutionary method that tunes RL hyperpa-
rameters on-the-fly. It optimizes a population of B agents in parallel, so that their weights and
hyperparameters may be dynamically adapted within a single training run. In the standard paradigm
without architecture search, we consider two sub-routines, explore and exploit. We train for a total
of T steps and evaluate performance every tready < T steps. In the exploit step, the weights of
the worst-performing agents are replaced by those from an agent randomly sampled from the set
of best-performing ones, via truncation selection. To select new hyperparameters, we perform the
explore step. We denote the hyperparameters for the bth agent in a population at timestep t as zbt ∈ Z;
this defines a schedule of hyperparameters over time

(
zbt
)
t=1,...T

. Let ft(zt) be an objective function
(e.g. the return of a RL agent) under a given set of hyperparameters at timestep t, our goal is to
maximize the final performance fT (zT). The original PBT uses a combination of random sampling
and evolutionary search for the explore step by suggesting new hyperparameters mutated from the
best-performing agents. Population Based Bandit (PB2) and PB2-Mix (Parker-Holder et al., 2020;
2021) improve on PBT by using Bayesian optimization (BO) to suggest new hyperparameters, relying
on a time-varying Gaussian Process (GP) (Rasmussen & Williams, 2006) to model the data observed.
We will also use GP-based BO in our method, and we include a primer of GPs and BO in App. A.

Problem Setup. We follow the notation used in Parker-Holder et al. (2020) and frame the hyperpa-
rameter optimization problem in the lens of optimizing an expensive, time-varying, black-box reward
function ft : Z → R. Every tready steps, we observe and record noisy observations, yt = ft(zt)+ ϵt,
where ϵt ∼ N (0, σ2I) for some fixed variance σ2. We follow the typical PBT setup by defining a hy-
perparameter space, Z , which for the BRAX (Freeman et al., 2021) implementation of PPO we follow
in the paper, consists of 9 parameters: learning rate, discount factor (γ), entropy coefficient (c), unroll
length, reward scaling, batch size, updates per epoch, GAE parameter (λ) and clipping parameter
(ϵ). To incorporate the architecture hyperparameters, y ∈ Y , we add 6 additional parameters leading
to a 15-dimensional joint space J = Y × Z . For both the policy and value networks, we add the
width and depth of the Multi-layer Perceptron (MLP) and a binary flag on whether to use spectral
normalization.

3 BAYESIAN GENERATIONAL POPULATION-BASED TRAINING (BG-PBT)

We present BG-PBT in Algorithm 1 which consists of two major components. First, a BO approach to
select new hyperparameter configurations z for our agents (§3.1). We then extend the search space to
accommodate architecture search, allowing agents to choose their own networks (parameterized by
y ∈ Y) and use on-policy distillation to transfer between different architectures (§3.2).

3

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

3.1 HIGH-DIMENSIONAL BO AGENTS IN MIXED-INPUT CONFIGURATION SPACE FOR PBT

Algorithm 1 BG-PBT; distillation and NAS steps
marked in magenta (§3.2)
1: Input: pop size B, tready, max steps T , q (% agents

replaced per iteration)
2: Initialize B agents with weights {θ(i)0 }Bi=1, ran-

dom hyperparameters {z(i)0 }Bi=1 and architectures
{y(i)

0 }Bi=1,
3: for t = 1, . . . , T (in parallel for all B agents) do
4: Train models & record data for all agents
5: if t mod tready = 0 then
6: Replace the weights & architectures of the

bottom q% agents with those of the top q%
agents.

7: Update the surrogate with new observations &
rewards and adjust/restart the trust regions.

8: Check whether to start a new generation (see
§3.2).

9: if start a new generation then
10: Clear the GP training data.
11: Create B agents with archs. from

BO/random.
12: Distill from a top-q% performing agent of

the existing generation to new agents.
13: else
14: Select new hyperparameters z for the

agents whose weights have been just re-
placed with randomly sampled configs (if
D = ∅) OR using the suggestions from
the BO agent described conditioned on y
(otherwise).

Existing population-based methods ignore (PB2)
or only partially address (PB2-Mix, which does
not consider ordinal variables such as integers)
the heterogeneous nature of the mixed hyperpa-
rameter space Z . Furthermore, both previous
methods are equipped with standard GP surro-
gates which typically scale poorly beyond low-
dimensional search spaces, and are thus only
used to tune a few selected hyperparameters
deemed to be the most important based on hu-
man expertise. To address these issues, BG-PBT
explicitly accounts for the characteristics of typ-
ical RL hyperparameter search space by mak-
ing several novel extensions to CASMOPOLITAN
(Wan et al., 2021), a state-of-the-art BO method
for high-dimensional, mixed-input problems for
our setting. In this section, we outline the main
elements of our design, and we refer the reader
to App. B.2 for full technical details of the ap-
proach.

Tailored treatment of mixed hyperparameter
types. Hyperparameters in RL can be continu-
ous (e.g. discounting factor), ordinal (discrete
variables with ordering, e.g. batch size) and
categorical (discrete variables without ordering,
e.g. activation function). BG-PBT treats each
variable type differently: we use tailored kernels
for the GP surrogate, and utilize interleaved opti-
mization for the acquisition function, alternating
between local search for the categorical/ordinal
variables and gradient descent for the continuous variables. BG-PBT extends both CASMOPOLITAN
and PB2-Mix by further accommodating ordinal variables, as both previous works only considered
continuous and categorical variables.

Trust Regions (TR). TRs have proven success in extending GP-based BO to higher-dimensional
search spaces, which were previously intractable due to the curse of dimensionality, by limiting
exploration to promising regions in the search space based on past observations (Eriksson et al., 2019;
Wan et al., 2021). In the PBT context, TRs also implicitly avoid large jumps in hyperparameters,
which improves training stability. We adapt the TRs used in the original CASMOPOLITAN to the
time-varying setup by defining TRs around the current best configuration, and then adjusting them
dynamically: similar to Eriksson et al. (2019) and Wan et al. (2021), TRs are expanded or shrunk
upon consecutive “successes” or “failures”. We define a proposed configuration to be a “success” if it
appears in the top q%-performing agents and a “failure” otherwise. When the TRs shrink below some
specified minimum, a restart is triggered, which resets the GP surrogate to avoid becoming stuck at a
local optimum. We adapt the Upper Confidence Bound (UCB)-based criterion proposed in Wan et al.
(2021) which is based on a global, auxiliary GP model to the time-varying setting to re-initialize the
population when a restart is triggered. Full details are provided in App. B.4.

Theoretical Properties. Following Wan et al. (2021), we show that under typical assumptions
(presented in App. C) used for TR-based algorithms (Yuan, 1999), our proposed BG-PBT converges to
the global optimum asymptotically. Furthermore, we derive an upper bound on the cumulative regret
and show that under certain conditions it achieves sublinear regret. We split the search space into
Z = [H,X] (categorical/continuous parts respectively). We note that Assumption C.3 considers the
minimum TR lengths Lx

min, L
h
min are set to be small enough so that the GP approximates f accurately

in the TRs. In practice, this assumption only holds asymptotically, i.e. when the observed datapoints
in the TRs goes to infinity. We present the main result, the time-varying extension to Theorem 3.4
from Wan et al. (2021), and then refer to App. C for the derivation.

4

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

1

3

4

Top-q% agent(s) from
last generation
(teacher(s))

Architecture
generation

(random/BO)

On-policy
Distillation

1

2

3

4

1

2

3

4

×

Bottom q% agent(s)

Top q% agent(s)

Suggested by BO

2

Figure 2: BG-PBT (a) at the beginning of a generation (left) and (b) during a generation (right). At
the start of a generation, agents with diverse architectures are suggested and on-policy distillation is
used to transfer information across generations & different architectures (§3.2). Within a generation,
a high-dimensional, mixed-input BO agent suggests hyperparameters (§3.1, we copy weights across
fixed architectures).

Theorem 3.1. Assume Assumptions C.2 & C.3 hold. Let fi : [H,X] → R be a time-varying objective
defined over a mixed space and ζ ∈ (0, 1). Suppose that: (i) there exists a class of functions gi in the
RKHS Gk([H,X]) corresponding to the kernel k of the global GP model, such that gi passes through
all the local maximas of fi and shares the same global maximum as fi; (ii) the noise at each timestep
ϵi has mean zero conditioned on the history and is bounded by σ; (iii) ∥gi∥2k ≤ B. Then BG-PBT
obtains a regret bound

Pr
{
RIB ≤

√
C1IβI

B
γ
(
IB; k; [H,X]

)
+ 2 ∀I ≥ 1

}
≥ 1− ζ,

with C1 = 8/ log(1 + σ−2), γ(T ; k; [H,X]) defined in Theorem C.1 and βI is parameter balancing
exploration-exploitation as in Theorem 2 of Parker-Holder et al. (2020).

Under the same ideal conditions assumed in Bogunovic et al. (2016); Parker-Holder et al. (2020)
where the objective does not vary significantly through time, the cumulative regret bound is sublinear
with limI→∞

RIB

I = 0, when ω → 0 and Ñ → I .

