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Abstract

Bayesian optimization (BO) is a popular method
for optimizing expensive-to-evaluate black-box
functions. BO budgets are typically given in it-
erations, which implicitly assumes each evaluation
has the same cost. In fact, in many BO applica-
tions, evaluation costs vary significantly in differ-
ent regions of the search space. In hyperparameter
optimization, the time spent on neural network
training increases with layer size; in clinical tri-
als, the monetary cost of drug compounds vary;
and in optimal control, control actions have differ-
ing complexities. Cost-constrained BO measures
convergence with alternative cost metrics such as
time, money, or energy, for which the sample ef-
ficiency of standard BO methods is ill-suited. For
cost-constrained BO, cost efficiency is far more
important than sample efficiency. In this paper, we
formulate cost-constrained BO as a constrained
Markov decision process (CMDP), and develop
an efficient rollout approximation to the optimal
CMDP policy that takes both the cost and future
iterations into account. We validate our method on
a collection of hyperparameter optimization prob-
lems as well as a sensor set selection application.

1 INTRODUCTION

Bayesian optimization (BO) is a class of methods for global
optimization of expensive black-box functions. In BO, a
probabilistic surrogate model is used to approximate the ob-
jective and future evaluations are selected via an acquisition
function. BO has been successfully applied to applications
such as robotic gait control [Calandra et al., 2016], sensor
set selection [Garnett et al., 2010], and neural network hy-
perparameter tuning [Snoek et al., 2012, Turner et al., 2021].
BO is favored for these tasks because of its sample-efficient

nature. Achieving this sample-efficiency requires BO to
balance exploration and exploitation. However, standard
acquisition functions such as expected improvement (EI)
are often too greedy in practice. As a result, they perform
poorly on multimodal problems [Hernández-Lobato et al.,
2014] and have provably sub-optimal performance in certain
settings, e.g., bandit problems [Srinivas et al., 2010]. A key
research goal in BO is developing less greedy acquisition
functions [Shahriari et al., 2016]. Examples include predic-
tive entropy search (PES) [Hernández-Lobato et al., 2014]
or knowledge gradient (KG) [Frazier et al., 2008]. Lam et al.
[2016] frame the exploration-exploitation trade-off as a bal-
ance between immediate and future rewards in a continuous
state and action space Markov decision process (MDP). In
this framework, non-myopic acquisition functions are op-
timal MDP policies, and promise better performance by
considering the impact of future evaluations up to a given
BO budget (also referred to as the horizon).

While BO budgets are typically given in iterations, this im-
plicitly measures convergence in terms of iteration count
and assumes uniform evaluation cost. For many practical
BO applications, evaluation costs may vary in different re-
gions of the search space. For example, the time spent on
neural network training increases with layer size; the cost
of different drug compounds vary; and control actions in op-
timal control have differing complexities. In all these cases,
standard BO is often unable to achieve fast convergence in
terms of unit cost. Motivated by these examples, we develop
methods that improve convergence when measured by cost.
This cost may be time, energy, or money, and the goal is to
minimize the objective given a cost budget.

Cost-constrained BO measures convergence with these al-
ternative cost metrics for which standard BO methods are
unsuited. We extend non-myopic BO to handle the cost-
constrained setting. Our contributions follow:

• We analyze failure modes of common approaches to
cost-constrained BO, in which greedy behavior results
in poor per-cost performance.
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Figure 1: Runtime distribution, log-scaled, of 5000 randomly selected points for the k-nearest-neighbors (KNN), Multi-
layer Perceptron (MLP), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF) hyperparameter
optimization problems, each trained on the OpenML w2a dataset [Vanschoren et al., 2013]. The runtimes vary, often by an
order of magnitude or more.

• To avoid overly greedy behavior, we formulate cost-
constrained BO as an instance of a constrained Markov
decision process (CMDP). This formulation is a novel
extension of recent research on non-myopic BO which
uses a simpler Markov decision process (MDP) formu-
lation.

