
Nature | Vol 594 | 10 June 2021 | 207

Article

A graph placement methodology for fast
chip design

Azalia Mirhoseini1,4 ✉, Anna Goldie1,3,4 ✉, Mustafa Yazgan2, Joe Wenjie Jiang1,
Ebrahim Songhori1, Shen Wang1, Young-Joon Lee2, Eric Johnson1, Omkar Pathak2,
Azade Nazi1, Jiwoo Pak2, Andy Tong2, Kavya Srinivasa2, William Hang3, Emre Tuncer2,
Quoc V. Le1, James Laudon1, Richard Ho2, Roger Carpenter2 & Jeff Dean1

Chip floorplanning is the engineering task of designing the physical layout of a
computer chip. Despite five decades of research1, chip floorplanning has defied
automation, requiring months of intense effort by physical design engineers to
produce manufacturable layouts. Here we present a deep reinforcement learning
approach to chip floorplanning. In under six hours, our method automatically
generates chip floorplans that are superior or comparable to those produced by
humans in all key metrics, including power consumption, performance and chip area.
To achieve this, we pose chip floorplanning as a reinforcement learning problem, and
develop an edge-based graph convolutional neural network architecture capable of
learning rich and transferable representations of the chip. As a result, our method
utilizes past experience to become better and faster at solving new instances of the
problem, allowing chip design to be performed by artificial agents with more
experience than any human designer. Our method was used to design the next
generation of Google’s artificial intelligence (AI) accelerators, and has the potential to
save thousands of hours of human effort for each new generation. Finally, we believe
that more powerful AI-designed hardware will fuel advances in AI, creating a
symbiotic relationship between the two fields.

In this work, we propose a new graph placement method based on
reinforcement learning (RL), and demonstrate state-of-the-art results
on chip floorplanning, a challenging problem2 that has long defied
automation, despite five decades of research. Our method generates
manufacturable chip floorplans in under 6 h, compared to the strongest
baseline, which requires months of intense effort by human experts.

A computer chip is divided into dozens of blocks, each of which is
an individual module, such as a memory subsystem, compute unit
or control logic system. These blocks can be described by a netlist, a
hypergraph of circuit components, such as macros (memory compo-
nents) and standard cells (logic gates such as NAND, NOR and XOR),
all of which are connected by wires. Chip floorplanning involves plac-
ing netlists onto chip canvases (two-dimensional grids) so that per-
formance metrics (for example, power consumption, timing, area
and wirelength) are optimized, while adhering to hard constraints on
density and routing congestion.

Since the 1960s, many approaches to chip floorplanning have been
proposed, falling into three broad categories: partitioning-based meth-
ods3–5, stochastic/hill-climbing approaches6–8 and analytic solvers9–14.
However, none of these approaches could achieve human-level perfor-
mance, and the exponential growth in chip complexity has rendered
these techniques largely unusable on modern chips.

The limitations of these prior approaches are varied. For example,
partitioning-based methods sacrifice the quality of the global solution

in order to scale to larger netlists, and a poor early partition may result in
an unsalvageable final result. Hill-climbing approaches have low conver-
gence rates and do not scale to modern chip netlists, which have millions
or billions of nodes13. Prior to this work, analytic solvers were the leading
approach, but they can only optimize for differentiable loss functions,
meaning that they cannot effectively optimize for critical metrics, such
as routing congestion or timing violations. Our method, on the other
hand, can scale to netlists with millions of nodes, and optimizes directly
for any mixture of differentiable or non-differentiable cost functions.
Furthermore, our method improves in both speed and quality of result
because it is exposed to more instances of the chip placement problem.

Owing to the limitations of these prior methods, human physical
designers must iterate for months with commercial electronic design
automation (EDA) tools, taking as input a register transfer level (RTL)
description of the chip netlist, generating a manual placement of that
netlist onto the chip canvas, and waiting up to 72 h for EDA tools to
evaluate that placement. On the basis of this feedback, the human
designer either concludes that the design criteria have been achieved,
generates an updated floorplan for evaluation, or provides feedback to
upstream RTL designers, who then modify the low-level code to make
the placement task easier (for example, resolve timing violations).

To address the chip floorplanning problem, we developed an RL
method capable of generalizing across chips—meaning that it can
learn from experience to become both better and faster at placing

https://doi.org/10.1038/s41586-021-03544-w

Received: 3 November 2020

Accepted: 13 April 2021

Published online: 9 June 2021

 Check for updates

1Google Research, Brain Team, Google, Mountain View, CA, USA. 2Google Chip Implementation and Infrastructure (CI2) Team, Google, Sunnyvale, CA, USA. 3Computer Science Department,
Stanford University, Stanford, CA, USA. 4These authors contributed equally: Azalia Mirhoseini, Anna Goldie. ✉e-mail: azalia@google.com; agoldie@google.com

https://doi.org/10.1038/s41586-021-03544-w
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-021-03544-w&domain=pdf
mailto:azalia@google.com
mailto:agoldie@google.com

208 | Nature | Vol 594 | 10 June 2021

Article

new chips—allowing chip designers to be assisted by artificial agents
with more experience than any human could ever gain.

Training placement policies that generalize across chips is extremely
challenging, because it requires learning to optimize the placement of
all possible chip netlists onto all possible canvases. Chip floorplanning is
analogous to a game with varying pieces (for example, netlist topologies,
macro counts, macro sizes and aspect ratios), boards (varying canvas sizes
and aspect ratios) and win conditions (relative importance of different
evaluation metrics or different density and routing congestion constraints).
Even one instance of this game (placing a particular netlist onto a particular
canvas) has an enormous state–action space. For example, the state space
of placing 1,000 clusters of nodes on a grid with 1,000 cells is of the order
of 1,000! (greater than 102,500), whereas Go has a state space of 10360 (ref. 15).

To enable generalization, we focused on learning transferable
representations of chips, grounding representation learning in the
supervised task of predicting placement quality. By designing a neural
architecture that can accurately predict reward across a wide variety
of netlists and their placements, we are able to generate rich feature
embeddings of the input netlists. We then use this architecture as the
encoder of our policy and value networks to enable transfer learning.
In our experiments, we show that, as our agent is exposed to a greater
volume and variety of chips, it becomes both faster and better at gen-
erating optimized placements for new chip blocks, bringing us closer
to a future in which chip designers are assisted by artificial agents with
vast chip placement experience.

In addition to the immediate impact on chip floorplanning, the ability
of our method to generalize and quickly generate high-quality solutions
has major implications, unlocking opportunities for co-optimization
with earlier stages of the chip design process. Large-scale architectural
explorations were previously impossible, because it took months of
human effort to accurately evaluate a given architectural candidate.
However, modifying the architectural design can have an outsized
impact on performance, and would facilitate full automation of the
chip design process. Automating and accelerating the chip design
process can also enable co-design of AI and hardware, yielding
high-performance chips customized to important workloads, such
as autonomous vehicles, medical devices and data centres.

At an abstract level, our method learns to map the nodes of a hyper-
graph onto a limited set of resources, subject to constraints. Place-
ment optimizations of this form appear in a wide range of science and
engineering applications, including hardware design1, city planning16,
vaccine testing and distribution17, and cerebral cortex layout18. There-
fore, we believe that our placement optimization methodology can be
applied to impactful placement problems beyond chip design.

Beyond the experimental results reported here, our method is
already having real-world impact, and our floorplan solutions are in
the product tapeout of a recent-generation Google tensor processing
unit (TPU) accelerator.

Chip floorplanning as a learning problem
The underlying problem is a high-dimensional contextual bandits
problem19 but, as in prior work, such as refs. 20–23, we have chosen to

reformulate it as a sequential Markov decision process (MDP), because
this allows us to more easily incorporate the problem constraints as
described below. Our MDP consists of four key elements:

(1) States encode information about the partial placement, including
the netlist (adjacency matrix), node features (width, height, type), edge
features (number of connections), current node (macro) to be placed,
and metadata of the netlist graph (routing allocations, total number
of wires, macros and standard cell clusters).

(2) Actions are all possible locations (grid cells of the chip canvas)
onto which the current macro can be placed without violating any hard
constraints on density or blockages.

(3) State transitions define the probability distribution over next
states, given a state and an action.

(4) Rewards are 0 for all actions except the last action, where the
reward is a negative weighted sum of proxy wirelength, congestion
and density, as described below.

We train a policy (an RL agent) modelled by a neural network that,
through repeated episodes (sequences of states, actions and rewards),
learns to take actions that will maximize cumulative reward (see Fig. 1).
We use proximal policy optimization (PPO)24 to update the parameters
of the policy network, given the cumulative reward for each placement.

We can formally define the objective function as follows:

∑J θ G
K

E R(,) =
1

[]. (1)
g G

g p π p g
≈

, ≈ ,θ

Here J(θ, G) is the cost function. The agent is parameterized by θ. The
dataset of netlists of size K is denoted by G, with each individual netlist
in the dataset written as g. Rp,g is the episode reward of a placement
p drawn from the policy network applied to netlist g. Eg,p[Rp,g] is the
expected reward, given a netlist g and placement p drawn from the
policy distribution πθ.

R p g λ p g γ p g= − Wirelength(,) − Congestion(,) − Density(,). (2)p g,

In each iteration, the RL agent (policy network) sequentially places
the macros. Once all macros are placed, we use a force-directed
method11,25–27 to approximately place clusters of standard cells. The
reward at the end of each iteration is calculated as a linear combination
of the approximate wirelength, congestion and density (equation (2)).
In our experiments, the congestion weight λ is set to 0.01, the density
weight γ is set to 0.01 and the maximum density threshold is set to 0.6.

Designing domain-adaptive policies
As mentioned earlier, developing domain-adaptive policies for the
chip floorplanning problem is extremely challenging, because this
problem is analogous to a game with varying pieces, boards and win
conditions, and has an enormous state–action space. To address this
challenge, we first focused on learning rich representations of the
state space. Our intuition was that a policy capable of the general task
of chip placement should also be able to encode the state associated
with a new unseen chip into a meaningful signal at inference time.