3.2 ADAPTING ARCHITECTURES ON THE FLY

Now that we are equipped with an approach to optimize in high-dimensional Z , we focus on choosing
network architectures. Despite their importance in RL (Cobbe et al., 2019; Furuta et al., 2021),
architectures remain underexplored as a research direction. Adapting architectures for PBT methods
is non-trivial as we further enlarge the search space, and weights cannot readily be copied across
different networks. Inspired by Stooke et al. (2021), our key idea is that when beginning a new
generation we can distill behaviors into new architectures (see Fig. 2). Specifically:

• Starting each generation: We fill the population of B agents by generating a diverse set of archi-
tectures for both the policy and value networks. For the first generation, this is done via random
sampling. For subsequent generations, we use suggestions from BO and/or random search with
successive halving over the architecture space Y only; the BO is trained on observations of the best
performance each architecture has achieved in previous generations. We initialize a new generation
when the evaluated return stagnates beyond a pre-set patience during training.

• Transfer between generations: Apart from the very first generation, we transfer information from the
best agent(s) of the previous generation to each new agent, in a similar fashion to Stooke et al. (2021),
using on-policy distillation with a joint supervised and RL loss between different architectures as
shown in Fig. 2a. Given a learned policy πi and value function Vi from a previous generation, the
new joint loss optimized is:

E(st,at)∼πi+1
[αRLLRL + αV ∥Vi(st)− Vi+1(st)∥2 + απDKL

(
πi(· | st) ||πi+1(· | st)

)
] (2)

for weights αRL ≥ 0, αV ≥ 0, απ ≥ 0, and RL loss LRL taken from Equation (1). We linearly
anneal the supervised losses over the course of each generation, so that by the end, only the RL loss
remains.

• During a generation: We follow standard PBT methods to evolve the hyperparameters of each
agent by copying weights θ and the architecture y from a top-q% performing agent to a bottom-q%

5

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

agent, as shown in Fig. 2b. This creates an effect similar to successive halving (Karnin et al., 2013;
Jamieson & Talwalkar, 2016) where poorly-performing architectures are quickly removed from
the population in favor of more strongly-performing ones; typically at the end of a generation, 1
or 2 architectures dominate the population. While we do not introduce new architectures within
a generation, the hyperparameter suggestions are conditioned on the current policy and value
architectures by incorporating the architecture parameters y as contextual fixed dimensions in the
GP surrogate described in §3.1.

4 EXPERIMENTS

While BG-PBT provides a framework applicable to any RL algorithm, we test our method on 7
environments from the new BRAX environment suite, using PPO. We begin by presenting a com-
parative evaluation of BG-PBT against standard baselines in population-based training to both show
the benefit of searching over the full hyperparameter space with local BO and of automatically
adapting architectures over time. We further show that our method beats end-to-end BO, showing the
advantage of dynamic schedules. Next, we analyze these learned hyperparameter and architecture
schedules using BG-PBT and we show analogies to similar trends in learning rate and batch size in
supervised learning. Finally, we perform ablations on individual components of BG-PBT. For all
population-based methods, we use a population size B = 8 and a total budget of 150M steps. We
note that BG-PBT with NAS uses additional on-policy samples from the environment in order to distill
between architectures. We instantiate the BRAX environments with an action repeat of 1. We use
tready of 1M for all PBT-based methods on all environments except for Humanoid and Hopper, where
we linearly anneal tready from 5M to 1M. The remaining hyperparameters and implementation details
used in this section are listed in App. E.

Ant HalfCheetah Humanoid Hopper Reacher Fetch UR5e

0 150M4K

6K

8K

10K

Re
wa

rd

0 150M6K

8K

10K

12K

14K

0 150M

2K
4K
6K
8K

10K

0 150M
Steps

1K

2K

0 150M

60

40

20

0 150M

4
6
8

10

0 150M
0

5

10

RS PBT PB2 BGPBT
Figure 3: Visualization of each environment (top row) and mean evaluated return over the population with ±1
SEM (shaded) across 7 random seeds (bottom row) in all environments. RS refers to the higher performing of
RS-Z or RS-J in Table 1.

Table 1: Mean evaluated return ±1SEM across 7 seeds shown. For PBT-style methods (PBT, PB2 and
BG-PBT), the mean best-performing agent in the population is shown. Methods performing within 1
SEM of the best-performing method are bolded (the same applies to all tables).

Method PPO∗ RS RS PBT PB2 BG-PBT
Search space Z Z J Z Z J

Ant 3853±676 6780±317 4781±515 8955±385 8954±594 10349±326

HalfCheetah 6037±236 9502±76 10340±329 8455±400 8629±746 13216±503

Humanoid 9109±987 4004±519 4652±1002 7954±437 8452±512 8894±716

Hopper 120±43 339±25 943±185 2002±254 2027±323 2381±127

Fetch 14 .0±0.2 5.2±0.4 8.6±0.2 5.5±0.8 6.6±0.7 11.3±0.6

Reacher −189 .3±43.7 −24.2±1.4 −95.2±25.3 −32.9±2.8 −26.6±2.6 −19.2±0.9

UR5e 5 .2±0.2 5.3±0.4 7.7±0.3 6.9±0.4 7.4±0.6 11.0±0.5

∗From the BRAX authors and implemented in a different framework (JAX) to ours (PyTorch)

Comparative evaluation of BG-PBT. We first perform a comparative evaluation of BG-PBT against
standard baselines in PBT-methods and the PPO baseline provided by the BRAX authors. We show
the benefit of using local BO and treating the whole RL hyperparameter space Z , by comparing
BG-PBT against PBT (Jaderberg et al., 2017), PB2 (Parker-Holder et al., 2020) and Random Search
(RS) using the default architecture in BRAX. In RS, we simply sample from the hyperparameter space

6

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Table 2: Comparison against sequential BO∗

Method BO-Z∗ BO-J ∗ BG-PBT

Ant 6975±1013 7149±507 10349±326

HalfCheetah 11202±204 10859±174 13216±503

Humanoid 9040±1303 4845±962 8894±716

Hopper 358±60 1254±154 2381±127

Fetch 13.2±0.2 11.6±0.1 11.3±0.6

Reacher −17.3±0.3 −51.7±18.3 −19.2±0.9

UR5e 9.0±0.5 6.3±1.4 11.0±0.5

∗More resources required compared to BG-PBT.

Table 3: Ablation studies
Method No TR/NAS No NAS BG-PBT

Ant 8954±594 9352±402 10349±326

HalfCheetah 8629±746 9483±626 13216±503

Humanoid 8452±512 10359±647 8894±716

Hopper 2027±323 2511±154 2381±127

Fetch 6.6±0.7 7.3±0.8 11.3±0.6

Reacher −26.6±2.6 −17.6±0.8 −19.2±0.9

UR5e 7.4±0.6 9.0±0.8 11.0±0.5

100

200

-net width

2

4

-net depth

100

200

V-net width

2

4

V-net depth

0.90

0.95

1.00
Discounting factor

10 5

10 3

10 1
Entropy cost

0 150M
10 4

10 3
Learning rate

0 150M

102

103
Batch size

0 150M

5

10

15
No. update epochs

0 150M
0.1

0.2

0.3

0.4
Clip parameter

0 150M
0

10

20
Reward scale

0 150M
5

10

15
Unroll length

Figure 4: The hyperparameter and architecture schedule discovered by BG-PBT on Ant: we plot the hyperpa-
rameters of the best-performing agent in the population averaged across 7 seeds with ± 1 SEM shaded. Gray
dashed lines denote the hyperparameter bounds.

and take the best performance found using the same compute budget as the PBT methods. Next,
we include architecture search into BG-PBT using the full space J and show significant gains in
performance compared to BG-PBT without architectures; we use random search over J as a baseline.
The optimized PPO implementation from the BRAX authors is provided as a sequential baseline. We
present the results in Table 1 and the training trajectories in Fig. 3.

We show that BG-PBT significantly outperforms the RS baselines and the existing PBT-style methods
in almost all environments considered. We also observe that RS is a surprisingly strong baseline,
performing on par or better than PBT and PB2 in HalfCheetah, Reacher, Fetch and UR5e — this
is due to a well-known failure mode in PBT-style algorithms where they may be overly greedy in
copying sub-optimal behaviors early on and then fail to sufficiently explore in weight space when the
population size is modest. BG-PBT avoids this problem by re-initializing networks each generation
and distilling, which prevents collapse to suboptimal points in weight space.

Comparison against sequential BO. We further compare against BO in the traditional sequential
setup (Table 2): for each BO iteration, the agent is trained for the full 150M timesteps before a
new hyperparameter suggestion is made. To enable BO to improve on RS, we allocate a budget of
50 evaluations, which is up to 6× more expensive than our method and even more costly in terms
of wall-clock time if vanilla, non-parallel BO is used. We implement this baseline using SMAC3
(Lindauer et al., 2022) in both the Z and J search spaces (denoted BO-Z and BO-J respectively in
Table 2). While, unsurprisingly, BO improves over the RS baseline, BG-PBT still outperforms it in a
majority of environments. One reason for this is that BG-PBT naturally discovers a dynamic schedule
of hyperparameters and architectures, which is strictly more flexible than a carefully tuned but still
static configuration – we analyze this below.