• We introduce an approximation to the optimal con-
strained MDP policy based on rollout of feasible trajec-
tories. Rollout is a popular class of approximate MDP
solutions in which future BO realizations and their cor-
responding values are simulated using the surrogate
and then averaged.

• We validate the performance of our methods on a set
of practical hyperparameter optimization problems and
a sensor set selection problem.

2 RELATED WORK

Most prior approaches to cost-constrained BO occur in the
grey-box setting, in which additional information about the
objective is available. Multi-fidelity BO is a widely studied
setting in which fidelity parameters s ∈ [0, 1]m, such as
iteration count or grid size, are assumed to be a low-accuracy
approximation of high-fidelity evaluations [Forrester et al.,
2007, Kandasamy et al., 2017, Poloczek et al., 2017, Wu
and Frazier, 2019]. Increasing s increases the accuracy at
the expense of run time. In addition, Multi-fidelity methods
are often application-specific. For example, Hyperband [Li
et al., 2017, Falkner et al., 2018, Klein et al., 2017a,b]
cheaply train many neural network configurations for a few
epochs, and then prunes unpromising configurations.

In multi-task BO [Swersky et al., 2013], hyperparameter
optimization is first run on cheaper instances before con-
sidering more expensive ones. Swersky et al. [2013] intro-
duce a cost-constrained, multi-task variant of entropy search
to speed-up optimization of logistic regression and latent
Dirichlet allocation. Cost information is input as a set of cost

preferences (e.g., a parameter x1 is more expensive than
a parameter x2) by Abdolshah et al. [2019], who develop
a multi-objective, constrained BO method that evaluates
cheap points before expensive ones, as determined by the
cost preferences, to find feasible, low-cost solutions. These
methods outperform their black-box counterparts by evaluat-
ing cheap proxies or cheap points before selecting expensive
evaluations, which is accomplished by leveraging additional
cost information inside the optimization routine.

While all these methods demonstrate strong performance,
they sacrifice generality and do not apply to black-box BO.
Moreover, by relying on parallel resources, these techniques
target time efficiency rather than compute time, cost, or
energy efficiency. We also note that cost-efficiency has been
modestly studied in the setting of active search, in which a
active search is run with the constraint that the total cost of
all queries must be less than τ Jiang et al. [2019].

Recent developments in nonmyopic BO account for the im-
pact of future evaluations and are thus able to make better
decisions [Lam et al., 2016, Lam and Willcox, 2017, Fra-
zier, 2018, Yue and Kontar, 2019, Lee et al., 2020a, Jiang
et al., 2020]. These methods typically frame Bayesian op-
timization as a Markov decision process whose horizon is
precisely the iteration budget. It is along these lines that we
tackle the problem of nonmyopic, cost-constrained BO.

3 BACKGROUND AND MOTIVATION

Gaussian process regression and BO: The goal in BO
is to find a global minimizer of a continuous function
f(x) over a compact set Ω ⊆ Rd. If f(x) is expensive
to evaluate, we want to rely on a sample-efficient optimiza-
tion method. BO uses a Gaussian process (GP) to model
f(x) from the data Dt = {(xi, yi)}ti=1. We write this as
f(x) ∼ GP(µt(x), σ2

t (x)), where µt(x), σ2
t (x) are the GP

mean and variance at x, respectively (see the supplementary
materials for more details). The next evaluation location



 xt+1 is determined by maximizing an acquisition function
Λ(x | Dt): xt+1 = arg maxΩ Λ(x | Dt).

Cost-constrained BO: BO’s sample efficiency leads to fast
convergence only if evaluations have similar costs, an as-
sumption that is often not true in practice. Cost-constrained
BO is an important problem, and we argue that many BO
problems in machine learning are, in fact, cost-constrained.
Figure 1 illustrates this by randomly evaluating 5000 hy-
perparameter configurations for five common hyperparame-
ter optimization problems (HPO). The resulting evaluation
times vary, sometimes by more than two orders of mag-
nitude. Moreover, the majority of evaluations are cheap,
suggesting that significant cost savings may be achieved by
using a cost-efficient instead of a sample-efficient optimizer.