Agent Agent Agent Agent

Force-directed method places
standard cell

s0 s1 s2 sT

a0 a1 aT–1
r1 = 0 r2 = 0

....

rT = −Wirelength
− × congestion
− × density

r0 = 0

RL agent places macros one at a timeChip
canvas

Fig. 1 | Overview of our method and training regimen. In each training
iteration, the RL agent places macros one at a time (actions, states and rewards
are denoted by ai, si and ri, respectively). Once all macros are placed, the
standard cells are placed using a force-directed method. The intermediate

rewards are zero. The reward at the end of each iteration is calculated as a linear
combination of the approximate wirelength, congestion and density, and is
provided as feedback to the agent to optimize its parameters for the next
iteration.

Nature | Vol 594 | 10 June 2021 | 209

We therefore trained a neural network architecture capable of predict-
ing reward on placements of new netlists, with the ultimate goal of using
this architecture as the encoder layer of our policy.

To train this supervised model, we needed a large dataset of chip place-
ments and their corresponding reward labels. We therefore created a
dataset of 10,000 chip placements where the input is the state associated
with a given placement and the label is the reward for that placement.

To accurately predict the reward labels and generalize to unseen data,
we developed an edge-based graph neural network architecture, which
we call Edge-GNN (Edge-Based Graph Neural Network). The role of this
network is to embed the netlist, distilling information about the type
and connectivity of nodes into a low-dimensional vector representation
that can be used in downstream tasks. The impact of our edge-based
neural architecture on generalization is shown in Extended Data Fig. 2.

In Edge-GNN, we create an initial representation of each node by
concatenating its features—including node type, width, height, x and

y coordinates, and its connectivity to other nodes. We then iteratively
perform the following updates: (1) each edge updates its representation
by applying a fully connected network to a concatenation of the two
nodes that it connects, and (2) each node updates its representation by
passing the mean of all in- and outgoing edges into another fully con-
nected network. The node and edge updates are shown in equation (3).

e v v w

v e

= fc (concat(| |)),

= mean ().
(3)

ij e i j ij

i j v ij

e

∈Neighbours()i

Node embeddings are denoted by vi for 1 ≤ i ≤ N, where N is the total
number of macros and standard cell clusters. Vector representations
of edges connecting nodes vi and vj are denoted as eij. fce indicates a
fully connected layer and wij

e corresponds to the learnable weight
applied to edge eij (which connects nodes i and j). The outputs of the
algorithm are the node and edge embeddings.

Feature embeddings

Macro
embeddings

Netlist
metadata

Macro
features

Netlist
graph

Current
macro id

Edge
embeddings

Reduce
mean

Graph
embedding

Current macro
embedding

Netlist
metadata
embedding

Graph conv.

Index
fc

fc

4 × 4 × 32 8 × 8 × 16
16 × 16 × 8

32 × 32 × 4

Value network

Policy network

64 × 64 × 2

fc

Policy and value networks

fc

De-
conv

128 × 128 × 1

De-
conv

De-
conv

De-
conv

De-
conv

128 × 128 × 1

Masked
policy

128 × 128 × 1

Mask

Fig. 2 | Policy and value network architecture. An embedding layer encodes
information about the netlist adjacency, node features and the current macro
to be placed. The policy and value networks then output a probability

distribution over available grid cells and an estimate of the expected reward for
the current placement, respectively. id, identification number; fc, fully
connected layer; de-conv, deconvolution layer.

Table 1 | Comparisons against baselines

Name Method Timing Total area (μm2) Total power (W) Wirelength (m) Congestion

WNS (ps) TNS (ns) H (%) V (%)

Block 1 RePlAce 374 233.7 1,693,139 3.70 52.14 1.82 0.06

Manual 136 47.6 1,680,790 3.74 51.12 0.13 0.03

Our method 84 23.3 1,681,767 3.59 51.29 0.34 0.03

Block 2 RePlAce 97 6.6 785,655 3.52 61.07 1.58 0.06

Manual 75 98.1 830,470 3.56 62.92 0.23 0.04

Our method 59 170 694,757 3.13 59.11 0.45 0.03

Block 3 RePlAce 193 3.9 867,390 1.36 18.84 0.19 0.05

Manual 18 0.2 869,779 1.42 20.74 0.22 0.07

Our method 11 2.2 868,101 1.38 20.80 0.04 0.04

Block 4 RePlAce 58 11.2 944,211 2.21 27.37 0.03 0.03

Manual 58 17.9 947,766 2.17 29.16 0.00 0.01

Our method 52 0.7 942,867 2.21 28.50 0.03 0.02

Block 5 RePlAce 156 254.6 1,477,283 3.24 31.83 0.04 0.03

Manual 107 97.2 1,480,881 3.23 37.99 0.00 0.01

Ours 68 141.0 1,472,302 3.28 36.59 0.01 0.03

Here, we compare our method with the state-of-the-art method (RePlAce14) and with manual placements using an industry-standard EDA tool. For all metrics in this table, lower is better.
H, horizontal; V, vertical.

210 | Nature | Vol 594 | 10 June 2021

Article

The supervised model is trained via regression to minimize the
weighted sum of mean squared loss (negative reward). This super-
vised task allowed us to find the features and architecture necessary to
generalize reward prediction across netlists. To incorporate Edge-GNN
into our RL policy network, we removed the prediction layer and then
used it as the encoder of the policy network, as shown in Fig. 2.

To place a new netlist at inference time, we load the pre-trained
weights of the policy network and apply it to the new netlist. We refer
to placements generated by a pre-trained policy with no fine-tuning as
zero-shot placements. Such a placement can be generated in subsec-
ond times, because it requires only a single forward pass through the
pre-trained policy for each macro. We can further optimize placement
quality by fine-tuning the policy network. Doing so gives us the flex-
ibility to either use the pre-trained weights (which have learned a rich
representation of the input state) or further fine-tune these weights
to optimize for the properties of a particular chip netlist.

Figure 1 shows an overview of the proposed policy network (modelled
by πθ in equation (1)) and value network architectures. The input is the
netlist hypergraph (represented as an adjacency matrix and list of node
features), the identity of the current node to be placed, the metadata
of the netlist, and the process technology node (for example, 7 nm).
The netlist is fed into our Edge-GNN architecture to generate embed-
dings of the partially placed netlist and of the current node. We use
a feed-forward network to embed the metadata. These embedding
vectors are then concatenated to form the state embedding, which
is passed to another feed-forward neural network to generate a final
representation of the state. This state is then fed into the policy net-
work (composed of five deconvolutions, batch normalization28 and
rectified linear unit (ReLU) activation layers29) to generate a probabil-
ity distribution over actions and into a value network (composed of
a feed-forward network) to predict the value of the input state. The
deconvolution layers have a kernel size of 3 × 3, a stride of 2, and 16, 8,
4, 2 and 1 filter channels.

Empirical evaluation
In this section, we evaluate the ability of our method to generalize,
explore the impact of using pre-trained policies and compare our

method to state-of-the-art baselines. We also inspect the visual appear-
ance of generated placements and provide insights into the behaviour
of our policy.

In terms of resource usage, for pre-training we used the same number
of workers as blocks in the training dataset (for example, for the largest
training set with 20 blocks, we pre-trained with 20 workers) and the
pre-training runtime was 48 h. To generate the fine-tuning results in
Table 1, our method ran on 16 workers for up to 6 h, but the runtime was
often considerably lower owing to early stopping. For both pre-training
and fine-tuning, a worker consists of an Nvidia Volta graphics process-
ing unit (GPU) and 10 central processing units (CPUs), each with 2 GB
of RAM. For the zero-shot mode (applying a pre-trained policy to a new
netlist with no fine-tuning), we can generate a placement in less than
a second on a single GPU.

Domain adaptation results
Figure 3 compares the quality of placements generated using
pre-trained policies to those generated by training the policy from
scratch. The training dataset is composed of blocks of TPU and of the
open-source Ariane RISC-V CPU30. In each experiment, we pre-train the
policy on all blocks except for the target block on which we evaluate.
We show results for the zero-shot mode, as well as after fine-tuning the
pre-trained policy on a particular design for 2 h and 12 h.

The policy trained from scratch takes much longer to converge, and
even after 24 h the results (as evaluated by the reward function) are worse
than what the fine-tuned policy achieves in 12 h. This demonstrates
that exposure to many different designs during pre-training enables
faster generation of higher-quality placements for new unseen blocks.

Figure 4 shows the convergence plots for training from scratch versus
training from a pre-trained policy network for Ariane RISC-V CPU30.
Not only does the pre-trained policy start with a lower placement cost,
but it also converges more than 30 h faster than the policy trained
from scratch.

Learning from larger datasets. In the following, we explore the
impact of the training data on the learning ability of our policy. TPU
chip blocks are quite diverse, and we carefully selected blocks across
a representative range of functionalities (for example, on-chip and
inter-chip network blocks, computation cores, memory controllers,
data transport buffers and logic, and various interface controllers),
saturations (ratio of total area of macros to that of the canvas, <30%,
30–60% and >60%) and macro counts (up to a few hundred). The small
training set contains 2 blocks, the medium set contains 5 blocks and the
large one contains 20 blocks. As we pre-train on more chip blocks, we
are able to more quickly generate higher quality placements for new

Blocks

P
la

ce
m

en
t

co
st

0

0.05

0.10

0.15

0.20

0.25

TPU Block 1 TPU Block 2 TPU Block 3 TPU Block 4 Ariane RISC-V
CPU

Zero-shot: sub-second

Fine-tuned for 2 h

Fine-tuned for 12 h

From scratch for 24 h

Fig. 3 | Training from scratch versus fine-tuning for varying amounts of
time. For each block, we show zero-shot results, results after fine-tuning for 2 h
and 12 h, and results for policies trained from scratch. As can be seen in the
table, the pre-trained policy network consistently outperforms the policy
network trained from scratch, demonstrating the effectiveness of learning
from training data offline.

Training time (h)

P
la

ce
m

en
t

co
st

0

0.1

0.2

0.3

0.4

0 10 20 30 40

Train policy from scratch Fine-tune a pre-trained policy

Fig. 4 | Convergence plots on Ariane RISC-V CPU. Placement cost of training a
policy network from scratch versus fine-tuning a pre-trained policy network
for a block of Ariane RISC-V CPU.