Analysis of discovered hyperparameter and architecture schedules. We present the hyperpa-
rameter and architecture schedules learned by BG-PBT in our main comparative evaluation on Ant
in Fig. 4. We find consistent trends across environments such as the decrease of learning rate and
increase in batch sizes over time, consistent to common practices in both RL (Engstrom et al., 2020)
and supervised learning, but crucially BG-PBT discovers the same without any pre-defined schedule.
We also find that different networks are favored at different stages of training, but the exact patterns
differ across environments: for Ant (Fig. 4), we find that larger networks are preferred towards the
end of training, with the policy and value network widths increasing over time: Prior work has shown
that larger networks like those we automatically find towards the end of training can be notoriously
unstable and difficult to train from scratch (Czarnecki et al., 2018; Ota et al., 2021), which further
supports our use of generational training to facilitate this.

Ablation Studies. BG-PBT improves on existing methods by using local TR-based BO (§3.1) and NAS
& distillation (§3.2). We conduct an ablation study by removing either or both components in Table 3,
where “No NAS” does not search architectures or distill but uses the default BRAX architectures, and

7

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

“No TR/NAS” further only uses a vanilla GP surrogate and is identical to PB2. We find the tailored
BO agent in §3.1 improves performance across the board. On the importance of NAS & distillation, in
all environments except for Humanoid and Reacher, BG-PBT matches or outperforms “No NAS”,
despite J being a more complicated search space and the “No NAS” baseline is conditioned on
strongly-performing default architectures. We also see a particularly large gain for HalfCheetah and
Fetch when we include architectures, demonstrating the effectiveness of the generational training and
NAS in our approach.

5 RELATED WORK

On-the-fly hyperparameter tuning. Our work improves on previous PBT (Parker-Holder et al., 2020;
Jaderberg et al., 2017; Zhang et al., 2021) style methods; in particular, we build upon Parker-Holder
et al. (2021), using a more scalable BO step, and adding architecture search with generational learning.
Dalibard & Jaderberg (2021) introduce an approach for increasing diversity in the weight space for
PBT, orthogonal to our work. There have also been non-population-based methods for dynamic
hyperparameter optimization, using bandits (Badia et al., 2020; Moskovitz et al., 2021; Parker-Holder
et al., 2020; Ball et al., 2020), gradients (Paul et al., 2019; Xu et al., 2018; Zahavy et al., 2020;
Flennerhag et al., 2021) or Evolution (Tang & Choromanski, 2020) which mostly do not search over
architectures. A notable exception is Sample-efficient Automated Deep Learning (SEARL) (Franke
et al., 2021), which adapts architectures within a PBT framework. However, Franke et al. (2021) is
designed for off-policy RL and thus especially shows the benefit of shared replay buffers for efficiency,
whereas our method is general-purpose.

Architecture search. In RL, Czarnecki et al. (2018) showed increasing agent complexity over time
could be effective, albeit with a pre-defined schedule. Miao et al. (2021) showed that DARTS (Liu
et al., 2019) could be effective in RL, finding high performing architectures on the Procgen benchmark.
Auto-Agent-Distiller (Fu et al., 2020) deals with the problem of finding optimal architectures for
compressing the model size of RL agents, and also find that using distillation between the teacher and
student networks improves stability of NAS in RL. BO has been used as a powerful tool for searching
over large architecture spaces (Wan et al., 2021; Kandasamy et al., 2018; Ru et al., 2021; White et al.,
2021; Nguyen et al., 2021b; Wan et al., 2022). Conversely, we only consider simple MLPs and the
use of spectral normalization. There has been initial effort (Izquierdo et al., 2021) combining NAS
and hyperparameter optimization in sequential settings, which is distinct to our on-the-fly approach.

Generational training and distillation. Stooke et al. (2021) recently introduced generational
training, using policy distillation to transfer knowledge between generations, accelerating training.
Our method is based on this idea, with changing generations. The use of distillation is further
supported by Igl et al. (2021) who recently used this successfully to adapt to non-stationarities in
reinforcement learning, however keeping hyperparameters and architectures fixed.

6 CONCLUSION & DISCUSSION

In this paper, we propose BG-PBT: a new algorithm that significantly increases the capabilities of PBT
methods for RL. Using recent advances in Bayesian Optimization, BG-PBT is capable of searching
over drastically larger search spaces than previous methods. Additionally, inspired by recent advances
in generational learning, we show it is also possible to efficiently learn architectures on the fly as part
of a unified algorithm. The resulting method leads to significant performance gains across the entire
BRAX environment suite, achieving high performance even in previously untested environments, and
is able to successfully handle non-stationarities present in RL (Igl et al., 2021).

We therefore believe that BG-PBT is a significant step towards training RL agents in open-endedness.
Indeed, for this to be possible it is crucial that agents never stop learning, which may require them
continuously expand and adapt their capabilities and architectures over time. For future work, we
would be interested in testing BG-PBT in more open-ended environments, for example using an
environment adversary to propose new challenges (Dennis et al., 2020; Jiang et al., 2021; Wang et al.,
2019; 2020). Furthermore, with more agents in the population, we could even envision scaling up
BG-PBT to dynamically adapt more aspects of an RL agent, including the update rules (Oh et al.,
2020) or the entire algorithm (Co-Reyes et al., 2021).

8

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

APPENDICES

A PRIMER ON GPS AND BO

Gaussian Processes In Bayesian Optimization (BO), Gaussian Processes, or GPs, act as surro-
gate models for a black-box function f which takes an input z (in our case, the hyperparameters
and/or the architecture parameters) and returns an output y = f(z) + ϵ where ϵ ∼ N (0, σ2). A
GP defines a probability distribution over functions f under the assumption that any finite subset
{(zi, f(zi)} follows a normal distribution (Rasmussen & Williams, 2006). Formally, a GP is de-
noted as f(z) ∼ GP (m (z) , k (z, z′)), where m (z) and k (z, z′) are called the mean and covariance
functions respectively, i.e. m(z) = E [f (z)] and k(z, z′) = E

[
(f (z)−m (z))(f (z′)−m (z′))T

]
.

The covariance function (kernel) k(z, z′) can be thought of as a similarity measure relating f(z)
and f(z′). There have been various proposed kernels which encode different prior beliefs about the
function f(z) (Rasmussen & Williams, 2006).

If we assume a zero mean prior m(z) = 0, to predict f∗ = f (z∗) at a new data point z∗, we have,[
f
f∗

]
∼ N

(
0,

[
K kT

∗
k∗ k∗∗

])
, (3)

where k∗∗ = k (z∗, z∗), k∗ = [k (z∗, zi)]∀i≤N , N is the number of observed points for the GP, and
K = [k (zi, zj)]∀i,j≤N . Combining Eq. (3) with the fact that p (f∗ | f) follows a univariate Gaussian
distribution N

(
µ (z∗) , σ

2 (z∗)
)
, assuming we have observed {z1, f1}, {z2, f2}, ..., {zt, ft} and

collected all past reward observations as ft = [f1, ..., ft]
⊤, to predict the reward at a new configuration

z′, the GP posterior mean and variance at z′ can be computed as:

µt(z
′) := kt(z

′)T (Kt + σ2I)−1ft (4)

σ2
t (z

′) := k(z′, z′)− kt(z
′)T (Kt + σ2I)−1kt(z

′), (5)
where Kt := {k(zi, zj)}ti,j=1 and kt := {k(zi, z′t)}ti=1.

Bayesian Optimization Bayesian optimization (BO) is a powerful sequential approach to find the
global optimum of an expensive black-box function f(z) without making use of derivatives. First,
a surrogate model (in our case, a GP as discussed above) is learned from the current observed data
Dt = {zi, yi}ti=1 to approximate the behavior of f(z). Second, an acquisition function is derived
from the surrogate model to select new data points that maximizes information about the global
optimum – a common acquisition function that we use in our paper is the Upper Confidence Bound
(UCB) (Srinivas et al., 2010) criterion which balances exploitation and exploration. Specifically, the
UCB on a new, unobserved point z′ is given by:

UCB(z′) = µt(z
′) +

√
βtσt(z

′), (6)

where µt and σt are the posterior mean and standard deviation given in Eq. 4 above and βt > 0 is a
trade-off parameter between mean and variance. At each BO iteration, we find a batch of samples that
sequentially maximizes the acquisition function above. The process is conducted iteratively until the
evaluation budget is depleted, and the global optimum is estimated based on all the sampled data.
In-depth discussions about BO beyond this brief overview can be found in recent surveys (Brochu
et al., 2010; Shahriari et al., 2016; Frazier, 2018).

B BAYESIAN OPTIMIZATION FOR PBT

In this section, we provide specific details for the modifications to CASMOPOLITAN to make it
amenable for our setup which consists of non-stationary reward and a mixed, high-dimensional search
space.

