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Abstract
Reinforcement learning (RL) algorithms involve
the deep nesting of highly irregular computation
patterns, each of which typically exhibits oppor-
tunities for distributed computation. We argue for
distributing RL components in a composable way
by adapting algorithms for top-down hierarchi-
cal control, thereby encapsulating parallelism and
resource requirements within short-running com-
pute tasks. We demonstrate the benefits of this
principle through RLlib: a library that provides
scalable software primitives for RL. These prim-
itives enable a broad range of algorithms to be
implemented with high performance, scalability,
and substantial code reuse. RLlib is available as
part of the open source Ray project 1.

1. Introduction
Advances in parallel computing and composition through
symbolic differentiation have been fundamental to the recent
success of deep learning. Today, there are a wide range of
deep learning frameworks (Paszke et al., 2017; Abadi et al.,
2016; Chen et al., 2016; Jia et al., 2014) that enable rapid
innovation in neural network design and facilitate training
at the scale necessary for progress in the field.

In contrast, while the reinforcement learning community
enjoys the advances in systems and abstractions for deep
learning, there has been comparatively less progress in the
design of systems and abstractions that directly target rein-
forcement learning. Nonetheless, many of the challenges in
reinforcement learning stem from the need to scale learning
and simulation while also integrating a rapidly increasing
range of algorithms and models. As a consequence, there
is a fundamental need for composable parallel primitives to
support research in reinforcement learning.

*Equal contribution 1University of California, Berkeley. Corre-
spondence to: Eric Liang <ericliang@berkeley.edu>.
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1RLlib documentation can be found at http://rllib.io

In the absence of a single dominant computational pattern
(e.g., tensor algebra) or fundamental rules of composition
(e.g., symbolic differentiation), the design and implemen-
tation of reinforcement learning algorithms can often be
cumbersome, requiring RL researchers to directly reason
about complex nested parallelism. Unlike typical operators
in deep learning frameworks, individual components may re-
quire parallelism across a cluster (e.g., for rollouts), leverage
neural networks implemented by deep learning frameworks,
recursively invoke other components (e.g., model-based sub-
tasks), or interface with black-box third-party simulators. In
essence, the heterogeneous and distributed nature of many of
these components poses a key challenge to reasoning about
their parallel composition. Meanwhile, the main algorithms
that connect these components are rapidly evolving and ex-
pose opportunities for parallelism at varying levels. Finally,
RL algorithms manipulate substantial amounts of state (e.g.,
replay buffers and model parameters) that must be managed
across multiple levels of parallelism and physical devices.

The substantial recent progress in RL algorithms and appli-
cations has resulted in a large and growing number of RL
libraries (Caspi, 2017; Duan et al., 2016; Hafner et al., 2017;
Hesse et al., 2017; Kostrikov, 2017; Schaarschmidt et al.,
2017). While some of these are highly scalable, few enable
the composition of components at scale. In large part, this
is due to the fact that many of the frameworks used by these
libraries rely on communication between long-running pro-
gram replicas for distributed execution; e.g., MPI (Gropp
et al., 1996), Distributed TensorFlow (Abadi et al., 2016),
and parameter servers (Li et al., 2014)). As this program-
ming model ignores component boundaries, it does not
naturally encapsulate parallelism and resource requirements
within individual components.2 As a result, reusing these
distributed components requires the insertion of appropriate
control points in the program, a burdensome and error-prone
process (Section 2). The absence of usable encapsulation
hinders code reuse and leads to error prone reimplementa-
tion of mathematically complex and often highly stochastic
algorithms. Even worse, in the distributed setting, often

2By encapsulation, we mean that individual components spec-
ify their own internal parallelism and resources requirements and
can be used by other components that have no knowledge of these
requirements.
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Figure 1. In contrast with deep learning, RL algorithms leverage parallelism at multiple levels and physical devices. Here, we show an RL
algorithm composing derivative-free optimization, policy evaluation, gradient-based optimization, and model-based planning (Table 2).

large parts of the distributed communication and execution
must also be reimplemented with each new RL algorithm.

We believe that the ability to build scalable RL algorithms by
composing and reusing existing components and implemen-
tations is essential for the rapid development and progress
of the field.3 Toward this end, we argue for structuring dis-
tributed RL components around the principles of logically
centralized program control and parallelism encapsulation
(Graefe & Davison, 1993; Pan et al., 2010). We built RLlib
using these principles, and as a result were not only able to
implement a broad range of state-of-the-art RL algorithms,
but also to pull out scalable primitives that can be used to
easily compose new algorithms.