Nature | Vol 594 | 10 June 2021 | 211

unseen chip blocks. Figure 5 shows the impact of a larger training set
on performance. As we increase the training set from 2 to 5 blocks, and
finally to 20 blocks, the policy network generates better placements
both at zero-shot and after being fine-tuned for the same number of
hours. This suggests that as we expose the policy network to a greater
variety of distinct chip designs, it becomes less prone to overfitting
and better at generalizing to new unseen designs.

Comparing with baseline methods. In this section, we compare our
method with the state-of-the-art RePlAce14 and with the production
design of the previous generation of TPU, which was generated by a
team of human physical designers. The results are shown in Table 1.

To perform a fair comparison, we ensured that all methods had the
same experimental setup, including the same inputs and the same
EDA tool settings. We note that we ran all of the evaluations of RePlAce
and our method ourselves, but we relied on the TPU physical design
team to share metrics for their best-performing manual placements,
and they may have evaluated with a slightly different EDA version. For
more details, see Extended Data Table 1.

For our method, we use a policy pre-trained on the largest dataset
(20 TPU blocks) and then fine-tune it on five target unseen blocks
(denoted as blocks 1–5) for no more than 6 h. For confidentiality rea-
sons, we cannot disclose the details of these blocks, but each contains
up to a few hundred macros and millions of standard cells.

When evaluating the quality of a chip floorplan, there are several
metrics that are important and that trade off against each other. There
is no single metric that can be used to capture the overall quality of a
placement, so we report all key metrics, including the total wirelength,
timing, routing congestion (horizontal and vertical), area and power.
Timing is reported via total negative slack (TNS) and worst negative slack
(WNS). Negative slack is a measure of the extent to which the latency
of the signal exceeds the expected latency. Timing and congestion are
constraints, whereas wirelength, power and area are metrics to optimize.

To compare with RePlAce, which has a different objective function,
we treat the output of a commercial EDA tool as ground truth. To per-
form this comparison, we fix the macro placements generated by our
method and by RePlAce, and allow the commercial EDA tool to further
optimize the standard cell placements with settings drawn from our
production workflow. We used the version of RePLAce provided in
ref. 31, based on the version of the code published on 9 January 2020.
Except for the density threshold (where RePlAce benefited from a lower
threshold than its default), we used the default settings and did not use
the timing-driven capability of RePlAce.

As shown in Table 1, our method outperforms RePlAce in gener-
ating placements that meet design criteria. Although RePlAce is

faster and runs in under an hour on a single Intel CPU of 3.7 GHz,
the placements are generally of lower quality. Given the constraints
imposed by the underlying process technology node, placements
will not be able to meet timing constraints in the later stages of the
design flow if WNS is considerably above 150 ps or if the horizontal
or vertical congestion is over 1%, rendering many RePlAce place-
ments (blocks 1, 2, 3) unusable. These results demonstrate that our
approach is effective in generating high-quality placements that
meet design criteria.

Table 1 also shows the results for the manual baseline, which is the
actual production design of the previous TPU chip. This baseline was
generated by the TPU’s physical design team, and involved many itera-
tions of placement optimization, guided by feedback from a commer-
cial EDA tool over a period of several months. Both our method and
human experts consistently generate viable placements that meet
timing and congestion requirements. However, our method also out-
performs or matches manual placements in area, power and wirelength.
Furthermore, our end-to-end learning-based approach takes far less
time to meet design criteria.

Conclusion
In this work, we propose an RL-based approach to chip floorplanning
that enables domain adaptation. The RL agent becomes better and
faster at floorplanning optimization as it places a greater number of
chip netlists. We show that our method can generate chip floorplans
that are comparable or superior to human experts in under six hours,
whereas humans take months to produce acceptable floorplans for
modern accelerators. Our method has been used in production to
design the next generation of Google TPU.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41586-021-03544-w.

1. Markov, I. L., Hu, J. & Kim, M. Progress and challenges in VLSI placement research. Proc.
IEEE 103, 1985–2003 (2015).

2. Tang, M. & Yao, X. A memetic algorithm for VLSI floorplanning. IEEE Trans. Syst. Man
Cybern. B 37, 62–69 (2007).

3. Breuer, M. A. A class of min-cut placement algorithms. In Proc. 14th Design Automation
Conference (DAC 1977) 284–290 (IEEE, 1977).

4. Fiduccia, C. M. & Mattheyses, R. M. A linear-time heuristic for improving network
partitions. In 19th Design Automation Conference 175–181 (IEEE, 1982).

5. Roy, J. A., Papa, D. A. & Markov, I. L. in Modern Circuit Placement (eds Nam, G.-J. &
Cong, J. J.) 97–133 (Springer, 2007).

6. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science
220, 671–680 (1983).

7. Sechen, C. M. & Sangiovanni-Vincentelli, A. L. TimberWolf3.2: a new standard cell
placement and global routing package. In 23rd ACM/IEEE Design Automation Conference
432–439 (IEEE, 1986).

8. Sarrafzadeh, M., Wang, M. & Yang, X. in Modern Placement Techniques 57–89 (Springer,
2003).

9. Luo, T. & Pan, D. Z. DPlace2.0: a stable and efficient analytical placement based on
diffusion. In 2008 Asia and South Pacific Design Automation Conference 346–351
(IEEE, 2008).

10. Hu, B. & Marek-Sadowska, M. Multilevel fixed-point-addition-based VLSI placement.
IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 24, 1188–1203 (2005).

11. Viswanathan, N., Pan, M. & Chu, C. in Modern Circuit Placement (eds Nam, G.-J. &
Cong, J. J.) 193–228 (Springer, 2007).

12. Kim, M., Lee, D., Markov, I. L. & Sim, P. L. An effective placement algorithm. IEEE Trans.
Comput. Aided Des. Integrated Circ. Syst. 31, 50–60 (2012).

13. Lu, J. et al. ePlace: electrostatics-based placement using fast Fourier transform and
Nesterov’s Method. ACM Trans. Des. Autom. Electron. Syst. 20, 17 (2015).

14. Cheng, C.-K., Kahng, A. B., Kang, I. & Wang, L. RePlAce: advancing solution quality and
routability validation in global placement. IEEE Trans. Comput. Aided Des. Integrated
Circ. Syst. 38, 1717–1730 (2019).

15. Silver, D. et al. Mastering the game of Go without human knowledge. Nature 550,
354–359 (2017).

16. Aslam, B., Amjad, F. & Zou, C. C. Optimal roadside units placement in urban areas for
vehicular networks. In 2012 IEEE Symposium on Computers and Communications (ISCC)
000423–000429 (IEEE, 2012).

P
la

ce
m

en
t

co
st

0.125

0.150

0.175

0.200

0.225

0.250

Zero-shot
0 h

Fine-tune
10 h

Fine-tune
20 h

Fine-tune
30 h

Fine-tune
40 h

Small dataset (2 blocks) Medium dataset (5 blocks) Large dataset (20 blocks)

Fig. 5 | Effect of pre-training dataset size. We pre-train the policy network on
three different training datasets (the small dataset is a subset of the medium
one, and the medium dataset is a subset of the large one). We then fine-tune this
pre-trained policy network on the test block and report cost at various training
durations. As the dataset size increases, both the time to convergence and the
quality of generated placements increase.

https://doi.org/10.1038/s41586-021-03544-w

212 | Nature | Vol 594 | 10 June 2021

Article
17. Medlock, J. & Galvani, A. P. Optimizing influenza vaccine distribution. Science 325,

1705–1708 (2009).
18. Cherniak, C., Mokhtarzada, Z., Rodriguez-Esteban, R. & Changizi, K. Global optimization

of cerebral cortex layout. Proc. Natl Acad. Sci. USA 101, 1081–1086 (2004).
19. Langford, J. & Zhang, T. The Epoch-Greedy algorithm for multi-armed bandits with side

information. In Advances in Neural Information Processing Systems Vol. 20, 817–824
(2008).

20. Usunier, N., Synnaeve, G., Lin, Z. & Chintala, S. Episodic exploration for deep deterministic
policies: an application to starcraft micromanagement tasks. In Proc. International
Conference on Learning Representations (2017).

21. Bello, I., Pham, H., Le, Q. V., Norouzi, M. & Bengio, S. Neural combinatorial optimization
with reinforcement learning. Preprint at https://arxiv.org/abs/1611.09940 (2016).

22. Mirhoseini, A. et al. Device placement optimization with reinforcement learning. In Proc.
International Conference on Machine Learning 2430–2439 (PMLR, 2017).

23. Mirhoseini, A. et al. A hierarchical model for device placement. In Proc. International
Conference on Learning Representations (2018).

24. Schulman, J., Wolski, F., Dhariwal, P., Radford, A. & Klimov, O. Proximal policy optimization
algorithms. Preprint at https://arxiv.org/abs/1707.06347 (2017).

25. Obermeier, B., Ranke, H. & Johannes, F. M. Kraftwerk: a versatile placement approach. In
Proc. 2005 International Symposium on Physical Design 242–244 (ACM, 2005).

26. Spindler, P., Schlichtmann, U. & Johannes, F. M. Kraftwerk2 – a fast force-directed
quadratic placement approach using an accurate net model. IEEE Trans. Comput. Aided
Des. Integrated Circ. Syst. 27, 1398–1411 (2008).

27. Viswanathan, N. et al. RQL: global placement via relaxed quadratic spreading and
linearization. In Proc. Design Automation Conference 453–458 (ACM/IEEE, 2007).

28. Ioffe, S. & Szegedy, C. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In Proc. 32nd International Conference on Machine
Learning 448–456 (JMLR, 2015).

29. Nair, V. & Hinton, G. E. Rectified linear units improve restricted Boltzmann machines. In
Proc. International Conference on Machine Learning 807–814 (Omnipress, 2010).

30. Zaruba, F. & Benini, L. The cost of application-class processing: energy and performance
analysis of a Linux-ready 1.7-GHz 64-Bit RISC-V core in 22-nm FDSOI technology. IEEE
Trans. Very Large Scale Integr. VLSI Syst. 27, 2629–2640 (2019).