B.1 KERNEL DESIGN

We use the following time-varying kernel (Parker-Holder et al., 2021) to measure the spatiotemporal
distance between a pair of configuration vectors {z, z′} with continuous, ordinal and/or categorical

9

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

dimensions, and whose rewards are observed at timesteps {i, j}. For the most general case where all
three types of variables are involved, we have the following kernel function:

k(z, z′, i, j) =
1

2

((
kx(x,x

′) + kh(h,h
′)
)
+

(
kx(x,x

′)kh(h,h
′)
))(

(1− ω)|i−j|/2
)

(7)

where x denotes the continuous and ordinal dimensions and h denotes the categorical dimensions of
the configuration vector z, respectively, kx(·, ·) is the kernel for continuous and ordinal inputs (by
default Matérn 5/2), k(h)(·, ·) is the kernel for the categorical dimensions (by default the exponentiated
overlap kernel in Wan et al. (2021)) and ω ∈ [0, 1] controls how quickly old data is decayed and is
learned jointly during optimization of the GP log-likelihood. When the search space only contains
continuous/ordinal variables, we simply have k(z, z′, i, j) = kz(x,x

′)(1− ω)|i−j|/2, and a similar
simplification holds if the search space only contains categorical variables. We improve on Parker-
Holder et al. (2021) by directly supporting ordinal variables such as integers (for e.g. batch size) and
selecting them alongside categorical variables using interleaved acquisition optimization as opposed
to time-varying bandits which scales poorly to large discrete spaces.

B.2 PROPOSING NEW CONFIGURATIONS

As discussed in App. A, a BO agent selects new configurations by selecting configuration(s) which
maximize the acquisition function (in this case, the UCB acquisition function). This is typically
achieved via off-the-shelf first-order optimizers, which is challenging in a mixed-input space as the
discrete (ordinal and categorical) variables lack gradients and naı̈vely casting them into continuous
variables yields invalid solutions which require rounding. To address this issue, Parker-Holder et al.
(2021) select h first via time-varying bandits (using the proposed TV.EXP3.M algorithm) and then
select x by optimizing the BO acquisition function, conditioned on the chosen h. This method
scales poorly to spaces with a large number of categorical choices, as bandit problems generally
require pulling each arm at least once. Instead, we develop upon interleaved acquisition optimization
introduced in Wan et al. (2021) which unifies all variables under a single GP, and alternates between
optimization of the continuous and discrete variables:

Algorithm 2 Interleaved optimization of acq(z)
1: while not converged do
2: Continuous: Do a single step of gradient descent on the continuous dimensions.
3: Ordinal and Categorical: Conditioned on the new continuous values, do a single step of local search:

randomly select an ordinal/categorical variable and choose a different (categorical), or an adjacent
(ordinal) value, if the new value leads to an improvement in acq(·).

Compared to the approach in Wan et al. (2021), we include ordinal variables, which are optimized
alongside the categorical variables via local search during acquisition optimization but are treated
like continuous variables by the kernel. During acquisition, we define adjacent ordinals to be the
neighboring values. For example, for an integer variable with a valid range [1, 5] and current value 3,
its neighboring values are 2 and 4. This allows us to exploit the natural ordering for ordinal variables
whilst still ensuring that suggested configurations remain local and only explore valid neighboring
solutions.

B.3 SUGGESTING NEW ARCHITECTURES

At the start of each generation for the full BG-PBT method, we have to suggest a pool of new
architectures. For the first generation, we simply use random sampling across the joint space J to
fill up the initial population. For subsequent generations, we use a combination of BO and random
sampling to both leverage information already gained from the architectures and allow sufficient
exploration. For the BO, at the start of the i-th generation, we first fit a GP model only in the
architecture space Y , by using the architectures from the i − 1-th generation as the training data.
Since these network architectures are trained with different hyperparameters during the generation,
we use the best reward achieved on each of these architectures as the training targets. We then run BO
on this GP to obtain the suggestions for new architectures for the subsequent generation. In practice,
to avoid occasional instability in the distillation process, we find it beneficial to select a number of

10

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

architectures larger than B: we then start the distillation for all the agents, but use successive halving
(Karnin et al., 2013) such that only B agents survive and are distilled for the full budget allocated.
By doing so, we trade a modest increase in training steps for greatly improved stability in distillation.

B.4 DETAILS ON TRUST REGIONS

To define trust regions for our time-varying objective, we again consider the most general case
where the search space contains both categorical and continuous/ordinal dimensions. Given the
configuration z∗t = [h∗

t ,x
∗
t] = argmaxzt

(ft) with the best return at time t, we may define the trust
region centered around z∗t :

TR(z∗T) =

{
h | 1

dh

∑dh

i=1 δ(hi, h
∗
i) ≤ Lh

}
for categorical h∗

T = {h∗
i }

dh
i=1{

x | |xi − x∗
i | < ℓ̃i∏dx

i=1 ℓ̃
1
dx
i

Lx, 0 ≤ xi ≤ 1
}

for continuous or ordinal x∗
T = {x∗

i }
dx
i=1,

(8)
where δ(·, ·) is the Kronecker delta function, Lh ∈ [0, 1] is the trust region radius defined in terms of
normalized Hamming distance over the categorical variables, Lx is the trust region radius defining
a hyperrectangle over the continuous and ordinal variables, and {ℓ̃i = ℓi

1
dx

∑dx
i=1 ℓi

}dx
i=1 are the

normalized lengthscales {ℓi} learned by the GP surrogate over the continuous/ordinal dimensions.
This means that the more sensitive hyperparameters, i.e. those with smaller learned lengthscales, will
automatically be assigned smaller trust region radii.

For the restart of trust regions when either or both of the trust regions defined fall below some
pre-defined threshold, we adapt the UCB-based criterion proposed in Wan et al. (2021) to the time-
varying setting to re-initialize the population when a restart is triggered. For the i-th restart, we
consider a global, auxiliary GP model trained on a subset of observed configurations and returns
D∗

i−1 = {z∗j , f∗
j }ij=1 and denote µg(z;D

∗
i−1) and σ2

g(z;D
∗
i−1) as the posterior mean and variance

of the auxiliary GP. The new trust region center is given by the configuration z
(0)
i that maximizes

the UCB score: z(0)i = argmaxz∈Z µg(z;D
∗
i−1) +

√
βiσg(z;D

∗
i−1) where βi is the UCB trade-off

parameter. In the original CASMOPOLITAN, D∗ consists of the best configurations in all previous
restarts 1, ..., i− 1, which is invalid for the time-varying setting. Instead, we construct D∗

i−1 using
the following:

D∗
i−1 = {z∗j , µT (z

∗
j)}i=1

j=1 where z∗j = arg max
zj∈Dj

µT (zj), (9)

where Dj denotes the set of previous configurations evaluated during the j-th restart and µT (·)
denotes the posterior mean of the time-varying GP surrogate at the present timestep t = T . Thus,
instead of simply selecting the configurations of each restart that led to the highest observed reward,
we select the configurations that would have led to the highest reward if they were evaluated now,
according to the GP surrogate. Such a configuration preserves the convergence property of BG-PBT
shown in Theorem 3.1 and proven below in App. C.

C THEORETICAL GUARANTEES

C.1 BOUND ON THE MAXIMUM INFORMATION GAIN

We start by deriving the maximum information gain, which extends the result presented in Wan et al.
(2021) for the time-varying setting. Note that this result is defined over the number of local restarts I .

Theorem C.1. Let γ(I; k;V) := maxA⊆V,|A|≤I
1
2 log |I + σ−2[k(v,v′)]v,v′∈A| be the maximum

information gain achieved by sampling I points in a GP defined over a set V with a kernel k. Denote
the constant η :=

∏dh

j=1 nj . Then we have, for the time-varying mixed kernel k,

γ(I; k; [H,X]) ⪅
I

Ñ

(
ληγ(I; kx;X) + (η − 2λ) log I + σ−2

f Ñ3ω
)

(10)

where the time steps {1, ..., I} are split into into I/Ñ blocks of length Ñ , such that the function ft
does not vary significantly within each block.

11

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Proof. Following the proof used in Bogunovic et al. (2016)), we split the time steps {1, ..., I} into
I/Ñ blocks of length Ñ , such that within each block the function fi does not vary significantly. Then,
we have that the maximum information gain of the time-varying kernel Bogunovic et al. (2016)) is
bounded by

γI ≤
(

I

Ñ
+ 1

)(
γ̃Ñ + σ−2

f Ñ3ω
)

where ω ∈ [0, 1] is the forgetting-remembering trade-off parameter, and we consider the kernel
for time 1 − ktime(t, t

′) ≤ ω |t− t′|. We denote γ̃Ñ as the maximum information gain for the
time-invariant kernel counterpart in each block length of Ñ .

Next, by using the bounds for the (time-invariant) mixed kernel in Wan et al. (2021) that γ̃Ñ ≤
O
(
(λη+1−λ)γ(I; kx;X)+(η+2−2λ) log I

)
, we get the new time-varying bound γ(I; k; [H,X]) ⪅

I
Ñ

(
ληγ(I; kx;X) + (η − 2λ) log I + σ−2

f Ñ3ω
)

where we have suppressed the constant term for
simplicity.