The de-facto cost-constrained method in the black-box set-
ting is to normalize the acquisition by cost model c(x). This
extends EI to EI per unit cost (EIpu):

EIpu(x) :=
EI(x)

c(x)
,

which is designed to balance the objective’s cost and evalua-
tion quality. Snoek et al. [2012] showed that EIpu can boost
performance on a variety of HPO problems.

However, EIpu often demonstrates underwhelming perfor-
mance. We examine why this may occur in Figure 2, in
which EIpu (green) is slower than EI (red) at HPO of a
k-nearest-neighbor model. The empirical optimum, namely
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Figure 2: We run EI and EIpu on KNN. Left: EIpu evalu-
ates many more cheap points than EI, which evaluates more
expensive points. The optimum’s cost, one of the most ex-
pensive points, is a black star. Right: EIpu performs poorly
as a result.

the best point over all trials (black star), has high cost —
thus, dividing by the cost penalizes EIpu away from the
optimum and diminishes its performance. This is evident
from the evaluation time histograms: EIpu evaluates many
cheap points while EI evaluates fewer but more expensive
points. Due to its bias towards cheap points, EIpu is likely
to only display strong results when optima are relatively
cheap, which is problematic in the general black-box set-
ting. Indeed, one can adversarially increase the cost at the
optimum to make EIpu perform poorly.

Markov decision processes: Nonmyopic BO frames the
exploration-exploitation trade-off as a balance of immedi-
ate and future rewards in a finite horizon Markov decision
process (MDP). We use standard notation from [Puterman,
2014]: an MDP is the collection < T, S,A, P,R >. Here,
T = {0, 1, . . . , h−1}, h <∞ is the set of decision epochs,
assumed finite for our problem. The state space S encap-
sulates the information needed to model the system from
time t ∈ T . A is the action space. Given a state s ∈ S and
an action a ∈ A, P (s′|s, a) is the transition probability of
the next state being s′. R(s, a, s′) is the reward received for
choosing action a from state s, and ending in state s′.

A decision rule, πt : S → A, maps states to actions
at time t. A policy π is a series of decision rules π =
(π0, π1, . . . , πh−1), one at each decision epoch. Given a
policy π, a starting state s0, and horizon h, we can define
the expected total reward V πh (s0) as:

V πh (s0) = E

[
h−1∑
t=0

R(st, πt(st), st+1)

]
.

In phrasing a sequence of decisions as an MDP, our goal is
to find the optimal policy π∗ that maximizes the expected
total reward, i.e., supπ∈Π V

π
h (s0), where Π is the space of

all admissible policies.

Constrained Markov decision processes: A constrained
Markov decision process (CMDP) is an MDP with an ad-
ditional set of cost constraints [Altman, 1999, Piunovskiy,
2006, Bertsekas, 2005]. These costs, like MDP rewards,
are accumulated through state by action until a certain
horizon. A CMDP extends an MDP, and is the collection
< T, S,A, P,R,C, τ >. Here, C(s, a, s′) : S×A×S→ R
is a cost function measuring the cost of choosing action a
from state s, and ending in state s′. τ is the cost constraint,
and we assume without loss of generality that it is a positive
scalar.

The cost function C in a CMDP induces a cumulative cost
function Cπh (s0), which is analogous to a value function
that replaces the reward with the cost:

Cπh (s0) = E

[
h−1∑
t=0

C(st, πt(st), st+1)

]
.

Cπh (s0) measures total expected cost given a policy π, start-
ing state s0, and horizon h. The goal in a CMDP is to find
the optimal policy, defined as:

π∗ = arg max
π

V πh (s0),

subject to Cπh (s0) ≤ τ.