1.1. Irregularity of RL training workloads

Modern RL algorithms are highly irregular in the computa-
tion patterns they create (Table 1), pushing the boundaries
of computation models supported by popular distribution
frameworks. This irregularity occurs at several levels:

1. The duration and resource requirements of tasks differ
by orders of magnitude depending on the algorithm;
e.g., A3C (Mnih et al., 2016) updates may take millisec-
onds, but other algorithms like PPO (Schulman et al.,
2017) batch rollouts into much larger granularities.

2. Communication patterns vary, from synchronous to
asynchronous gradient-based optimization, to having
several types of asynchronous tasks in high-throughput
off-policy algorithms such as Ape-X and IMPALA
(Horgan et al., 2018; Espeholt et al., 2018).

3. Nested computations are generated by model-based
hybrid algorithms (Table 2), hyperparameter tuning in
conjunction with RL or DL training, or the combina-
tion of derivative-free and gradient-based optimization
within a single algorithm (Silver et al., 2017).

4. RL algorithms often need to maintain and update sub-
stantial amounts of state including policy parameters,
replay buffers, and even external simulators.

As a consequence, the developers have no choice but to
use a hodgepodge of frameworks to implement their algo-

3We note that composability without scalability can trivially be
achieved with a single-threaded library and that all of the difficulty
lies in achieving these two objectives simultaneously.

Table 1. RL spans a broad range of computational demand.

Dimension DQN/Laptop IMPALA+PBT/Cluster

Task Duration ∼1ms minutes
Task Compute 1 CPU several CPUs and GPUs
Total Compute 1 CPU hundreds of CPUs and GPUs
Nesting Depth 1 level 3+ levels
Process Memory megabytes hundreds of gigabytes
Execution synchronous async. and highly concurrent

rithms, including parameter servers, collective communi-
cation primitives in MPI-like frameworks, task queues, etc.
For more complex algorithms, it is common to build cus-
tom distributed systems in which processes independently
compute and coordinate among themselves with no central
control (Figure 2(a)). While this approach can achieve high
performance, the cost to develop and evaluate is large, not
only due to the need to implement and debug distributed
programs, but because composing these algorithms further
complicates their implementation (Figure 3). Moreover, to-
day’s computation frameworks (e.g., Spark (Zaharia et al.,
2010), MPI) typically assume regular computation patterns
and have difficulty when sub-tasks have varying durations,
resource requirements, or nesting.

1.2. Logically centralized control for distributed RL

It is desirable for a single programming model to capture all
the requirements of RL training. This can be done without
eschewing high-level frameworks that structure the com-
putation. Our key insight is that for each distributed RL
algorithm, an equivalent algorithm can be written that ex-
hibits logically centralized program control (Figure 2(b)).
That is, instead of having independently executing processes
(A, B, C, D in Figure 2(a)) coordinate among themselves
(e.g., through RPCs, shared memory, parameter servers, or
collective communication), a single driver program (D in
Figure 2(b) and 2(c)) can delegate algorithm sub-tasks to
other processes to execute in parallel. In this paradigm,
the worker processes A, B, and C passively hold state (e.g.,
policy or simulator state) but execute no computations until
called by D. To support nested computations, we propose
extending the centralized control model with hierarchical
delegation of control (Figure 2(c)), which allows the worker
processes (e.g., B, C) to further delegate work (e.g., simu-
lations, gradient computation) to sub-workers of their own
when executing tasks.
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Figure 2. Most RL algorithms today are written in a fully distributed style (a) where replicated processes independently compute and
coordinate with each other according to their roles (if any). We propose a hierarchical control model (c), which extends (b) to support
nesting in RL and hyperparameter tuning workloads, simplifying and unifying the programming models used for implementation.

Building on such a logically centralized and hierarchical
control model has several important advantages. First, the
equivalent algorithm is often easier to implement in practice,
since the distributed control logic is entirely encapsulated
in a single process rather than multiple processes executing
concurrently. Second, the separation of algorithm compo-
nents into sub-routines (e.g., do rollouts, compute gradients
with respect to some policy loss), enables code reuse across
different execution patterns. Sub-tasks that have different
resource requirements (e.g., CPUs vs GPUs) can be placed
on different machines, reducing compute costs as we show
in Section 5. Finally, distributed algorithms written in this
model can be seamlessly nested within each other, satisfying
the parallelism encapsulation principle.

Logically centralized control models can be highly perfor-
mant, our proposed hierarchical variant even more so. This
is because the bulk of data transfer (blue arrows in Figure
2) between processes happens out of band of the driver, not
passing through any central bottleneck. In fact many highly
scalable distributed systems (Zaharia et al., 2010; Chang
et al., 2008; Dean & Ghemawat, 2008) leverage centralized
control in their design. Within a single differentiable tensor
graph, frameworks like TensorFlow also implement logi-
cally centralized scheduling of tensor computations onto
available physical devices. Our proposal extends this princi-
ple into the broader ML systems design space.

The contributions of this paper are as follows.