31. RePlAce software – the OpenROAD project https://github.com/The-OpenROAD-Project/
RePlAce (2020).

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

© The Author(s), under exclusive licence to Springer Nature Limited 2021

https://arxiv.org/abs/1611.09940
https://arxiv.org/abs/1707.06347
https://github.com/The-OpenROAD-Project/RePlAce
https://github.com/The-OpenROAD-Project/RePlAce

Methods

In the following, we provide details of the proposed methodologies.

Problem statement
In this work, we target the chip floorplanning problem, in which the
objective is to map the nodes of a netlist (a hypergraph describing the
chip) onto a chip canvas (a bounded two-dimensional space), so that
final power, performance and area (PPA) is optimized. In this section,
we provide an overview of how we formulate the problem as an RL prob-
lem, followed by a detailed description of the reward function, action
and state representations, policy architecture, and policy updates.

Overview of our approach
We take a deep RL approach to the chip floorplanning problem, in which
an RL agent (policy network) sequentially places the macros. Once all
macros are placed, we use a force-directed (FD) method11,25–27 to place
clusters of standard cells, as shown in Fig. 1.

In this section, we define the reward r, state s, actions a, policy net-
work architecture πθ(a|s) parameterized by θ, and finally the optimiza-
tion method that we use to train those parameters. In our setting, at the
initial state, s0, we have an empty chip canvas and an unplaced netlist.
At each step one macro is placed, and the final state, sT, corresponds
to a completely placed netlist. Thus, T is equal to the total number of
macros in the netlist. At each time step t, the agent begins in state st,
takes an action (at), arrives at a new state (st+1), and receives a reward
(rt) from the environment (0 for t < T and negative proxy cost for t = T).

We define st to be a concatenation of features representing the state
at time t, including a graph embedding of the netlist (including both
placed and unplaced nodes), a node embedding of the current macro
to place, metadata about the netlist, and a mask representing the fea-
sibility of placing the current node onto each cell of the grid.

The action space is all valid placements of the tth macro, which is a
function of the density mask. Action at is the cell placement of the tth
macro predicted by the RL policy network. st+1 is the next state, which
includes an updated representation containing information about the
newly placed macro, an updated density mask and an embedding for
the next node to be placed. In our formulation, rt is 0 for every time
step except for the final, rT, where it is a weighted sum of approximate
wirelength, congestion and density.

Through repeated episodes (sequences of states, actions and
rewards), the policy network learns to take actions that will maximize
cumulative reward. We use PPO24 to update the parameters of the policy
network, given the cumulative reward for each placement.

Detailed methodology
Our goal is to minimize PPA, subject to constraints on routing conges-
tion and density. Our true reward is the output of a commercial EDA
tool, including wirelength, routing congestion, density, power, timing
and area. However, RL policies require 10,000s of examples to learn
effectively, so it is critical that the reward function be fast to evaluate,
ideally running in a few milliseconds. In order to be effective, these
approximate reward functions must also be positively correlated with
the true reward. Therefore, a component of our cost is wirelength,
because it is not only much cheaper to evaluate, but also correlates
with power and performance (timing).

To combine multiple objectives into a single reward function that
can be optimized, we take the weighted sum of proxy wirelength,
congestion and density, where the weights can be used to explore the
trade-off between these metrics. While we treat congestion as a soft
constraint (that is, lower congestion improves the reward function),
we treat density as a hard constraint, masking out actions (grid cells
to place nodes onto) the density of which exceeds the target density.

To keep the runtime per iteration small, we apply several approxima-
tions to the calculation of the reward function:

(1) We group millions of standard cells into a few thousand clusters
using hMETIS32, a partitioning technique based on the minimum cut
objective. Once all macros are placed, we use an FD method to place
the standard cell clusters. Doing so enables us to generate an approxi-
mate but fast standard cell placement that facilitates policy network
optimization.
(2) We discretize the grid to a few thousand grid cells and place the cen-
tre of macros and standard cell clusters onto the centre of the grid cells.
(3) When calculating wirelength, we make the simplifying assumption
that all wires leaving a standard cell cluster originate at the centre of
the cluster.
(4) To calculate the routing congestion cost, we consider only the aver-
age congestion of the top 10% most congested grid cells.

A chip netlist typically consists of hundreds of macros and millions
of standard cells. Owing to their negligible area, standard cells can be
approximated as points with zero area, allowing for analytic solvers to
optimally place them with a small margin of error. Macros, on the other
hand, have much larger area and cannot be optimally placed with these
same analytic techniques. We chose to target macro placement, as it is
a much more challenging problem, which previously required human
experts to iterate for months to generate a high-quality placement.

Synthesis of the input netlist. We use a commercial tool to synthesize
the netlist from RTL. Synthesis is physical-aware, in the sense that it
has access to the floorplan size and the locations of the input/output
pins, which were informed by inter- and intra-block-level information.

Selection of grid rows and columns. Given the dimensions of the
chip canvas, there are many choices to discretize the two-dimensional
canvas into grid cells. This decision affects the difficulty of optimization
and the quality of the final placement. We limit the maximum number
of rows and columns to 128. We treat choosing the optimal number of
rows and columns as a bin-packing problem and rank different combi-
nations of rows and columns by the amount of wasted space that they
incur. We use an average of 30 rows and columns in our experiments.

Selection of macro order. To select the order in which the macros
are placed, we sort macros by descending size and break ties using a
topological sort. By placing larger macros first, we reduce the chance
of there being no feasible placement for a later macro. The topological
sort can help the policy network learn to place connected nodes close
to one another. Another potential approach would be to learn to joint-
ly optimize the ordering of macros and their placement, making the
choice of which node to place next part of the action space. However,
this enlarged action space would considerably increase the complexity
of the problem, and we found that this heuristic worked in practice.

Clustering of standard cells. To quickly place standard cells to pro-
vide a signal to our RL policy, we first cluster millions of standard cells
into a few thousand clusters. There has been a large body of work on
clustering for chip netlists33–38. As has been suggested in the literature39,
such clustering helps not only with reducing the problem size, but also
helps to ‘prevent mistakes’ (for example, prevents timing paths from
being split apart). We also provide the clustered netlist to each of the
baseline methods with which we compare. To perform this clustering,
we employed a standard open-source library, hMETIS39, which is based
on multilevel hypergraph partitioning schemes with two important
phases: (1) coarsening phase, and 2) uncoarsening and refinement
phase.

Generation of adjacency matrix. To convert the netlist hypergraph
into an adjacency matrix that can be consumed by the Edge-GNN en-
coder, we apply the following transformation. For each pair of nodes
in the clustered netlist (either macros or clusters of standard cells), we
generate an edge in the adjacency matrix with the following weight.

Article
If the register distance between the two nodes is greater than 4, then no
edge is created. Otherwise, we apply an exponentially decaying weight
as the distance grows, starting with 1 if the distance is 0 and halved with
each additional unit of distance.

Placement of standard cells. To place standard cell clusters, we use
an approach similar to classic FD methods40. We represent the netlist
as a system of springs that apply force to each node, according to the
weight × distance formula, causing tightly connected nodes to be at-
tracted to one another. We also introduce a repulsive force between
overlapping nodes to reduce placement density. After applying all
forces, we move nodes in the direction of their force vector. To reduce
oscillations, we set a maximum distance for each move.

Postprocessing. To prepare the placements for evaluation by a com-
mercial EDA tool, we perform a simple legalization step to snap macros
to the nearest power grid. We then fix the macro placements and use
an EDA tool to place the standard cells and evaluate the placement.

Reward
Wirelength. Following the literature40–43, we employ the half-perimeter
wirelength (HPWL), the most commonly used approximation for wire-
length. HPWL is defined as the half-perimeter of the bounding boxes
for all nodes in the netlist. The HPWL for a given net (edge) i is:

i x x

y y

HPWL() = (max { } − min { } + 1)

+ (max { } − min { } + 1).
(4)

b i b b i b

b i b b i b

∈ ∈

∈ ∈

Here xb and yb are the x and y coordinates of the end points of net i. The
overall HPWL cost is then calculated by taking the normalized sum of
all half-perimeter bounding boxes, as shown in equation (5). Here q(i)
is a normalization factor that improves the accuracy of the estimate by
increasing the wirelength cost as the number of nodes increases, where
Nnetlist is the number of nets. We calculate the total HPWL as follows:

∑ q i iHPWL(netlist) = ()HPWL(). (5)
i

N

=1

netlist

The wirelength also has the advantage of correlating with other
important metrics, such as power and timing. Although our method
does not optimize directly for these other metrics, it generates place-
ments that meet design criteria with respect to power and timing (as
shown in Table 1).

Routing congestion. We also followed convention in calculating proxy
congestion44, using a simple deterministic routing based on the locations
of the driver and loads on the net. The routed net occupies a certain
portion of available routing resources (determined by the underlying
semiconductor fabrication technology) for each grid cell through which
it passes. We keep track of vertical and horizontal allocations in each grid
cell separately. To smooth the congestion estimate, we run 5 × 1 convolu-
tional filters in both the vertical and horizontal direction. After all nets
are routed, we take the average of the top 10% congestion values, drawing
inspiration from the ABA10 metric in MAPLE44. The congestion cost in
equation (2) is the top 10% average congestion calculated by this process.

Density. We treat density as a hard constraint, disallowing the policy
network from placing macros in locations that would cause density to
exceed the target (maxdensity) or that would result in infeasible macro
overlap. This approach has two benefits: (1) it reduces the number of
invalid placements generated by the policy network, and (2) it reduces
the search space of the optimization problem, making it more compu-
tationally tractable.

A feasible placement of a standard cell cluster must meet the fol-
lowing criterion: the density of placed items in each grid cell must not

exceed a given target density threshold (maxdensity). We set this threshold
to be 0.6 in our experiments to avoid over-utilization, which would
render placements unusable. To meet this constraint, during each
RL step, we calculate the current density mask, a binary m × n matrix
representing grid cells onto which we can place the centre of the cur-
rent node without violating the density threshold. Before selecting an
action, we first take the dot product of the mask and the policy network
output and then sample from the resulting probability distribution over
feasible locations. This approach prevents the policy network from
generating placements with overlapping macros or dense standard
cell areas. We also enable blockage-aware placements (such as clock
straps) by setting the density function of the blocked areas to 1.