In other words, we want to determine the policy that maxi-
mizes the expected reward subject to having cost less than
τ . We refer readers to the standard CMDP treatment [Alt-
man, 1999] for more information. The notion of feasible
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Figure 3: We illustrate the importance of nonmyopia on a carefully chosen toy problem. The top row depicts BO using a
myopic acquisition; the middle row depicts nonmyopic, cost-constrained BO; the bottom row depicts feasible trajectories of
length two. We run BO until the objective’s minimum is infeasible. Myopic BO exhausts its budget before getting close to
the global minimum. A nonmyopic approach accounts for the cost (and infeasibility) of future evaluations, and is able to
sample the global minimum early. To save space, we only plot feasible trajectories for the myopic approach in the top row.
The trajectory contour for nonmyopic BO is very similar.

trajectories is important when discussing both exact and
approximate CMDP solutions. A CMDP trajectory is a se-
quence of states and actions:

(s0, a0), (s1, a1), . . . , (sh−1, ah−1).

A CMDP trajectory is said to be feasible if it doesn’t violate
its cost constraint τ for any non-negative integer 0 ≤ ` ≤
h− 1 less than horizon h:∑̀

t=0

C(st, at, st+1) < τ.

For consistency, we can extend all feasible trajectories to
have length h by introducing an intermediate state and action
which produce zero reward and cost (the formal equivalent
of “standing still”). The set of all feasible trajectories is
known as G.

4 COST-CONSTRAINED BO

We might think of cost-constrained BO as the following
constrained optimization problem:

min
X∈2Ω

min
x∈X

f(x)

subject to
∑
x∈X

c(x) ≤ τ.

Because our optimization domain is 2Ω, i.e., the power set
of Ω, we have a nested minimization problem. We assume
f(x) outputs not only its value, but also its evaluation
cost determined by a cost function c(x) —which is also
black-box. Our goal is to minimize f(x) subject to the total
evaluation cost not exceeding τ . This is a pre-specified
upper bound on the total cost, such as compute time, dollars,
or energy consumption.

One recent research direction in BO has been the develop-
ment of nonmyopic BO [Lam et al., 2016, Lam and Willcox,
2017, Yue and Kontar, 2019, Frazier, 2018, Lee et al., 2020a,
Jiang et al., 2020], which account for the impact of future
evaluations and are thus able to make better decisions. These
decisions are computed by modeling BO as an MDP and
then approximating its optimal policy. We aim to leverage
this MDP framework to make similarly principled, nonmy-
opic decisions in the cost-constrained setting. We do this by
extending the MDP to a CMDP, which takes into account
variable evaluation costs. The next decision in this setting is
a approximation to the optimal CMDP policy.

Figure 3 illustrates the advantage of accounting for the cost
of future evaluations with CMDP. The objective and cost,
which have been carefully chosen, are plotted in black and
red respectively, and the bottom row indicates feasible tra-
jectories of length two as the optimization continues. The



 optimization domains are similarly shaded when evaluations
become infeasible. A greedy approach1, seen in the first row,
does not account for the remaining budget, and is therefore
unable to evaluate the global minimum before its becomes
infeasible due to an insufficient budget. A nonmyopic policy,
seen in the second row, better accounts for the cost of future
evaluations; it sees that by the fourth iteration, the right side
of the domain becomes infeasible, and decides to evaluate
there earlier. As a result, it gets much closer to the global
minimum.

In the next section, we formalize our CMDP framework.
We note that our framework is vaguely related to BO with
resources (BOR) [Dolatnia et al., 2016], who consider a
partially observable MDP (POMDP) framework for BO
when resource consumption of the objective varies, and
when there might be multiple agents that can evaluate the
acquisition function in parallel.

4.1 BO AS A CONSTRAINED MARKOV
DECISION PROCESS

Given a deterministic cost function c(x) : Ω→ R+, a cost
budget τ , and a GP prior over the observation set Dt with
mean µt and kernel kt, we model h steps of cost-constrained
BO as the following CMDP: < T, S,A, P,R,C, τ >.

Here, T is the set of decision epochs {0, 1, . . . , h − 1}
representing h steps of BO. While we might want to use an
infinite horizon, e.g., h =∞ to iterate until our cost budget
is exhausted, we assume a finite horizon for tractability. Our
state space is the set of observations reachable from starting
state Dt with h BO steps, and the action space is Ω; actions
correspond to sampling a point in Ω.