1. We propose a general and composable hierarchical
programming model for RL training (Section 2).

2. We describe RLlib, our highly scalable RL library, and
how it builds on the proposed model to provide scal-
able abstractions for a broad range of RL algorithms,
enabling rapid development (Section 3).

3. We discuss how performance is achieved within the
proposed model (Section 4), and show that RLlib meets
or exceeds state-of-the-art performance for a wide va-
riety of RL workloads (Section 5).

2. Hierarchical Parallel Task Model
As highlighted in Figure 3, parallelization of entire pro-
grams using frameworks like MPI (Gropp et al., 1996) and
Distributed Tensorflow (Abadi et al., 2016) typically require
explicit algorithm modifications to insert points of coordina-
tion when trying to compose two programs or components
together. This limits the ability to rapidly prototype novel
distributed RL applications. Though the example in Fig-
ure 3 is simple, new hyperparameter tuning algorithms for
long-running training tasks; e.g., HyperBand, Population
Based Training (PBT) (Li et al., 2016; Jaderberg et al., 2017)
increasingly demand fine-grained control over training.

We propose building RL libraries with hierarchical and logi-
cally centralized control on top of flexible task-based pro-
gramming models like Ray (Moritz et al., 2017). Task-based
systems allow subroutines to be scheduled and executed
asynchronously on worker processes, on a fine-grained basis,
and for results to be retrieved or passed between processes.

2.1. Relation to existing distributed ML abstractions

Though typically formulated for distributed control, abstrac-
tions such as parameter servers and collective communica-
tion operations can also be used within a logically central-
ized control model. As an example, RLlib uses allreduce
and parameter-servers in some of its policy optimizers (Fig-
ure 4), and we evaluate their performance in Section 5.

2.2. Ray implementation of hierarchical control

We note that, within a single machine, the proposed pro-
gramming model can be implemented simply with thread-
pools and shared memory, though it is desirable for the
underlying framework to scale to larger clusters if needed.

We chose to build RLlib on top of the Ray framework, which
allows Python tasks to be distributed across large clusters.
Ray’s distributed scheduler is a natural fit for the hierarchical
control model, as nested computation can be implemented
in Ray with no central task scheduling bottleneck.
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(a) Distributed Control

param_grid = generate_hyperparams()
print(ray.get([evaluate.remote(p)
   for p in param_grid]))

@ray.remote
def evaluate(params):
    model = generate_model(params)
    results = [rollout.remote(model)
       for i in range(n)]
    return results

@ray.remote
def rollout(model):
    # perform a rollout and
    # return the result

(b) Hierarchical Control

Figure 3. Composing a distributed hyperparameter search with a
function that also requires distributed computation involves com-
plex nested parallel computation patterns. With MPI (a), a new
program must be written from scratch that mixes elements of both.
With hierarchical control (b), components can remain unchanged
and simply be invoked as remote tasks.

To implement a logically centralized control model, it is first
necessary to have a mechanism to launch new processes and
schedule tasks on them. Ray meets this requirement with
Ray actors, which are Python classes that may be created
in the cluster and accept remote method calls (i.e., tasks).
Ray permits these actors to in turn launch more actors and
schedule tasks on those actors as part of a method call,
satisfying our need for hierarchical delegation as well.

For performance, Ray provides standard communication
primitives such as aggregate and broadcast, and crit-
ically enables the zero-copy sharing of large data objects
through a shared memory object store. As shown in Section
5, this enables the performance of RLlib algorithms. We
further discuss framework performance in Section 4.

3. Abstractions for Reinforcement Learning
To leverage RLlib for distributed execution, algorithms must
declare their policy π, experience postprocessor ρ, and loss
L. These can be specified in any deep learning framework,
including TensorFlow and PyTorch. RLlib provides policy
evaluators and policy optimizers that implement strategies
for distributed policy evaluation and training.

3.1. Defining the Policy Graph

RLlib’s abstractions are as follows. The developer specifies
a policy model π that maps the current observation ot and
(optional) RNN hidden state ht to an action at and the next
RNN state ht+1. Any number of user-defined values yit
(e.g., value predictions, TD error) can also be returned:

πθ(ot, ht)⇒ (at, ht+1, y
1
t . . . y

N
t ) (1)

Most algorithms will also specify a trajectory post-

processor ρ that transforms a batch Xt,K of K
{(ot, ht, at, ht+1, y

1
t . . . y

N
t , rt, ot+1)} tuples starting at t.