Action representation
For policy optimization purposes, we convert the canvas into an m × n
grid. Thus, for any given state, the action space (or the output of the
policy network) is the probability distribution of placements of the
current macro over the m × n grid. The action is then sampled from
this probability distribution.

State representation
Our state contains information about the adjacency matrix correspond-
ing to the clustered netlist, its node features (width, height, type), edge
features (number of connections), current node (macro) to be placed,
and metadata of the netlist and the underlying technology (for exam-
ple, routing allocations, total number of wires, macros and standard
cell clusters). Next, we discuss how we process these features to learn
effective representations for the chip floorplanning problem.

Enabling transfer learning
To discover domain-adaptive architectures, we propose grounding
the policy architecture search in the supervised task of predicting the
value of reward functions. We take this approach because exploration
would be far costlier in an RL setting, and the underlying complexity of
training a domain-adaptive policy network would be prohibitively high,
as it involves an immense state space encompassing all possible place-
ments of all possible chips. Furthermore, different netlists and grid
sizes can have very different properties, including differing numbers of
nodes, macro sizes, netlist topologies and canvas widths and heights.

The intuition behind this approach is that a policy network archi-
tecture capable of transferring placement optimization across chips
should also be able to encode the state associated with a new unseen
chip into a meaningful signal at inference time. We therefore propose
training a neural network architecture capable of predicting reward
on new netlists, with the ultimate goal of using this architecture as the
encoder layer of our policy network.

To train this supervised model, we needed a large dataset of chip
floorplans and their corresponding reward labels. We therefore created
a dataset of 10,000 chip floorplans where the input is the state associ-
ated with a given floorplan and the label is the reward for that floorplan
(wirelength and congestion). We built this dataset by generating 2,000
floorplans for each of five TPU blocks. To collect diverse floorplans,
we trained a vanilla policy network with various congestion weights
(ranging from 0 to 1) and random seeds, and collected snapshots of
floorplans throughout the course of policy training. An untrained policy
network starts off with random weights and the generated floorplans
are of low quality, but as the policy network trains, the quality of gener-
ated floorplans improves, allowing us to gather a diverse dataset with
floorplans of varying quality.

To train a supervised model capable of accurately predicting wire-
length and congestion labels and generalizing to unseen data, we
developed a graph neural network architecture (Edge-GNN) to embed
information about the netlist. The role of Edge-GNN is to distill informa-
tion about the type and connectivity of a node into a low-dimensional vec-
tor representation that can be used in downstream tasks. Some examples

of such downstream tasks are node classification45, device placement46,
link prediction47 and design rule check (DRC) violations prediction48.

We create a vector representation of each node by first concatenating
its features, including node type, width, height, and x and y coordinates.
We also pass node adjacency information as input to our algorithm. We
then repeatedly perform the following updates: (1) each edge updates
its representation by applying a fully connected network to an aggre-
gated representation of intermediate node embeddings, and (2) each
node updates its representation by taking the mean of adjacent edge
embeddings. The node and edge updates are shown in equation (3).

Node embeddings are denoted by vi for 1 ≤ i ≤ N, where N is the total
number of macros and standard cell clusters. The vector representa-
tions of the edge connecting nodes vi and vj is represented as eij. Both
edge (eij) and node (vi) embeddings are 32-dimensional. vi is initialized
by passing the node features (type, width, height, x, y) through a
feed-forward network. fce is a 65 × 32 feed-forward network and wij

e is
a 1 × 1 weight corresponding to the number of nets between adjacent
nodes. Neighbours(vi) denotes the neighbours of vi. The outputs of
the algorithm are the node and edge embeddings.

Our supervised model consists of the following. (1) The graph neural
network (Edge-GNN) described earlier, which embeds information
about node type and the netlist adjacency matrix. (2) A fully connected
feed-forward network that embeds netlist metadata, including informa-
tion about the underlying semiconductor technology (horizontal and
vertical routing capacity), the total number of nets (edges), macros, and
standard cell clusters, canvas size and number of rows and columns in
the grid. (3) A fully connected feed-forward network (the prediction
layer) whose input is a concatenation of the netlist adjacency matrix
and metadata embeddings, and whose output is the reward predic-
tion. The netlist embedding is created by applying a reduced mean
function on the edge embeddings. The supervised model is trained via
regression to minimize the weighted sum of the mean squared loss of
wirelength and congestion.

This supervised task allowed us to find the features and architecture
necessary to generalize reward prediction across netlists. To incorpo-
rate this architecture into our policy network, we simply removed the
prediction layer and then used the remaining network as the encoder
of the policy network, as shown in Fig. 2.

To handle different grid sizes corresponding to different choices of
rows and columns, we set the grid size to 128 × 128, and mask the unused
L-shaped section for grid sizes smaller than 128 rows and columns. To
place a new test netlist at inference time, we load the pre-trained weights
of the policy network and apply it to the new netlist. We refer to place-
ments generated by a pre-trained policy network with no fine-tuning as
zero-shot placements. Such a placement can be generated in less than a
second, because it requires only a single inference step of the pre-trained
policy network for each macro. We can further optimize placement qual-
ity by fine-tuning the policy network, meaning that we have the option
to either use the pre-trained weights (which have learned a rich repre-
sentation of the input state) directly at inference or further fine-tune
these weights to optimize for the properties of a particular chip netlist.

Policy network architecture
Figure 1 depicts an overview of the policy network (modelled by πθ in
equation (1) and the value network architecture that we developed for
chip floorplanning. The input to these networks is the adjacency matrix
and node features corresponding to the netlist hypergraph, the identity
of the current node to be placed, and the metadata of the netlist and
the semiconductor technology. The netlist is passed through our graph
neural network architecture (Edge-GNN) as described earlier. Edge-GNN
generates embeddings of (1) the partially placed hypergraph and
(2) the current node. We use a simple feed-forward network to embed
(3) the metadata. These three embedding vectors are then concat-
enated to form the state embedding, which is passed to a feed-forward
neural network. The output of the feed-forward network is then fed into

the policy network (composed of five deconvolutions, batch normaliza-
tion, and ReLU activation layers) to generate a probability distribution
over actions and passed to a value network (composed of a feed-forward
network) to predict the value of the input state.

Policy network update: training parameters θ. In equation (1), the
objective is to train a policy network πθ that maximizes the expected
value (E) of the reward (Rp,g) over the policy network’s placement dis-
tribution. To optimize the parameters of the policy network, we use
PPO24 with a clipped objective as shown below:

L θ E r θ A r θ ε ε A() = ˆ [min(() ˆ , clip((), 1 − , 1 +) ˆ)],t t t t t
CLIP

where Êt represents the expected value at timestep t, rt is the ratio of
the new policy and the old policy, and Ât is the estimated advantage at
timestep t.

Experimental setup
To perform a fair comparison, we ensured that our method and all base-
line methods had access to the same inputs and the same evaluation
settings. Extended Data Fig. 1 shows the flow that we used to conduct
the evaluations.

Once each method finishes placing the netlist, the macro locations
are frozen and snapped to the power grid. Next, the EDA tool performs
standard cell placement. The settings for the EDA tool are drawn directly
from our production flow and thus we cannot share all details. The final
metrics in Table 1 are reported after PlaceOpt, meaning that global
routing has been performed by the EDA tool.

Clustering standard cells allowed our method to more effectively
optimize the placement of macros. We therefore gave RePlAce access to
clustered standard cells and found that its performance also improved,
so we reported results of RePlAce on the netlist with clustered standard
cells. Although RePlAce has a default density threshold of 1.0, we found
that our setting of 0.6 resulted in better performance, so that is what
we used to report RePlAce performance. In all other cases, we used the
default settings and cost functions for RePlAce. For reproducibility, we
provide all architectural details and hyperparameter settings for our
RL algorithm in Extended Data Table 1, as well as for the FD method
used to place standard cells in Extended Data Table 2.

The deconvolutions layers have a 3 × 3 kernel size with stride 2 and
16, 8, 4, 2 and 1 filter channels. To cluster the standard cells for each
chip block, we used hMETIS32, which partitions millions of standard
cells into thousands of clusters. The hyperparameters for hMETIS
are listed in Extended Data Table 3. For all other hMETIS hyperparam-
eters, we simply use the default settings (see the hMETIS manual49
for the values of these defaults and for more detailed information
about each hyperparameter). We note that we use a licensed version
of hMETIS but, to our knowledge, the same features are available in
the open-source version.

To avoid overfitting, we employ an early stopping mechanism that
halts RL training once the policy converges. More precisely, training
stops when it has been two hours since the evaluation return improved
by at least 0.5% over the best return so far.

Open-source benchmark: Ariane RISC-V
For the Ariane benchmark, we used the following open-source design30
(https://github.com/pulp-platform/ariane) and mapped all logical
memories to physical memories of size 256 × 16, resulting in 133 mac-
ros. In Extended Data Fig. 4, we compare a placement generated by our
method trained from scratch and one that was generated in zero-shot
mode by a pre-trained policy.

Use in a production setting
Our method was used in the product tapeout of a recent Google TPU.
We fully automated the placement process through PlaceOpt, at which

https://github.com/pulp-platform/ariane

Article
point the design was sent to a third party for post-placement optimiza-
tion, including detailed routing, clock tree synthesis and post-clock
optimization. This is a standard practice for many hardware teams,
and physical designers spend months iterating with commercial EDA
tools to produce designs that meet the strict requirements to move
to this next stage.

In the production flow, we use the same RL method described in
Table 1 and the same EDA workflow to place standard cells. Although
the RL placements were already comparable to manual designs, we
performed an additional fine-tuning step with simulated annealing
(SA) to further boost performance, which helped to improve macro
orientation, as we do not currently perform macro mirroring in RL.
Adding this fine-tuning step improved wirelength by an average of
1.07% (s.d. = 0.04%), slightly reduced timing (average 1.18 ns reduc-
tion in TNS; s.d. = 2.4 ns) and negligibly affected congestion (less than
0.02% variation in vertical or horizontal congestion in all cases). The
resulting end-to-end runtime was 8 h on average. Since that produc-
tion launch, we have replaced SA in our production workflow with
a greedy postprocessing step that tunes the macro orientation in a
few minutes, considerably reducing our end-to-end runtime without
degrading quality.