The transition probabilities from state Dt to state Dt+1,
where Dt+1 = Dt ∪ {(xt+1, yt+1)}, given an action xt+1,
are defined as:

P (Dt+1 | Dt,xt+1)

∼ N (µ(t)(xt+1;Dt),K(t)(xt+1,xt+1;Dt)).

In other words, the probability of transitioning from Dt to
Dt+1 is the probability of sampling yt+1 from the posterior
of GP(µt, σ

2
t ) at xt+1.

Given an action and transition to a new state Dt+1, our
reward function is derived from the the EI criterion [Jones
et al., 1998]. Let y∗t be the minimum observed value in
the observed set Dt, i.e., y∗t = min{y0, . . . , yt}. Then our
reward is expressed as:

R(Dt,xt+1,Dt+1) = (y∗t − yt+1)+

≡ max(y∗t − yt+1, 0).

1We show EI over EIpu for space’s sake; the former performs
better than the latter. The low cost on the left part of the domain
causes EIpu to evaluate exclusively there.

Our CMDP cost is given by c(x). We assume that this cost is
deterministic and state-independent; it only depends on the
action. In practice, the cost function may be learned as well.
We emphasize that we assume a deterministic cost function;
the algorithms and theory we establish do not extend trivially
to stochastic cost functions. Finally, we assume a positive
scalar constraint τ . However, we can extend this to a vector-
valued constraint. For example, in materials design, there
might be a finite amount of each constituent component,
each with its own budget [Abdolshah et al., 2019].

The expected total reward and cost of a policy π are

V πh (Dk) = E
[ k+h−1∑

t=k

R(Dt, πt(Dt),Dt+1)

]

= E
[ k+h−1∑

t=k

(y∗t − yt+1)+

]
,

Cπh (Dk) = E
[ k+h−1∑

t=k

c(πt(Dt))
]
.

More intuitively, V πh (Dk) is the expected reduction in the
objective function using policy π, and Cπh (Dk) is the ac-
companying expected cost. We can represent a trajectory
though this CMDP as the sequence:

(xk, yk), (xk+1, yk+1), . . . , (xk+1, yk+h).

As our cost is strictly positive, a trajectory
(xk, yk), (xk+1, yk+1), . . . , (xk+1, yk+`) is feasible if∑k+`

i=k c(xi) ≤ τ for some ` ≤ h.

5 METHODS

CMDPs are considered far more difficult to solve than
MDPs [Altman, 1999], and the standard dynamic program-
ming approach of Bertsekas [2017] does not extend trivially
—Bellman’s principle of optimality no longer applies. In-
deed, unlike the MDP case, the existence of an optimal
policy is not guaranteed. The standard CMDP solution is to
solve a large linear program in the state and action spaces,
but this is computationally intractable for all but the small-
est problems. The difficulty of solving CMDPs in the BO
setting is made more difficult by the exponentially growing
infinite state space, which consequently excludes standard
solutions such as an exact solve on a discretized problem.

In this paper, we approximate the optimal CMDP policy
through rollouts, which has been used successfully in the
standard BO setting to improve performance over myopic
acquisition functions [Lam et al., 2016].

5.1 MDP ROLLOUT

Rollouts forward-simulate the value function of a fixed
policy, and select the action yielding the maximal simu-



 lated reward. We make this more precise as follows. For
a given current state Dk, we denote our base rollout pol-
icy π̃ = (π̃0, π̃1, . . . , π̃h−1). We introduce the notation
Dk,0 ≡ Dk to define the initial state of our MDP and Dk,t
for 1 ≤ t ≤ h to denote the random variable that is the state
at each decision epoch. In the case of BO, each individual
decision rule π̃t consists of maximizing the base acquisition
function Bt given the current state st = Dk,t,

π̃t = arg max
x∈Ω

Bt(x | Dk,t).