C.2 PROOF OF THE LOCAL CONVERGENCE IN EACH TRUST REGION

Assumption C.2. The time-varying objective function ft(z) is bounded in [H,X], i.e. ∃Fl, Fu ∈ R :
∀z ∈ [H,X], Fl ≤ ft(z) ≤ Fu,∀t ∈ [1, ..., T].
Assumption C.3. Let us denote Lh

min, Lx
min and Lh

0 , L
x
0 be the minimum and initial TR lengths

for the categorical and continuous variables, respectively. Let us also denote αs as the shrink-
ing rate of the TRs. The local GP approximates ft,∀t ≤ T accurately within any TR with
length Lx ≤ max

(
Lx
min/αs, L

x
0(⌈(Lh

min + 1)/αs⌉ − 1)/Lh
0

)
and Lh ≤ max

(
⌈(Lh

min + 1)/αs⌉ −
1, ⌈Lh

0L
x
min/(αsL

x
0)⌉

)
.

Theorem C.4. Given Assumptions C.2 & C.3, after a restart, BG-PBT converges to a local maxima
after a finite number of iterations or converges to the global maximum.

Proof. We may apply the same proof by contradiction used in Wan et al. (2021) for our time-varying
setting, given the assumptions C.2 and C.3. For completeness, we summarize it below.

We show that our algorithm converges to (1) to a global maximum of f (if does not terminate after
a finite number of iterations) or (2) a local maxima of f (if terminated after a finite number of
iterations).

Case 1: when t → ∞ and the TR lengths Lh and Lx have not shrunk below Lh
min and Lx

min. From
the algorithm description, the TR is shrunk after fail tol consecutive failures. Thus, if after
Nmin = fail tol×m iterations where m = max(⌈logαe

(Lh
0/L

h
min)⌉, ⌈logαe

(Lx
0/L

x
min)⌉), there

is no success, BG-PBT terminates. This means, for case (1) to occur, BG-PBT needs to have at
least one improvement per Nmin iterations. Let consider the increasing series {f(zk)}∞k=1 where
f(zk) = maxt=(k−1)Nmin+1,...,kNmin

{f(zt)} and f(zi) is the function value at iteration t. Thus,
using the monotone convergence theorem (Bibby, 1974), this series converges to the global maximum
of the objective function f given that f(z) is bounded (Assumption C.2).

Case 2: when BG-PBT terminates after a finite number of iterations, BG-PBT converges to a local
maxima of f(z) given Assumption C.3. Let us remind that BG-PBT terminates when either the
continuous TR length ≤ Lx

min or the categorical TR length ≤ Lh
min.

Let Ls be the largest TR length that after being shrunk, the algorithm terminates, i.e., ⌊αsLs⌋ ≤ Lh
min.1

Due to ⌊αsLs⌋ ≤ αsLs < ⌊αsLs⌋+ 1, we have Ls < (Lh
min + 1)/αs. Because Ls is an integer, we

finally have Ls ≤ ⌈(Lh
min + 1)/αs⌉ − 1. This means that Ls = ⌈(Lh

min + 1)/αs⌉ − 1 is the largest
TR length that after being shrunk, the algorithm terminates. We may apply a similar argument for the
largest TR length (before terminating) for the continuous Lx

min/αs.

In our mixed space setting, we have two separate trust regions for categorical and continuous variables.
When one of the TR reaches its terminating threshold (Lx

min/αs or ⌈(Lh
min+1)/αs⌉−1), the length of

the other one is (⌈Lh
0L

x
min/(αsL

x
0)⌉

)
or Lx

0(⌈(Lh
min + 1)/αs⌉ − 1)/Lh

0). Based on Assumption C.3,

1The operator ⌊.⌋ denotes the floor function

12

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

the GP can accurately fit a TR with continuous length Lx ≤ max
(
Lx
min/αs, L

x
0(⌈(Lh

min + 1)/αs⌉ −
1)/Lh

0

)
and Lh ≤ max

(
⌈(Lh

min + 1)/αs⌉ − 1, ⌈Lh
0L

x
min/(αsL

x
0)⌉

)
. Thus, if the current TR center

is not a local maxima, BG-PBT can find a new data point whose function value is larger than the
function value of current TR center. This process occurs iteratively until a local maxima is reached,
and BG-PBT terminates.

C.3 PROOF OF THEOREM 3.1

Proof. Under the time-varying setting, at the i-th restart, we first fit the global time-varying GP model
on a subset of data D∗

i−1 = {z∗j , f(z∗j)}
i−1
j=1, where z∗j is the local maxima found after the j-th restart,

or, a random data point, if the found local maxima after the j-th restart is same as in the previous
restart.

Let z∗∗i = argmax∀z∈[H,X] ft(z)
2 be the global optimum location at time step i. Let µgl(z;D

∗
i−1)

and σ2
gl(z;D

∗
i−1) be the posterior mean and variance of the global GP learned from D∗

i−1. Then, at

the i-th restart, we select the following location z
(0)
i as the initial centre of the new TR:

z
(0)
i = arg max

z∈[H,X]
µgl(z;D

∗
i−1) +

√
βiσgl(z;D

∗
i−1),

where βi is the trade-off parameter in PB2 (Parker-Holder et al., 2020).

We follow Wan et al. (2021) to assume that at the i-th restart, there exists a function gi(z): (a) lies
in the RKHS Gk([H,X]) and ∥gi∥2k ≤ B, (b) shares the same global maximum z∗ with f , and, (c)
passes through all the local maxima of f and any data point z′ in D∗

i−1 ∪ {z(0)i } which are not local
maxima (i.e. gi(z′) = f(z′),∀z′ ∈ D∗

i−1 ∪ {z(0)i }). In other words, the function gi(z) is a function
that passes through the maxima of f whilst lying in the RKHS Gk([H,X]) and satisfying ∥gi∥2k ≤ B.

Using βi defined in Theorem 2 in Srinivas et al. (2010) for function gi, ∀i, ∀z ∈ [H,X], we have,

Pr{|µgl(z;D
∗
i−1)− gi(z)| ≤

√
βiσgl(z;D

∗
i−1)|} ≥ 1− ζ. (11)

In particular, with probability 1− ζ, we have that,

µgl(z
(0)
i ;D∗

i−1) +
√
βiσgl(z

(0)
i ;D∗

i−1) ≥ µgl(z
∗∗
i ;D∗

i−1) +
√
βiσgl(z

∗∗
i ;D∗

i−1) ≥ gi(z
∗∗
i). (12)

Thus, ∀i, with probability 1− ζ we have

gi(z
∗∗
i)− gi(z

(0)
i) ≤ µgl(z

(0)
i ;D∗

i−1) +
√
βiσgl(z

(0)
i ;D∗

i−1)− gi(z
(0)
i) ≤ 2

√
βiσgl(z

(0)
i ;D∗

i−1).

Since gi(z
(0)
i) = f(z

(0)
i), and gi(z

∗∗
i) = f(z∗∗i), hence, fi(z∗∗i)− f(z

(0)
i) ≤ 2

√
βiσgl(z

(0)
i ;D∗

i−1)
with probability 1 − ζ. With z∗i as the local maxima found by BG-PBT at the i-th restart. As
f(z

(0)
i) ≤ f(z∗i), we have,

fi(z
∗∗
i)− fi(z

∗
i) ≤ 2

√
βiσgl(z

(0)
i ;D∗

i−1). (13)

Let zi,b be the point chosen by our algorithm at iteration i and batch element b, we follow Parker-
Holder et al. (2020) to define the time-varying instantaneous regret as ri,b = fi(z

∗∗
i)−fi(zi,b). Then,

the time-varying batch instantaneous regret over B points is as follows

rBi = min
b≤B

ri,b = min
b≤B

fi(z
∗∗
i)− fi(zi,b),∀b ≤ B (14)

Using Equation (13) and Theorem 2 in Parker-Holder et al. (2020), we bound the cumulative batch
regret over I restarts and B parallel agents

RIB =

I∑
i=1

rBi ≤
√

C1IβI

B
γ(IB; k; [H,X]) + 2 (15)

2Notationally, at the i-th restart, z∗∗i is the global optimum location while z∗i is the local maxima found by
BG-PBT.

13

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

where C1 = 32/ log(1+σ2
f), βI is the explore-exploit hyperparameter defined in Theorem 2 in Parker-

Holder et al. (2020) and γ(IB; k; [H,X]) ⪅ IB
Ñ

(
ληγ(I; kx;X) + (η − 2λ) log IB + σ−2

f Ñ3ω
)

is
the maximum information gain defined over the mixed space of categorical and continuous [H,X] in
the time-varying setting defined in Theorem C.1.

We note that given Theorem 3.1, if we use the squared exponential kernel over the continuous

variables, γ(ÑB; k;X) = O(
[
log ÑB

]d+1

) (Srinivas et al., 2010), the bound becomes RIB ≤√
C1I2βI

Ñ

(
λη

[
log ÑB

]d+1

+ (η − 2λ) log IB + σ−2
f Ñ3ω

)
+ 2 where Ñ ≤ I , B ≪ T and

ω ∈ [0, 1].