Impact of cost trade-offs
In Extended Data Table 4, we perform an ablation study to examine the
impact of congestion weight on the quality of post-PlaceOpt results
(final quality of result from the commercial EDA tool). As expected,
increasing congestion weight improves both horizontal and vertical
congestion up to a point, but results in wirelength degradation, due
to the inherent trade-off between these two metrics. A congestion
weight of 0.1 represents a ‘sweet spot’ in this case, as routing conges-
tion is already low but wirelength has not yet overly degraded, which
together contribute to lower TNS and WNS as well.

Robustness to noise
To demonstrate the sensitivity of our method to noise, we performed
eight runs of fine-tuning on the Ariane RISC-V block, each time with a
different random seed, and we report the results (in proxy wirelength,
congestion and density) in Extended Data Table 5. Our evaluations
demonstrate that the choice of random seed had negligible impact on
all the metrics, including proxy wirelength, congestion and density,
with a standard deviation of 0.0022 in the overall cost across all runs.

Generalization versus training data
As we train on more chip blocks, we are able to speed up the
fine-tuning process on new blocks and generate higher-quality results
faster. As discussed earlier, as we increase the training set from 2
blocks (small dataset) to 5 blocks (medium dataset) and finally to
20 blocks (large dataset), the policy network generates better place-
ments both at zero-shot and after being fine-tuned for the same
number of hours. Extended Data Fig. 3 shows the placement cost
on one test block (a TPU block not included in training) as the policy
network is being pre-trained. We can see that for the small training
dataset, the policy network quickly overfits to the training data and
performance on the test data degrades, whereas it takes longer for
the policy network to overfit on the largest dataset, and the policy
network pre-trained on this larger dataset yields better results on the
test data. This plot suggests that as we expose the policy network to
a greater variety of different training blocks, it will take longer for
the policy network to pre-train, but the policy network will become
less prone to overfitting and better at finding optimized placements
for new unseen blocks.

Insights and visualizations
Here we share some observations about our method’s behaviour that
may provide insight into the metrics in Table 1. One observation is

that the RL policy tends to place macros on the same datapath close to
each other, which results in better timing performance. The Edge-GNN
encoder embeds the features of each node by iteratively averaging and
applying nonlinear transformations to the node’s k-hop neighbouring
nodes and edges, where k is the number of iterations applied. Therefore,
one hypothesis is that the representation of nodes in a given datapath
are similar to one another, causing our policy network to generate
similar predictions about where they should be placed on the canvas.
This naturally results in nodes in the same datapath being placed near
to one another, improving timing performance.

Another observation is that our policy learns to reserve sufficient
area for the subsequent placement of standard cells, as this effectively
optimizes its reward function. Even at zero-shot (meaning that we run
inference on our policy network in less than one second), our method
already exhibits this behaviour, as shown in Extended Data Fig. 4.

Extended Data Fig. 5 juxtaposes a placement generated by a human
physical designer (on the left) with that of our method (on the right) for
a recent TPU block. The white area shows the macro placements and
the green area shows the standard cell placements. Our method cre-
ates donut-shaped placements of macros surrounding standard cells,
which results in a reduction in the total wirelength. These placement
images are blurred to preserve confidentiality.

Comparing with simulated annealing
In the main text, we compare our method with two baselines: the
academic state-of-the-art RePlAce and human expert placements. In
this section, we provide an additional comparison with SA. To gener-
ate results for our method, we use the same procedure as in Table 1,
pre-training a policy on the largest dataset (20 TPU blocks) and then
fine-tuning it on the same five unseen test blocks.

SA is known to be a powerful, but slow, optimization method. However,
similar to RL, SA is capable of optimizing arbitrary non-differentiable
cost functions. To show the relative sample efficiency of RL, we ran
experiments in which we replaced it with an SA optimizer. Our SA algo-
rithm works as follows: in each SA iteration (step), we perform 2N macro
actions (where N is the number of macros). A macro action takes one of
three forms: swap, shift and mirror. Swap selects two macros at random
and swaps their locations, if feasible. Shift selects a macro at random and
shifts that macro to a neighbouring location (left, right, up or down).
Mirror flips a macro at random across the x axis, across the y axis, or
across both the x and y axes. We apply a uniform probability over the
three move types, meaning that at each time step there is a 1/3 chance
of swapping, a 1/3 chance of shifting and a 1/3 chance of flipping. After N
macro actions, we use an FD method to place clusters of standard cells
while keeping macro locations fixed, just as we do in our RL method.
For each macro action or FD action, the new state is accepted if it leads
to a lower cost. Otherwise, the new state is accepted with a probabil-
ity of exp[prevcost – newcost)/t], where t = tmaxexp{−log[(tmax/tmin)(step/
steps)]}. Here prevcost refers to the cost at the previous iteration; newcost
refers to the cost at the current iteration; t is the temperature, which
controls the willingness of the algorithm to accept local degradations
in performance, allowing for exploration; and tmax and tmin correspond
to the maximum and minimum allowable temperature, respectively.

To make comparisons fair, we ran 80 SA experiments sweeping
different hyperparameters, including maximum temperature ({10−5,
3 × 10−5, 5 × 10−5, 7 × 10−5, 10−4, 2 × 10−4, 5 × 10−4, 10−3}), maximum SA episode
length ({5 × 104, 105}) and seed (five different random seeds), and report
the best results in terms of proxy wirelength and congestion costs in
Extended Data Table 6. Each of the 80 SA workers runs an experiment
corresponding to one particular choice of the five random seeds, two
episode lengths and eight maximum temperatures.

The SA baseline uses more compute (80 SA workers × 2 CPUs per SA
worker × 18 h of runtime = 2,880 CPU-hours) than our method (16 RL
workers × (1 GPU + 10 CPUs per RL worker) × 6 h = 1,920 CPU-hours).
Here, we treat the cost of one GPU as roughly 10 times that of a CPU.

If we had stopped SA after 12 h (and if we did not use early stopping in
RL), then the two methods would have used equivalent compute, but
the SA results after 12 h were not even close to competitive. Even with
additional time (18 h of SA versus 6 h of RL), SA struggles to produce
high-quality placements compared to our approach, generating place-
ments with 14.4% higher wirelength and 24.1% higher congestion on
average.

Implications for a broader class of problems
We believe that the proposed method has broader implications for
other stages of chip design and other placement optimization tasks.
For example, our zero-shot mode allows design space explorations
through rapid evaluation of computer architectures grounded in the
physical reality. Automating and optimizing architectural exploration
and its interface with physical design can not only further accelerate
the chip design process, but also lead to additional improvements in
critical hardware metrics, such as power and timing.

Furthermore, this method is applicable to a broad class of placement
optimization problems outside of chip design, such as city planning (for
example, traffic light placement), compiler optimization (for example,
datacentre resource allocation) and environmental engineering (for
example, dam placement).

Related work
Chip floorplanning is a longstanding challenge, requiring multi-
objective optimization over circuits of ever-growing complexity. Since
the 1960s, many approaches have been proposed, so far falling into
three broad categories: (1) partitioning-based methods, (2) stochastic/
hill-climbing methods and (3) analytic solvers.

Starting in the 1960s, industry and academic laboratories used
partitioning-based3,4,50 and resistive-network51,52 approaches to chip
floorplanning, as well as resistive-network based methods51,52. These
methods are characterized by a divide-and-conquer approach; the
netlist and the chip canvas are recursively partitioned until sufficiently
small sub-problems emerge, at which point the sub-netlists are placed
onto the sub-regions using optimal solvers. Such approaches are quite
fast to execute and their hierarchical nature allows them to scale to
arbitrarily large netlists. However, by optimizing each sub-problem
in isolation, partitioning-based methods sacrifice quality of the global
solution, especially routing congestion. Furthermore, a poor early
partition may result in an unsalvageable end placement.

In the 1980s, analytic approaches emerged but were quickly over-
taken by stochastic/hill-climbing algorithms, particularly SA6–8. SA is
named for its analogy to metallurgy, in which metals are first heated
and then gradually cooled to induce, or anneal, energy-optimal crystal-
line surfaces. SA applies random perturbations to a given placement
(for example, shifts, swaps or mirroring of macros) and then measures
their effect on the objective function (for example, HPWL). If the per-
turbation is an improvement, it is applied; if not, it is still applied with
some probability, referred to as temperature. Temperature is initialized
to a particular value and is then gradually annealed to a lower value.
Although SA generates high-quality solutions, it is very slow and dif-
ficult to parallelize, thereby failing to scale to the increasingly large
and complex circuits of the 1990s and beyond.

The 1990s–2000s were characterized by multi-level partitioning
methods5,53, as well as the resurgence of analytic techniques54, such as
FD methods9–11,25–27 and nonlinear optimizers55–58. The renewed suc-
cess of quadratic methods was due in part to algorithmic advances
but also to the large size of modern circuits (10–100 million nodes),
which justified approximating the placement problem as that of placing
nodes with zero area. However, despite the computational efficiency
of quadratic methods, they are generally less reliable and produce
lower-quality solutions than their nonlinear counterparts.

Nonlinear optimization approximates cost using smooth mathe-
matical functions, such as the log-sum-exp59 and weighted-average 65

models for wirelength, as well as Gaussian60 and Helmholtz models for
density. These functions are then combined into a single objective func-
tion using a Lagrange penalty or relaxation. Owing to the higher com-
plexity of these models, it is necessary to take a hierarchical approach,
placing clusters rather than individual nodes, an approximation that
degrades the quality of the placement.