Using this policy, we define the non-myopic acquisition
function Λh(x) as the rollout of π̃ to horizon h i.e., the
expected reward of π̃ starting with the action π̃0 = x:

Λh(xk+1) := E
[
V π̃h (Dk ∪ {(xk+1, yk+1)})

]
,

where yk+1 is the noisy observed value of f at xk+1. Λh
performs better than the base policy in expectation for a
correctly specified GP prior and for any base acquisition
function. This follows from standard results in the MDP
literature [Bertsekas, 2017]. If we can sample from the tran-
sition probability P , we can estimate the expected reward of
π̃ through policy evaluation, i.e., Monte-Carlo integration:

V π̃h (s0) ≈ 1

N

N∑
i=1

[ h−1∑
t=0

R(sit, π̃t(s
i
t), s

i
t+1)

]
.

5.2 CMDP ROLLOUT AND OUR BASE POLICY

In the CMDP setting, rollout is a straightforward extension
of rollout in the MDP setting. CMDP rollout also forward
simulates of action and reward given a fixed base policy, ex-
cept that it only keeps feasible trajectories in G and discards
infeasible trajectories [Bertsekas, 2005]. In other words, this
means that as we roll out a base policy π̃, we terminate either
once we reach the horizon or violate the cost constraint.

There remains the question of what base policy to use; the
performance of rollout depends on its base policy. We de-
velop a base policy by considering the following two cases:

h = 1: Assume the argmax of EI has cost c(x∗) ≤ τ . The
following policy π is CMDP optimal:

π(Dt) = x∗ = arg max
x∈Ω

EI(x | Dt).

h > 1: Assume the argmax of EI has cost c(x∗) = τ∗ and
there exists a point of small cost c(xε) = ε. If τ = τ∗ + ε,
then xε should be evaluated before x∗. In the limit, a point
that is free to evaluate should be evaluated first.

A reasonable base policy should, at the minimum, satisfy
these two cases. For the first case, maximizing EI must
necessarily be the last step in our base policy. In the second
case, we note that maximizing EIpu for the first rollout

iteration will result in the desired behavior. For simplicity’s
sake, we extend EIpu until the last iteration. The base rollout
policy π̃ = (π̃0, . . . , π̃h−1) that we consider is therefore

π̃t(Dt) =

{
arg maxx∈Ω EIpu(x | Dt), t < h− 1,

arg maxx∈Ω EI(x | Dt), t = h− 1.

In other words, π̃ rolls out h− 1 steps of EIpu followed by
a last step of EI.

This base policy has a few advantages. If h = 1 and the bud-
get is sufficient, it is CMDP optimal. If the cost is uniform,
this is equivalent to rollout of EI, which has been shown
to improve performance in standard BO [Wu and Frazier,
2019, Lee et al., 2020a]. Lastly, this base policy is consistent
with an early exploration, late exploitation strategy, which is
a common heuristic in multifidelity and multitask settings;
EIpu tends to select cheaper points. Therefore, π̃ starts by
trying to select cheaper points and then ends with selecting
a point that is likely more expensive.

5.3 THEORETICAL ANALYSIS

If a base policy π̃ is sequentially consistent, rollout in the
MDP setting will perform better in expectation than the
base policy itself —this is known as the rollout improving
property. The same holds true in the CMDP setting if c(x) is
also deterministic. We define sequential consistency below.

Definition 1 [Bertsekas, 2017]: A policy π is sequentially
consistent if, for every trajectory from any s0:

(s0, a0), (s1, a1), . . . , (sh−1, ah−1),

π generates the following trajectory starting at s1:

(s1, a1), (s2, a2) . . . , (sh−1, ah−1).

Note that we have presented the simpler deterministic ver-
sion of Definition 1 for notational brevity; please refer to
the appendix for the full stochastic version.

Theorem 1 [Bertsekas, 2005]: In the CMDP setting, a roll-
out policy πroll does no worse than its base policy π̃ in
expectation if π̃ is sequentially consistent i.e.,

V πroll

h (s0) ≥ V π̃h (s0).