D FULL PPO HYPERPARAMETER SEARCH SPACE

We list the full search space for PPO in Table 4. The architecture and hyperparameters form the full
15-dimensional mixed search space. For methods that do not search in the architecture space (e.g.,
PBT, PB2, random search baselines in Z , and the partial BG-PBT in Ablation Studies that uses §3.1
only), the last 6 dimensions are fixed to the default architecture used in BRAX: a policy network with
4 hidden layers each containing 32 neurons, and a value network with 5 hidden layers each containing
256 neurons. Spectral normalization is disabled in both networks.

Table 4: The hyperparameters for PPO form a 15-dimensional mixed search space.

Hyperparameter Type Range

learning rate log-uniform [1e-4, 1e-3]
discount factor (γ) uniform [0.9, 0.9999]
entropy coefficient (c) log-uniform [1e-6, 1e-1]
unroll length integer [5, 15]
reward scaling uniform [0.05, 20]
batch size integer (power of 2) [32, 1024]
no. updates per epoch integer [2, 16]
GAE parameter (λ) uniform [0.9, 1]
clipping parameter (ϵ) uniform [0.1, 0.4]
π network width integer (power of 2) [32, 256]
π network depth integer [1, 5]
π use spectral norm binary [True, False]
V network width integer (power of 2) [32, 256]
V network depth integer [1, 5]
V use spectral norm binary [True, False]

Table 5: Hyperparameters for BG-PBT inherited from CASMOPOLITAN

Hyperparameter Value Description

TR multiplier 1.5 multiplicative factor for each expansion/shrinking of the TR.
succ tol 3 number of consecutive successes before expanding the TR
fail tol 10 number of consecutive failures before shrinking the TR
Min. continuous TR radius 0.15 min. TR of the continuous/ordinal variables before restarting
Min. categorical TR radius 0.1 min. TR of the categorical variables before restarting
Init. continuous TR radius 0.4 initial TR of the continuous/ordinal variables
Init. categorical TR radius 1 initial TR of the categorical variables

14

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

E IMPLEMENTATION DETAILS

We list the hyperparameters for our method BG-PBT in Table 6. Since BG-PBT uses CASMOPOLITAN
BO agent, it also inherits hyperparameters from Wan et al. (2021) which are used in all our experiments
(Table 5. We refer the readers to App. B.5 of Wan et al. (2021) which examines the sensitivity of
these introduced hyperparameters.

Note that in our current instantiation, we use αV = 0 so we only transfer policy networks across
generations, since we found the value function was less informative. We linearly anneal the co-
efficients for the supervised loss αV and απ from their original value to 0 over the course of the
distillation phase. This means we smoothly transition to a pure RL loss over the initial part of each
new generation.

Table 6: Hyperparameters for BG-PBT.

Hyperparameter Value Description

B 8 Population size (number of parallel agents)
q 12.5 % agents replaced each iteration (q)
tmax 150M Total timesteps
αRL 1 RL weight
αV 0 Value function weight
απ 5 Policy weight

Our method is built using the PyTorch version of the BRAX (Freeman et al., 2021) codebase at
https://github.com/google/brax/tree/main/brax. The codebase is open-sourced
under the Apache 2.0 License. The BRAX environments are often subject to change, for full
transparency, our evaluation is performed using the 0.10.0 version of the codebase. We ran all our
experiments on Nvidia Tesla V100 GPUs and used a single GPU for all experiments.

We note that the PPO baseline used in Table 1 is implemented in a different framework (JAX) to
ours, which has some differences in network weight initialization. The hyperparameters for the PPO
baseline are tuned via grid-search on a reduced hyperparameter search space (Freeman et al., 2021)
Since no hyperparameters were provided for the Hopper environment, we use the default in Freeman
et al. (2021).

For all experiments, we use Tmax = 150M , population size (number of parallel agents) B = 8 and
q = 12.5 (percentage of the agents that are replaced at each PBT iteration – in this case, at each
iteration, the worst-performing agent is replaced). For all environments except for Humanoid and
Hopper, we use a fixed tready = 1M . To avoid excessive sensitivity to initialization, at the beginning
of training for all PBT-based methods (PB2, PBT and BG-PBT) we initialize with 24 agents and train
for tready steps and choose the top-B agents as the initializing population. For the full BG-PBT, to
trigger distillations and hence a new generation, we set a patience of 20 (i.e., if the reward fails to
improve after 20 consecutive tready steps, a new generation is started). We also note that starting
new generations can be desirable even if the training has not stalled, and therefore have a second
criterion to also start a new generation after 40M steps, and so a new generation is started when
either criterion is met (40M steps since last distillation, or 20 consecutive failures in improving the
reward). For distillation at the start of every generation (all except initial), at each generation, we
also start distillation with 24 agents (4 suggested by BO and the rest from random sampling. See
App. B.3 for details) and use successive halving to only distill B of them using the full budget of
30M steps with the rest terminated early. For the Humanoid and Hopper environments, we note
that PBT-style methods performed poorly across the board: in particular, on Hopper we notice that
agents often learn a sub-optimal mode where it only learns to stand up (hence collecting the reward
associating with simply surviving) but not to move. On Humanoid, we find that agents often learn
a mode where the humanoid does not use its knee joint – in both cases, the agents seem to learn
stable but sub-optimal modes that use fewer degrees-of-freedom than it is capable of exploiting. This
behavior was ameliorated by linearly annealing the interval tready from 5M to 1M as a function of
timesteps to not encourage myopic behavior at the start. Since the increase in tready at the initial
stage of training will lead to more exploratory behaviors, we increase the threshold before triggering
a new generation at 60M for these two environments.

15

https://github.com/google/brax/tree/main/brax

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

REFERENCES

Marcin Andrychowicz, Anton Raichuk, Piotr Stańczyk, Manu Orsini, Sertan Girgin, Raphaël Marinier,
Leonard Hussenot, Matthieu Geist, Olivier Pietquin, Marcin Michalski, Sylvain Gelly, and Olivier
Bachem. What matters for on-policy deep actor-critic methods? a large-scale study. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=nIAxjsniDzg.

Adriá Puigdoménech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann, Alex Vitvitskyi,
Zhaohan Daniel Guo, and Charles Blundell. Agent57: Outperforming the atari human benchmark.
In Proceedings of the 37th International Conference on Machine Learning, ICML, 13-18 July,
Virtual Event, volume 119 of Proceedings of Machine Learning Research, pp. 507–517. PMLR,
2020. URL http://proceedings.mlr.press/v119/badia20a.html.

Philip Ball, Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts.
Ready policy one: World building through active learning. In Proceedings of the 37th International
Conference on Machine Learning, ICML, 2020.

John Bibby. Axiomatisations of the average and a further generalisation of monotonic sequences.
Glasgow Mathematical Journal, 15(1):63–65, 1974.

Ilija Bogunovic, Jonathan Scarlett, and Volkan Cevher. Time-varying gaussian process bandit
optimization. In Artificial Intelligence and Statistics, pp. 314–323, 2016.

Eric Brochu, Vlad M. Cora, and Nando de Freitas. A tutorial on bayesian optimization of expensive
cost functions, with application to active user modeling and hierarchical reinforcement learning.
ArXiv, abs/1012.2599, 2010.

Yutian Chen, Aja Huang, Ziyu Wang, Ioannis Antonoglou, Julian Schrittwieser, David Silver, and
Nando de Freitas. Bayesian optimization in AlphaGo. CoRR, abs/1812.06855, 2018.

John D Co-Reyes, Yingjie Miao, Daiyi Peng, Esteban Real, Quoc V Le, Sergey Levine, Honglak
Lee, and Aleksandra Faust. Evolving reinforcement learning algorithms. In International Confer-
ence on Learning Representations, 2021. URL https://openreview.net/forum?id=
0XXpJ4OtjW.

Karl Cobbe, Oleg Klimov, Chris Hesse, Taehoon Kim, and John Schulman. Quantifying generalization
in reinforcement learning. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), Proceedings
of the 36th International Conference on Machine Learning, volume 97 of Proceedings of Machine
Learning Research, pp. 1282–1289. PMLR, 09–15 Jun 2019. URL https://proceedings.
mlr.press/v97/cobbe19a.html.

Karl Cobbe, Christopher Hesse, Jacob Hilton, and John Schulman. Leveraging procedural generation
to benchmark reinforcement learning, 2020.

Wojciech Czarnecki, Siddhant Jayakumar, Max Jaderberg, Leonard Hasenclever, Yee Whye Teh,
Nicolas Heess, Simon Osindero, and Razvan Pascanu. Mix & match agent curricula for rein-
forcement learning. In Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 1087–1095. PMLR, 10–15 Jul 2018.

Valentin Dalibard and Max Jaderberg. Faster improvement rate population based training. CoRR,
abs/2109.13800, 2021.

Michael Dennis, Natasha Jaques, Eugene Vinitsky, Alexandre M. Bayen, Stuart Russell, Andrew
Critch, and Sergey Levine. Emergent complexity and zero-shot transfer via unsupervised en-
vironment design. In Advances in Neural Information Processing Systems 33: December 6-
12, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
985e9a46e10005356bbaf194249f6856-Abstract.html.

Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph,
and Aleksander Madry. Implementation matters in deep RL: A case study on PPO and TRPO. In 8th
International Conference on Learning Representations, ICLR, Addis Ababa, Ethiopia, April 26-30.
OpenReview.net, 2020. URL https://openreview.net/forum?id=r1etN1rtPB.

16

https://openreview.net/forum?id=nIAxjsniDzg
https://openreview.net/forum?id=nIAxjsniDzg
http://proceedings.mlr.press/v119/badia20a.html
https://openreview.net/forum?id=0XXpJ4OtjW
https://openreview.net/forum?id=0XXpJ4OtjW
https://proceedings.mlr.press/v97/cobbe19a.html
https://proceedings.mlr.press/v97/cobbe19a.html
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/985e9a46e10005356bbaf194249f6856-Abstract.html
https://openreview.net/forum?id=r1etN1rtPB

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek. Scalable
global optimization via local bayesian optimization. Advances in Neural Information Processing
Systems, 32, 2019.

Sebastian Flennerhag, Yannick Schroecker, Tom Zahavy, Hado van Hasselt, David Silver, and
Satinder Singh. Bootstrapped meta-learning. In arxiv, 2021.

Jörg KH Franke, Gregor Koehler, André Biedenkapp, and Frank Hutter. Sample-efficient automated
deep reinforcement learning. In International Conference on Learning Representations, 2021.

Peter I Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax - a differentiable physics engine for large scale rigid body simulation, 2021. URL http:
//github.com/google/brax.

Yonggan Fu, Zhongzhi Yu, Yongan Zhang, and Yingyan Lin. Auto-agent-distiller: Towards efficient
deep reinforcement learning agents via neural architecture search. arXiv preprint arXiv:2012.13091,
2020.

Hiroki Furuta, Tatsuya Matsushima, Tadashi Kozuno, Yutaka Matsuo, Sergey Levine, Ofir Nachum,
and Shixiang Shane Gu. Policy information capacity: Information-theoretic measure for task
complexity in deep reinforcement learning. In International Conference on Machine Learning,
2021.

Peter Henderson, Riashat Islam, Philip Bachman, Joelle Pineau, Doina Precup, and David Meger.
Deep reinforcement learning that matters. In Proceedings of the Thirty-Second AAAI Conference
on Artificial Intelligence, (AAAI), pp. 3207–3214. AAAI Press, 2018. URL https://www.
aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669.

Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and Shimon Whiteson.
Transient non-stationarity and generalisation in deep reinforcement learning. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=Qun8fv4qSby.

Sergio Izquierdo, Julia Guerrero-Viu, Sven Hauns, Guilherme Miotto, Simon Schrodi, André
Biedenkapp, Thomas Elsken, Difan Deng, Marius Lindauer, and Frank Hutter. Bag of base-
lines for multi-objective joint neural architecture search and hyperparameter optimization. In 8th
ICML Workshop on Automated Machine Learning (AutoML), 2021.

Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, Jeff Donahue, Ali
Razavi, Oriol Vinyals, Tim Green, Iain Dunning, Karen Simonyan, Chrisantha Fernando, and
Koray Kavukcuoglu. Population based training of neural networks. CoRR, abs/1711.09846, 2017.

Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever, Antonio Garcia
Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Morcos, Avraham Ruderman, Nico-
las Sonnerat, Tim Green, Louise Deason, Joel Z. Leibo, David Silver, Demis Hassabis, Koray
Kavukcuoglu, and Thore Graepel. Human-level performance in 3d multiplayer games with
population-based reinforcement learning. Science, 364(6443):859–865, 2019.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparam-
eter optimization. In Arthur Gretton and Christian C. Robert (eds.), Proceedings of the 19th
International Conference on Artificial Intelligence and Statistics, volume 51 of Proceedings
of Machine Learning Research, pp. 240–248, Cadiz, Spain, 09–11 May 2016. PMLR. URL
https://proceedings.mlr.press/v51/jamieson16.html.

Minqi Jiang, Michael Dennis, Jack Parker-Holder, Jakob Foerster, Edward Grefenstette, and Tim
Rocktäschel. Replay-guided adversarial environment design. In Advances in Neural Information
Processing Systems. 2021.

17

http://github.com/google/brax
http://github.com/google/brax
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://www.aaai.org/ocs/index.php/AAAI/AAAI18/paper/view/16669
https://openreview.net/forum?id=Qun8fv4qSby
https://openreview.net/forum?id=Qun8fv4qSby
https://proceedings.mlr.press/v51/jamieson16.html

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Dmitry Kalashnikov, Alex Irpan, Peter Pastor, Julian Ibarz, Alexander Herzog, Eric Jang, Deirdre
Quillen, Ethan Holly, Mrinal Kalakrishnan, Vincent Vanhoucke, and Sergey Levine. Scalable
deep reinforcement learning for vision-based robotic manipulation. In Aude Billard, Anca Dragan,
Jan Peters, and Jun Morimoto (eds.), Proceedings of The 2nd Conference on Robot Learning,
volume 87 of Proceedings of Machine Learning Research, pp. 651–673. PMLR, 29–31 Oct 2018.
URL https://proceedings.mlr.press/v87/kalashnikov18a.html.

Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric P Xing.
Neural architecture search with bayesian optimisation and optimal transport. Advances in neural
information processing systems, 31, 2018.

Zohar Karnin, Tomer Koren, and Oren Somekh. Almost optimal exploration in multi-armed bandits.
In Sanjoy Dasgupta and David McAllester (eds.), Proceedings of the 30th International Conference
on Machine Learning, volume 28 of Proceedings of Machine Learning Research, pp. 1238–
1246, Atlanta, Georgia, USA, 17–19 Jun 2013. PMLR. URL https://proceedings.mlr.
press/v28/karnin13.html.

Marius Lindauer, Katharina Eggensperger, Matthias Feurer, André Biedenkapp, Difan Deng, Carolin
Benjamins, Tim Ruhkopf, René Sass, and Frank Hutter. Smac3: A versatile bayesian optimization
package for hyperparameter optimization. Journal of Machine Learning Research, 23(54):1–9,
2022.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. DARTS: Differentiable architecture search. In
International Conference on Learning Representations, 2019.

Siqi Liu, Guy Lever, Zhe Wang, Josh Merel, S. M. Ali Eslami, Daniel Hennes, Wojciech M. Czarnecki,
Yuval Tassa, Shayegan Omidshafiei, Abbas Abdolmaleki, Noah Y. Siegel, Leonard Hasenclever,
Luke Marris, Saran Tunyasuvunakool, H. Francis Song, Markus Wulfmeier, Paul Muller, Tuomas
Haarnoja, Brendan D. Tracey, Karl Tuyls, Thore Graepel, and Nicolas Heess. From motor control
to team play in simulated humanoid football. CoRR, abs/2105.12196, 2021.

Yingjie Miao, Xingyou Song, Daiyi Peng, Summer Yue, Eugene Brevdo, and Aleksandra Faust.
RL-DARTS: differentiable architecture search for reinforcement learning. CoRR, abs/2106.02229,
2021. URL https://arxiv.org/abs/2106.02229.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin A. Riedmiller. Playing atari with deep reinforcement learning. CoRR,
abs/1312.5602, 2013.

Ted Moskovitz, Jack Parker-Holder, Aldo Pacchiano, and Michael Arbel. Deep reinforcement
learning with dynamic optimism. In Advances in Neural Information Processing Systems. 2021.

V Nguyen, SB Orbell, Dominic T Lennon, Hyungil Moon, Florian Vigneau, Leon C Camenzind, Liuqi
Yu, Dominik M Zumbühl, G Andrew D Briggs, Michael A Osborne, et al. Deep reinforcement
learning for efficient measurement of quantum devices. npj Quantum Information, 7(1):1–9, 2021a.

Vu Nguyen, Tam Le, Makoto Yamada, and Michael A Osborne. Optimal transport kernels for
sequential and parallel neural architecture search. In International Conference on Machine
Learning, pp. 8084–8095. PMLR, 2021b.

Junhyuk Oh, Matteo Hessel, Wojciech M. Czarnecki, Zhongwen Xu, Hado van Has-
selt, Satinder Singh, and David Silver. Discovering reinforcement learning algo-
rithms. In Advances in Neural Information Processing Systems 33: Annual Confer-
ence on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
0b96d81f0494fde5428c7aea243c9157-Abstract.html.

Kei Ota, Devesh K. Jha, and Asako Kanezaki. Training larger networks for deep reinforcement
learning, 2021.