The last decade has seen the rise of modern analytic techniques,
including more advanced quadratic methods12,44,61–63, and more recently
electrostatics-based methods such as ePlace13 and RePlAce14. Model-
ling netlist placement as an electrostatic system, ePlace13 proposed a
new formulation of the density penalty in which each node (macro or
standard cell) of the netlist is analogous to a positively charged particle
whose area corresponds to its electric charge. In this setting, nodes
repel each other with a force proportional to their charge (area), and
the density function and gradient correspond to the system’s potential
energy. Variations of this electrostatics-based approach have been
proposed to address standard cell placement13 and mixed-size place-
ment64,65. RePlAce14 is a recent state-of-the-art mixed-size placement
technique that further optimizes ePlace’s density function by intro-
ducing a local density function that tailors the penalty factor for each
individual bin size. DREAMPlace66 further speeds up RePlAce by tak-
ing a deep-learning-based approach to optimize the placement and
leveraging GPU acceleration. However, the focus of DREAMPlace is
standard cell placement optimization, rather than macro placement,
and reports comparable quality to RePlAce. Therefore, we compare
the performance of our method against RePlAce.

There are numerous opportunities for machine learning to advance
physical design67–69. Recent work70 proposes training a model to predict
the number of DRC violations for a given macro placement. DRCs are
rules that ensure that the placed and routed netlist adheres to tape-out
requirements. To generate macro placements with fewer DRCs, ref. 70
uses the predictions from this trained model as the evaluation function
in simulated annealing. Although this work represents an interesting
direction, it reports results on netlists with no more than six macros,
far fewer than any modern block, and does not consider the effect of
place and route optimizations, which can dramatically alter the num-
ber of DRCs. Furthermore, although adhering to the DRC criteria is a
necessary condition, the primary objective of macro placement is to
optimize for wirelength, timing (for example, WNS and TNS), power
and area, and this work does not even consider these metrics.

To address this classic problem, we propose a new category of
approach: an end-to-end learning-based method. This new approach
is most closely related to analytic solvers, particularly nonlinear ones,
in that all of these methods optimize an objective function via gradient
updates. However, our approach differs from prior approaches in its
ability to learn from past experience to generate higher-quality place-
ments on new chips. Unlike existing methods that optimize the place-
ment for each new chip from scratch, our work leverages knowledge
gained from placing prior chips to become better over time. In addition,
our method enables direct optimization of the target metrics, such as
wirelength, density and congestion, without having to define convex
approximations of those functions, as is done in other approaches13,14.
Not only does our formulation make it easy to incorporate new cost
functions as they become available, but it also allows us to weight their
relative importance according to the needs of a given chip block (for
example, timing-critical or power-constrained).

Domain adaptation is the problem of training policies that can learn
across multiple experiences and transfer the acquired knowledge to
perform better on new unseen examples. In the context of chip floor-
planning, domain adaptation involves training a policy across a set
of chip netlists and then applying that trained policy to a new unseen
netlist. The use of deep learning for combinatorial optimization is an
area of growing interest, including approaches to the Travelling Sales-
man problem21,71, neural architecture search72 and model parallelism22,23.
More recently, there has been work on domain adaptation for compiler

Article
optimization46,73–75 and the Maximum Cut problem76. Our approach
not only leverages past experience to reduce training time, but also
produces higher-quality results when exposed to more instances of the
problems. To our knowledge, our method is the first deep RL approach
used in production to solve a combinatorial optimization problem,
namely, in the design of the latest generation of Google TPU.

Data availability
The data supporting the findings of this study are available within the
paper and the Extended Data.

Code availability
The code used to generate these data is available from the correspond-
ing authors upon reasonable request.

32. Karypis, G. & Kumar, V. Hmetis: a hypergraph partitioning package http://glaros.dtc.umn.

edu/gkhome/metis/hmetis/overview (1998).
33. Alpert, C. J., Hagen, L. W. & Kahng, A. B. A hybrid multilevel/genetic approach for circuit

partitioning. In Proc. APCCAS’96 – Asia Pacific Conference on 1012 Circuits and Systems
298–301 (IEEE, 1996).

34. Caldwell, A. E., Kahng, A. B. & Markov, I. L. Improved algorithms for hypergraph 1014
bipartitioning. In Proc. 2000 Design Automation Conference 661–666 (IEEE, 2000).

35. Chen, H. et al. An algebraic multigrid solver for analytical placement with layout 1017
based clustering. In Proc. 40th annual Design Automation Conference 794–799 (ACM,
2003); 10.1145/775832.776034.

36. Alpert, C., Kahng, A., Nam, G.-J., Reda, S. & Villarrubia, P. A semi-persistent clustering
technique for vlsi circuit placement. In Proc. 2005 International Symposium on Physical
Design, 200–207 (ACM, 2005).

37. Fogaça, M., Kahng, A. B., Reis, R. & Wang, L. Finding placement-relevant clusters with fast
modularity-based clustering. In Proc. 24th Asia and South Pacific Design Automation
Conference 569–576 (ACM, 2019); https://doi.org/10.1145/3287624.3287676.

38. Fogaça, M. et al. On the superiority of modularity-based clustering for deter mining
placement-relevant clusters. Integration 74, 32–44 (2020).

39. Kahng, A. B. Futures for partitioning in physical design (tutorial). In Proc. 1998
International Symposium on Physical Design 190–193 (ACM, 1998); https://doi.
org/10.1145/274535.274563.

40. Shahookar, K. & Mazumder, P. VLSI cell placement techniques. ACM Comput. Surv. 23,
143–220 (1991).

41. Caldwell, A. E., Kahng, A. B., Mantik, S., Markov, I. L. & Zelikovsky, A. On wirelength
estimations for row-based placement. IEEE Trans. Comput. Aided Des. Integrated Circ.
Syst. 18, 1265–1278 (1999).

42. Kahng, A. B. & Xu, X. Accurate pseudo-constructive wirelength and congestion
estimation. In Proc. 2003 International Workshop on System-Level Interconnect Prediction
61–68 (ACM, 2003); https://doi.org/10.1145/639929.639942.

43. Kahng, A. B. & Reda, S. A tale of two nets: studies of wirelength progression in physical
design. In Proc. 2006 International Workshop on System-Level Interconnect Prediction
|17–24 (ACM, 2006); https://doi.org/10.1145/1117278.1117282.

44. Kim, M.-C., Viswanathan, N., Alpert, C. J., Markov, I. L. & Ramji, S. MAPLE: Multilevel
Adaptive Placement for Mixed-Size Designs. In Proc. 2012 ACM International Symposium
on International Symposium on Physical Design 193–200 (ACM, 2012).

45. Nazi, A., Hang, W., Goldie, A., Ravi, S. & Mirhoseini, A. GAP: generalizable approximate
graph partitioning framework. In International Conference on Learning Representations
Workshop (2019).

46. Zhou, Y. et al. GDP: generalized device placement for dataflow graphs. Preprint at https://
arxiv.org/abs/1910.01578 (2019).

47. Zhang, M. & Chen, Y. Link prediction based on graph neural networks. In Proc. International
Conference on Neural Information Processing 5171–5181 (Curran Associates Inc., 2018).

48. Xie, Z. et al. RouteNet: routability prediction for mixed-size designs using convolutional
neural network. In 2018 IEEE/ACM International Conference on Computer-Aided Design
(ICCAD) 1–8 (IEEE, 2018).

49. hMETIS – hypergraph and circuit partitioning manual http://glaros.dtc.umn.edu/gkhome/
metis/hmetis/download.

50. Dunlop, A. E. & Kernighan, B. W. A procedure for placement of standard-cell VLSI circuits.
IEEE Trans. Comput. Aided Des. Integrated Circ. Syst. 4, 92–98 (1985).

51. Cheng C. K. & Kuh. E. S. Module placement based on resistive network optimization. IEEE
Trans. Comput. Aided Des. Integrated Circ. Syst. 3, 218–225 (1984).

52. Tsay, R.-S., Kuh, E. & Hsu, C.-P. Proud: a fast sea-of-gates placement algorithm. In Proc.
Design Automation Conference 1988, 318–323 (IEEE, 1988).

53. Agnihotri, A., Ono, S. & Madden, P. Recursive bisection placement: Feng Shui 5.0
implementation details. In Proc. International Symposium on Physical Design 230–232
(ACM, 2005).

54. Alpert, C. et al. Analytical engines are unnecessary in top-down partitioning based
placement. VLSI Des. 10, 99–116 (2002).

55. Kahng, A. B., Reda, S. & Wang, Q. Architecture and details of a high quality, large-scale
analytical placer. In IEEE/ACM International Conference on Computer-Aided Design 2005
891–898 (IEEE, 2005).

56. Kahng, A. B. & Wang, Q. An analytic placer for mixed-size placement and timing.driven
placement. In IEEE/ACM International Conference on Computer Aided Design 2004
565–572 (IEEE, 2004).

57. Kahng, A. B. & Wang, Q. Implementation and extensibility of an analytic placer. IEEE
Trans. Comput. Aided Des. Integrated Circ. Syst. 24, 734–747 (2005).

58. Chen, T.-C., Jiang, Z.-W., Hsu, T.-C., Chen, H.-C. & Chang, Y.-W. A High-quality mixed-size
analytical placer considering preplaced blocks and density constraints. In Proc. 2006
IEEE/ACM International Conference on Computer-Aided Design 187–192 (ACM, 2006).

59. Naylor, W., Donelly, R. & Sha, L. Non-linear optimization system and method for wire
length and delay optimization for an automatic electric circuit placer. US Patent
US6301693B1 (2001).

60. Chen, T., Jiang, Z., Hsu, T., Chen, H. & Chang, Y. NTUplace3: an analytical placer for
large-scale mixed-size designs with preplaced blocks and density constraints. IEEE Trans.
Comput. Aided Des. Integrated Circ. Syst. 27, 1228–1240 (2008).

61. Kim, M.-C. & Markov, I. L. ComPLx: a competitive primal-dual Lagrange optimization for
global placement. In Design Automation Conference 2012 747– 755 (ACM, 2012).

62. Brenner, U., Struzyna, M. & Vygen, J. BonnPlace: placement of leading-edge chips by
advanced combinatorial algorithms. Trans. Comp.-Aided Des. Integ.Cir. Sys. 27,
1607–1620 (2008).