Thus, the value function of a rollout policy is always greater
than the value function of the base policy.

To guarantee sequential consistency of our acquisition func-
tion, we need only consistently break ties if the acquisition
function has multiple maxima.



 6 EXPERIMENTS

We compare CMDP rollout, which we compute via quasi-
Monte Carlo integration, to EI and EIpu. We use a GP
with the Matérn-5/2 ARD kernel to model both the ob-
jective and the cost function2, and learn hyperparameters
via maximum likelihood estimation. When rolling out ac-
quisition functions, we use L-BFGS-B using 5 restarts, se-
lected by evaluating the acquisition on a Latin hypercube
of 10d points and picking the five best as starting points.
When comparing different replications we first need to in-
terpolate the objective function values onto a set of discrete
costs. Given these interpolated value, we plot the mean with
one standard deviation. Code to reproduce our experiments
is found at https://github.com/ericlee0803/
lookahead_release.

6.1 SYNTHETIC PROBLEM
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Figure 4: In this example, we examine a carefully chosen
example showcasing the strength of the rollout approach. We
consider the a multimodal objective whose most expensive
point is the global minimum. EIpu performs worse than EI,
and both tend to get stuck in cheaper, local minimum. Our
rollout policy for horizons 2 and 4 performs better than both
EI and EIpu

In Figure 4, we examine a carefully chosen synthetic ex-
ample showcasing the strength of the rollout approach. We
consider the cost-constrained optimization problem

f(x) = 10‖x‖2 sin(2π‖x‖2),

c(x) = 10− 5‖x‖2,

in the domain [−1, 1]2, and a budget of 150. The cost func-
tion has been designed so that its maximum aligns with the
minimum of the objective. As we motivated earlier, EIpu
struggles with these types of problems. We run BO with
EI, EIpu, and rollout with our base policy 50 times and
plot the results. This is seen on the right, in which EIpu
(green) performs worse than EI (blue). However, rollout of
our base policy, for horizons two and four in pink and red
respectively, performs much better than both.

2We use a log-warped GP to model positive cost.

6.2 HYPERPARAMETER OPTIMIZATION

We compare rollout performance to EI and EIpu on HPO of
three different models: k-nearest neighbors (KNN), decision
trees, and random forests, with budgets of 800, 15, and 15
seconds respectively. These are relatively small problems,
chosen due to the number of replications required to show
statistical significance. All models are trained for 50 replica-
tions on the OpenML w2a dataset [Vanschoren et al., 2013].
We compare the competing algorithms in terms of the best
classification error achieved on the validation set.

k-nearest neighbors: The k-nearest neighbors algorithm
is a class of methods used for classification of either
spatially-orientated data or data with a known distance
metric (i.e., data embedded in a Hilbert space). We consider
a 5d search space: dimensionality reduction percentage
in [1e−6, 1.0] (log-scaled), type in {Gaussian, Random},
neighbor count in {1, 2, . . . , 256}, weight function in {Uni-
form, Distance}, and distance in {Minkowski, Cityblock,
Cosine, Euclidean, L1, L2, Manhattan}. We one-hot encode
categorical variables.

Decision Trees: Decision trees are popular predictive mod-
els used in statistics, data mining, and machine learning. In
the case of classification, leaves represent class labels and
paths represent sets of features that lead to those class labels.
During training, a tree is built by splitting the source set
into subsets which constitute the successor children. The
splitting is based on a threshold that maximizes some notion
of information gain such as entropy. The depth of a deci-
sion tree is pre-specified. We consider a 3d search space:
tree depth in {1, 2, . . . , 64}, tree split threshold in [0.1, 1.0]
log-scaled, and split feature size in [1e−3, 0.5] (log-scaled).

Random Forests: A random forest is a set k of decision
trees, and classifies based off the plurality decision gener-
ated from all its trees —this technique is known as bag-
ging, and improves robustness in the classification algo-
rithm. We consider a 3d search space: number of trees in
{1, 2, . . . , 256}, tree depth in {1, 2, . . . , 64}, and tree split
threshold in [0.1, 1.0] (log-scaled).