Daniel Park, Jascha Sohl-Dickstein, Quoc Le, and Samuel Smith. The effect of network width
on stochastic gradient descent and generalization: an empirical study. In Kamalika Chaudhuri
and Ruslan Salakhutdinov (eds.), Proceedings of the 36th International Conference on Machine

18

https://proceedings.mlr.press/v87/kalashnikov18a.html
https://proceedings.mlr.press/v28/karnin13.html
https://proceedings.mlr.press/v28/karnin13.html
https://arxiv.org/abs/2106.02229
https://proceedings.neurips.cc/paper/2020/hash/0b96d81f0494fde5428c7aea243c9157-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/0b96d81f0494fde5428c7aea243c9157-Abstract.html

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Learning, volume 97 of Proceedings of Machine Learning Research, pp. 5042–5051. PMLR,
09–15 Jun 2019. URL https://proceedings.mlr.press/v97/park19b.html.

Jack Parker-Holder, Vu Nguyen, and Stephen J Roberts. Provably efficient online hyperparameter
optimization with population-based bandits. In H. Larochelle, M. Ranzato, R. Hadsell, M. F.
Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems, volume 33, pp.
17200–17211. Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/
paper/2020/file/c7af0926b294e47e52e46cfebe173f20-Paper.pdf.

Jack Parker-Holder, Aldo Pacchiano, Krzysztof Choromanski, and Stephen Roberts. Effective diver-
sity in population-based reinforcement learning. In Advances in Neural Information Processing
Systems 33. 2020.

Jack Parker-Holder, Vu Nguyen, Shaan Desai, and S Roberts. Tuning mixed input hyperparameters
on the fly for efficient population based autoRL. In A. Beygelzimer, Y. Dauphin, P. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, 2021. URL
https://openreview.net/forum?id=no-Jsrx9ytl.

Jack Parker-Holder, Raghu Rajan, Xingyou Song, André Biedenkapp, Yingjie Miao, Theresa Eimer,
Baohe Zhang, Vu Nguyen, Roberto Calandra, Aleksandra Faust, Frank Hutter, and Marius Lindauer.
Automated reinforcement learning (autorl): A survey and open problems. CoRR, abs/2201.03916,
2022.

Supratik Paul, Vitaly Kurin, and Shimon Whiteson. Fast efficient hyperparameter tuning for policy
gradient methods. In Advances in Neural Information Processing Systems, volume 32, 2019.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006.

Binxin Ru, Xingchen Wan, Xiaowen Dong, and Michael Osborne. Interpretable neural architecture
search via bayesian optimisation with weisfeiler-lehman kernels. International Conference on
Learning Representations, 2021.

John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz. Trust region
policy optimization. In Francis Bach and David Blei (eds.), Proceedings of the 32nd International
Conference on Machine Learning, volume 37 of Proceedings of Machine Learning Research,
pp. 1889–1897, Lille, France, 07–09 Jul 2015. PMLR. URL https://proceedings.mlr.
press/v37/schulman15.html.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms, 2017.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and Nando de Freitas. Taking the
human out of the loop: A review of Bayesian optimization. Proceedings of the IEEE, 104(1):
148–175, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas baker, Matthew Lai, Adrian Bolton, Yutian Chen, Timothy P. Lillicrap, Fan
Hui, L. Sifre, George van den Driessche, Thore Graepel, and Demis Hassabis. Mastering the game
of go without human knowledge. Nature, 550:354–359, 2017.

David Silver, Satinder Singh, Doina Precup, and Richard S. Sutton. Reward is enough. Artificial
Intelligence, 299:103535, 2021. ISSN 0004-3702. doi: https://doi.org/10.1016/j.artint.2021.
103535.

Niranjan Srinivas, Andreas Krause, Sham Kakade, and Matthias Seeger. Gaussian process opti-
mization in the bandit setting: No regret and experimental design. In Proceedings of the 27th
International Conference on Machine Learning, pp. 1015–1022, 2010.

Adam Stooke, Anuj Mahajan, Catarina Barros, Charlie Deck, Jakob Bauer, Jakub Sygnowski,
Maja Trebacz, Max Jaderberg, Michaël Mathieu, Nat McAleese, Nathalie Bradley-Schmieg,
Nathaniel Wong, Nicolas Porcel, Roberta Raileanu, Steph Hughes-Fitt, Valentin Dalibard, and
Wojciech Marian Czarnecki. Open-ended learning leads to generally capable agents. arXiv preprint
arXiv:2107.12808, 2021.

19

https://proceedings.mlr.press/v97/park19b.html
https://proceedings.neurips.cc/paper/2020/file/c7af0926b294e47e52e46cfebe173f20-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/c7af0926b294e47e52e46cfebe173f20-Paper.pdf
https://openreview.net/forum?id=no-Jsrx9ytl
https://proceedings.mlr.press/v37/schulman15.html
https://proceedings.mlr.press/v37/schulman15.html

Published at the Workshop on Agent Learning in Open-Endedness (ALOE) at ICLR 2022

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press,
second edition, 2018.

Yunhao Tang and Krzysztof Choromanski. Online hyper-parameter tuning in off-policy learning
via evolutionary strategies. CoRR, abs/2006.07554, 2020. URL https://arxiv.org/abs/
2006.07554.

Oriol Vinyals, Igor Babuschkin, Wojciech M. Czarnecki, Michaël Mathieu, Andrew Dudzik, Juny-
oung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh, Dan
Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, L. Sifre, Trevor Cai, John P. Agapiou, Max
Jaderberg, Alexander Sasha Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David
Budden, Yury Sulsky, James Molloy, Tom Le Paine, Caglar Gulcehre, Ziyun Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney, Oliver Smith, Tom
Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps, and David Silver.
Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, pp. 1–5, 2019.

Xingchen Wan, Vu Nguyen, Huong Ha, Binxin Ru, Cong Lu, and Michael A. Osborne. Think global
and act local: Bayesian optimisation over high-dimensional categorical and mixed search spaces. In
Marina Meila and Tong Zhang (eds.), Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pp. 10663–10674. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/wan21b.html.

Xingchen Wan, Binxin Ru, Pedro M Esparança, and Fabio Maria Carlucci. Approximate neural
architecture search via operation distribution learning. In Proceedings of the IEEE/CVF Winter
Conference on Applications of Computer Vision, pp. 2377–2386, 2022.

Rui Wang, Joel Lehman, Jeff Clune, and Kenneth O. Stanley. Paired open-ended trailblazer (poet):
Endlessly generating increasingly complex and diverse learning environments and their solutions.
ArXiv, abs/1901.01753, 2019.

Rui Wang, Joel Lehman, Aditya Rawal, Jiale Zhi, Yulun Li, Jeff Clune, and Kenneth O. Stanley.
Enhanced poet: Open-ended reinforcement learning through unbounded invention of learning
challenges and their solutions. In ICML, 2020.

Colin White, Willie Neiswanger, and Yash Savani. Bananas: Bayesian optimization with neural
architectures for neural architecture search. AAAI, 1(2):4, 2021.

Jie Xu, Miles Macklin, Viktor Makoviychuk, Yashraj Narang, Animesh Garg, Fabio Ramos, and Woj-
ciech Matusik. Accelerated policy learning with parallel differentiable simulation. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=ZSKRQMvttc.

Zhongwen Xu, Hado van Hasselt, and David Silver. Meta-gradient reinforcement learning. In
Advances in Neural Information Processing Systems 31: NeurIPS, December 3-8, Montréal,
Canada, pp. 2402–2413, 2018. URL https://proceedings.neurips.cc/paper/
2018/hash/2715518c875999308842e3455eda2fe3-Abstract.html.

Ya-xiang Yuan. A review of trust region algorithms for optimization. ICM99: Proceedings of the
Fourth International Congress on Industrial and Applied Mathematics, 09 1999.

Tom Zahavy, Zhongwen Xu, Vivek Veeriah, Matteo Hessel, Junhyuk Oh, Hado van Hasselt, David
Silver, and Satinder Singh. A self-tuning actor-critic algorithm. In Advances in Neural Information
Processing Systems, 2020.

Baohe Zhang, Raghu Rajan, Luis Pineda, Nathan Lambert, André Biedenkapp, Kurtland Chua,
Frank Hutter, and Roberto Calandra. On the importance of hyperparameter optimization for
model-based reinforcement learning. In Proceedings of The 24th International Conference on
Artificial Intelligence and Statistics, 2021.

20

https://arxiv.org/abs/2006.07554
https://arxiv.org/abs/2006.07554
https://proceedings.mlr.press/v139/wan21b.html
https://openreview.net/forum?id=ZSKRQMvttc
https://openreview.net/forum?id=ZSKRQMvttc
https://proceedings.neurips.cc/paper/2018/hash/2715518c875999308842e3455eda2fe3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/2715518c875999308842e3455eda2fe3-Abstract.html

	Introduction
	Preliminaries
	Bayesian Generational Population-Based Training (BG-PBT)
	High-dimensional BO agents in mixed-input configuration space for PBT
	Adapting architectures on the fly

	Experiments
	Related Work
	Conclusion & Discussion
	Primer on GPs and BO
	Bayesian Optimization for PBT
	Kernel design
	Proposing new configurations
	Suggesting new architectures
	Details on Trust Regions

	Theoretical Guarantees
	Bound on the maximum information gain
	Proof of the Local Convergence in Each Trust Region
	Proof of Theorem 3.1

	Full PPO Hyperparameter Search Space
	Implementation Details