63. Lin, T., Chu, C., Shinnerl, J. R., Bustany, I. & Nedelchev, I. POLAR: placement based on
novel rough legalization and refinement. In Proc. International Conference on
Computer-Aided Design 357–362 (IEEE, 2013).

64. Lu, J. et al. ePlace-MS: electrostatics-based placement for mixed-size circuits. IEEE Trans.
Comput. Aided Des. Integrated Circ. Syst. 34, 685–698 (2015).

65. Lu, J., Zhuang, H., Kang, I., Chen, P. & Cheng, C.-K. Eplace-3d: electrostatics based
placement for 3d-ics. In International Symposium on Physical Design 11–18 (ACM, 2016).

66. Lin, Y. et al. DREAMPlace: deep learning toolkit-enabled GPU acceleration for modern
VLSI placement. In Design Automation Conference 1–6 (ACM/IEEE, 2019).

67. Kahng, A. B. Machine learning applications in physical design: recent results and
directions. In Proc. 2018 International Symposium on Physical Design 68–73 (ACM, 2018);
https://doi.org/10.1145/3177540.3177554.

68. Kahng, A. B. Reducing time and effort in ic implementation: a roadmap of challenges and
solutions. In Proc. 55th Annual Design Automation Conference (ACM, 2018); https://doi.
org/10.1145/3195970.3199854.

69. Ajayi, T. et al. Toward an open-source digital flow: first learnings from the openroad
project. In Proc. 56th Annual Design Automation Conference 2019 (ACM, 2019); https://
doi.org/10.1145/3316781.3326334.

70. Huang, Y. et al. Routability-driven macro placement with embedded CNN-based
prediction model. In Design, Automation & Test in Europe Conference & Exhibition
180–185 (IEEE, 2019).

71. Khalil, E., Dai, H., Zhang, Y., Dilkina, B. & Song, L. Learning combinatorial optimization
algorithms over graphs. Adv. Neural Inf. Process Syst. 30, 6348–6358 (2017).

72. Zoph, B. & Le, Q. V. Neural architecture search with reinforcement learning. In Proc.
International Conference on Learning Representations (2017).

73. Addanki, R., Venkatakrishnan, S. B., Gupta, S., Mao, H. & Alizadeh, M. Learning
generalizable device placement algorithms for distributed machine learning. Adv. Neural
Inf. Process Syst. 32, 3981–3991 (2019).

74. Paliwal, A. et al. Reinforced genetic algorithm learning for optimizing computation
graphs. In Proc. International Conference on Learning Representations (2020).

75. Zhou, Y. et al. Transferable graph optimizers for ML compilers. Prepint at https://arxiv.org/
abs/2010.12438 (2021).

76. Barrett, T. D., Clements, W. R., Foerster, J. N. & Lvovsky, A. I. Exploratory combinatorial
optimization with reinforcement learning. Preprint at https://arxiv.org/abs/1909.04063
(2020).

77. Kipf, T. N. & Welling, M. Semi-supervised classification with graph convolutional
networks. Prepint at https://arxiv.org/abs/1609.02907 (2016).

Acknowledgements This project was a collaboration between Google Brain and the Google
Chip Implementation and Infrastructure (CI2) Team. We thank M. Bellemare, C. Young, E. Chi,
C. Stratakos, S. Roy, A. Yazdanbakhsh, N. Myung-Chul Kim, S. Agarwal, B. Li, S. Bae, A. Babu,
M. Abadi, A. Salek, S. Bengio and D. Patterson for their help and support.

Author contributions A.G. and A.M. are co-first authors and the order of the names was
determined by coin flip. M.Y., J.W.J., E.S., S.W. and Y.-J.L. were major contributors to this work.
The following authors contributed to the overall evaluation and provided insights on physical
design: E.J., O.P., A.N., J.P., A.T., K.S., W.H. and E.T. The following authors managed and advised
on the project: Q.V.L., J.L., R.H., R.C. and J.D.

Competing interests The following US patents are related to this work: ‘Generating integrated
circuit floorplans using neural networks’ (granted as US10699043) and ‘Domain adaptive
reinforcement learning approach to macro placement’ (filed).

Additional information
Correspondence and requests for materials should be addressed to A.M. or A.G.
Peer review information Nature thanks Jakob Foerster and the other, anonymous, reviewer(s)
for their contribution to the peer review of this work.
Reprints and permissions information is available at http://www.nature.com/reprints.

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview
https://doi.org/10.1145/3287624.3287676
https://doi.org/10.1145/274535.274563
https://doi.org/10.1145/274535.274563
https://doi.org/10.1145/639929.639942
https://doi.org/10.1145/1117278.1117282
https://arxiv.org/abs/1910.01578
https://arxiv.org/abs/1910.01578
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
http://glaros.dtc.umn.edu/gkhome/metis/hmetis/download
https://doi.org/10.1145/3177540.3177554
https://doi.org/10.1145/3195970.3199854
https://doi.org/10.1145/3195970.3199854
https://doi.org/10.1145/3316781.3326334
https://doi.org/10.1145/3316781.3326334
https://arxiv.org/abs/2010.12438
https://arxiv.org/abs/2010.12438
https://arxiv.org/abs/1909.04063
https://arxiv.org/abs/1609.02907
http://www.nature.com/reprints

Extended Data Fig. 1 | Evaluation workflow for producing the results in
Table 1. We allow each method access to the same clustered netlist
hypergraph. We use the same hyperparameters (to the extent possible) in all
the methods. Once the placement is completed by each method (this includes

the legalization step for RePlAce), we snap the macros to the power grids,
freeze the macro locations and use a commercial EDA tool to place the standard
cells and report the final results.

Article

Extended Data Fig. 2 | Zero-shot performance of Edge-GNN versus GCN
(graph convolutional neural network)77. The agent with an Edge-GNN
architecture is more robust to over-fitting and yields higher-quality results, as

measured by average zero-shot performance on the test blocks shown in
Extended Data Fig. 1.

Extended Data Fig. 3 | Generalization performance as a function of
pre-training dataset size. We pre-train the policy network on three different
training datasets (the small dataset with 2 blocks is a subset of the medium
one with 5 blocks, and the medium dataset is a subset of the large one with
20 blocks). For each policy, at various snapshots during pre-training we report

its inference performance on an unseen test block. As the dataset size
increases, both the quality of generated placements on the test block and the
generalization performance of the policy improve. The policy trained on the
largest dataset is most robust to over-fitting.

Article

Extended Data Fig. 4 | Visualization of Ariane placements. Left, zero-shot
placements from the pre-trained policy; right, placements from the fine-tuned
policy. The zero-shot placements are generated at inference time on a
previously unseen chip. The pre-trained policy network (with no fine-tuning)

reserves a convex hull in the centre of the canvas in which standard cells can be
placed, a behaviour that reduces wirelength and that emerges only after many
hours of fine-tuning in the policy trained from scratch.

Extended Data Fig. 5 | Visualization of a real TPU chip. Human expert
placements are shown on the left and results from our approach are shown on
the right. The white area represents macros and the green area represents
standard cells. The figures are intentionally blurred because the designs are

proprietary. The wirelength for the human expert design is 57.07 m, whereas
ours is 55.42 m. Furthermore, our method achieves these results in 6 h, whereas
the manual baseline took several weeks.

Article
Extended Data Table 1 | Hyperparameters used for fine-tuning the RL agent

The pre-training hyperparameters are the same, except for the number of GPUs and the effective batch size. For pre-training, we use one GPU per
block in the training dataset (our largest dataset has 20 blocks).

Extended Data Table 2 | Hyperparameters used for the FD algorithm that places standard cell clusters

Article
Extended Data Table 3 | Hyperparameters used to generate standard cell clusters with hMETIS32

Extended Data Table 4 | Effect of different cost trade-offs on the post-PlaceOpt performance of Block 1 in Table 1

As expected, increasing congestion weight improves both horizontal and vertical congestion up to a point, but results in wirelength degradation, owing to the inherent trade-off between these
two metrics.

Article
Extended Data Table 5 | Sensitivity of results to the choice of random seed, as measured on a Ariane RISC-V block

We observed little sensitivity to random seed in all of the three cost functions, although variations in wirelength and density are lower than congestion. The overall cost for these eight runs had
a standard deviation of 0.0022.

Extended Data Table 6 | Performance of our method compared to SA

Proxy wirelength and congestion for each block. We note that because these proxy metrics are relative, comparisons are only valid for different placements of the same block. Even with addi-
tional time (18 h of SA versus 6 h of RL), SA generates placements with 14.4% higher wirelength and 24.1% higher congestion on average.

	A graph placement methodology for fast chip design
	Chip floorplanning as a learning problem
	Designing domain-adaptive policies
	Empirical evaluation
	Domain adaptation results
	Learning from larger datasets
	Comparing with baseline methods
	Conclusion
	Online content
	Fig. 1 Overview of our method and training regimen.
	Fig. 2 Policy and value network architecture.
	Fig. 3 Training from scratch versus fine-tuning for varying amounts of time.
	Fig. 4 Convergence plots on Ariane RISC-V CPU.
	Fig. 5 Effect of pre-training dataset size.
	Extended Data Fig. 1 Evaluation workflow for producing the results in Table 1.
	Extended Data Fig. 2 Zero-shot performance of Edge-GNN versus GCN (graph convolutional neural network)77.
	Extended Data Fig. 3 Generalization performance as a function of pre-training dataset size.
	Extended Data Fig. 4 Visualization of Ariane placements.
	Extended Data Fig. 5 Visualization of a real TPU chip.
	Table 1 Comparisons against baselines.
	Extended Data Table 1 Hyperparameters used for fine-tuning the RL agent.
	Extended Data Table 2 Hyperparameters used for the FD algorithm that places standard cell clusters.
	Extended Data Table 3 Hyperparameters used to generate standard cell clusters with hMETIS32.
	Extended Data Table 4 Effect of different cost trade-offs on the post-PlaceOpt performance of Block 1 in Table 1.
	Extended Data Table 5 Sensitivity of results to the choice of random seed, as measured on a Ariane RISC-V block.
	Extended Data Table 6 Performance of our method compared to SA.