6.3 SENSOR SET SELECTION

The sensor set selection problem [Garnett et al., 2010] seeks
to improve the predictive accuracy, as measured by the root
mean squared error (RMSE), of a physical sensor network.
We denote a sensor network’s configuration of m sensors in
d-dimensional space as X ∈ Rm×d.

This configuration must be manually adjusted each time it
is updated. This is typically assumed to have uniform cost;
we modify the problem to consider a sensor adjustment cost.
We assume this cost is correlated with the distance each
sensor in the network has to move; for simplicity, we assume
the cost of any new sensor configuration X′ is proportional

https://github.com/ericlee0803/lookahead_release
https://github.com/ericlee0803/lookahead_release
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Figure 5: We compare the classification error among EI, EIpu, and our cost-constrained rollout for horizons 2 and 4. Rollout
performs better than both EI and EIpu. Shaded areas represent one standard deviation around the mean.

to the straight-line distance d(X,X′) = ‖X−X′‖F . This is
an example of a CMDP whose cost is not state-independent;
our cost now depends on the prior state.

We consider a small sensor set selection problem using ten
sensors. Our objective is RMSE of the sensor predictions
against ground truth weather data taken from UK Meteoro-
logical Office MIDAS surface stations [Centre, 2012]. The
time budget is twenty years.

6.4 ANALYSIS

We plot the resuts of our HPO and sensor set selection ex-
periments in Figure 5, and find that CMDP rollout generally
outperforms both EI and EIpu. In this section we discuss
key insights gained over the course of experimentation.

Cost Modeling: We found the cost function to be simpler
to model than the objective function. In practice, the cost
may only depend on a few key parameters (e.g., tree depth).
Thus, using a vanilla GP to model the cost is inefficient —a
tailored (parametric) cost model or a GP that incorporates
parameter importance into its lengthscale priors will likely
lead to better results [Lee et al., 2020b, Guinet et al., 2020].

Search Space Sensitivity: EIpu’s performance depends on
the correlation between objective value and cost. Unsurpris-
ingly, this correlation often depends on the search space in
practice. For example, assume a decision tree of depth d
achieves maximal classification error and that its training
cost increases with depth. (i) If the search space is [1, d ],
the maximum will be the most expensive point and EIpu
will perform poorly; (ii) if the search space is [1, 2d ], the
maximum will be have middling cost and EIpu will perform
moderately well; (iii) if the search space is [1, 10d ], the max-
imum will have cheap cost and EIpu will perform very well.
In our experiments, we found CMDP rollout to be more
robust to the shape of the cost surface. This is expected, as
a CMDP optimal policy selects the point that maximally
reduces the objective function given the cost constraint.

7 CONCLUSION

In this paper, we have shown the importance of cost-
constrained BO and formulated it as an instance of a con-
strained Markov decision process (CMDP). We developed
a rollout algorithm using a cheap exploration, expensive
exploitation base policy that performed better than EI and
EIpu on three hyperparameter optimization problems and a
sensor set selection problem.

These investigations into cost-constrained BO are promising
and we believe there are many interesting directions for fu-
ture work. First, the overhead of the optimizer itself should
be taken into account, especially in the context of HPO.
While the overhead is negligible when the cost of evaluating
the black-box is large (e.g., when training neural networks),
future work could explore simpler heuristics to lower the
overhead of using rollouts. Second, we believe approximate
solutions to CMDPs other than rollout are worth investigat-
ing. State aggregation and state truncation are classical meth-
ods in the MDP setting that reduce the state space according
to the transition probabilities and Altman [1999] extends
them to the CMDP setting. Consequently, we may approx-
imate our model through state aggregation and state trunca-
tion and compute an exact solution via linear programming.

Finally, we have limited our discussion to the sequential
BO setting. However, cost-constrained BO becomes signifi-
cantly more complex in the batch setting, when evaluations
are performed in parallel. This is another interesting topic
for future work.
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