Here rt and ot+1 are the reward and new observation af-
ter taking an action. Example uses include advantage
estimation (Schulman et al., 2015) and goal relabeling
(Andrychowicz et al., 2017). To also support multi-agent
environments, experience batches Xp

t,K from the P other
agents in the environment are also made accessible:

ρθ(Xt,K , X
1
t,K . . . X

P
t,K)⇒ Xpost (2)

Gradient-based algorithms define a combined loss L that
can be descended to improve the policy and auxiliary net-
works:

L(θ;X)⇒ loss (3)

Finally, the developer can also specify any number of utility
functions ui to be called as needed during training to, e.g.,
return training statistics s, update target networks, or adjust
annealing schedules:

u1 . . . uM (θ)⇒ (s, θupdate) (4)

To interface with RLlib, these algorithm functions should be
defined in a policy graph class with the following methods:

abstract class rllib.PolicyGraph:
def act(self, obs, h): action, h, y*
def postprocess(self, batch, b*): batch
def gradients(self, batch): grads
def get_weights; def set_weights;
def u*(self, args*)

3.2. Policy Evaluation

For collecting experiences, RLlib provides a
PolicyEvaluator class that wraps a policy graph
and environment to add a method to sample() experience
batches. Policy evaluator instances can be created as
Ray remote actors and replicated across a cluster for
parallelism. To make their usage concrete, consider a
minimal TensorFlow policy gradients implementation that
extends the rllib.TFPolicyGraph helper template:

class PolicyGradient(TFPolicyGraph):
def __init__(self, obs_space, act_space):
self.obs, self.advantages = ...
pi = FullyConnectedNetwork(self.obs)
dist = rllib.action_dist(act_space, pi)
self.act = dist.sample()
self.loss = -tf.reduce_mean(
dist.logp(self.act) * self.advantages)

def postprocess(self, batch):
return rllib.compute_advantages(batch)

From this policy graph definition, the developer can cre-
ate a number of policy evaluator replicas ev and call
ev.sample.remote() on each to collect experiences in
parallel from environments. RLlib supports OpenAI Gym
(Brockman et al., 2016), user-defined environments, and
also batched simulators such as ELF (Tian et al., 2017):
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grads = [ev.grad(ev.sample())
    for ev in evaluators]
avg_grad = aggregate(grads)
local_graph.apply(avg_grad)
weights = broadcast(
    local_graph.weights())
for ev in evaluators:
    ev.set_weights(weights)

(a) Allreduce

samples = concat([ev.sample()
    for ev in evaluators])
pin_in_local_gpu_memory(samples)
for _ in range(NUM_SGD_EPOCHS):

local_g.apply(local_g.grad(samples)
weights = broadcast(local_g.weights())
for ev in evaluators:
    ev.set_weights(weights)

(b) Local Multi-GPU

grads = [ev.grad(ev.sample())
 for ev in evaluators]

for _ in range(NUM_ASYNC_GRADS):
    grad, ev, grads = wait(grads)
    local_graph.apply(grad)
    ev.set_weights(
        local_graph.get_weights())
    grads.append(ev.grad(ev.sample()))

(c) Asynchronous

grads = [ev.grad(ev.sample())
 for ev in evaluators]

for _ in range(NUM_ASYNC_GRADS):
    grad, ev, grads = wait(grads)

 for ps, g in split(grad, ps_shards):
  ps.push(g)

    ev.set_weights(concat(
  [ps.pull() for ps in ps_shards])

    grads.append(ev.grad(ev.sample()))

(d) Sharded Param-server

Figure 4. Pseudocode for four RLlib policy optimizer step methods. Each step() operates over a local policy graph and array of remote
evaluator replicas. Ray remote calls are highlighted in orange; other Ray primitives in blue (Section 4). Apply is shorthand for updating
weights. Minibatch code and helper functions omitted. The param server optimizer in RLlib also implements pipelining not shown here.

evaluators = [rllib.PolicyEvaluator.remote(
env=SomeEnv, graph=PolicyGradient)

for _ in range(10)]
print(ray.get([

ev.sample.remote() for ev in evaluators]))

3.3. Policy Optimization

RLlib separates the implementation of algorithms into the
declaration of the algorithm-specific policy graph and the
choice of an algorithm-independent policy optimizer. The
policy optimizer is responsible for the performance-critical
tasks of distributed sampling, parameter updates, and man-
aging replay buffers. To distribute the computation, the
optimizer operates over a set of policy evaluator replicas.

To complete the example, the developer chooses a policy
optimizer and creates it with references to existing eval-
uators. The async optimizer uses the evaluator actors to
compute gradients in parallel on many CPUs (Figure 4(c)).
Each optimizer.step() runs a round of remote tasks to
improve the model. Between steps, policy graph replicas
can be queried directly, e.g., to print out training statistics:

optimizer = rllib.AsyncPolicyOptimizer(
graph=PolicyGradient, workers=evaluators)

while True:
optimizer.step()
print(optimizer.foreach_policy(

lambda p: p.get_train_stats()))

Policy optimizers extend the well-known gradient-descent
optimizer abstraction to the RL domain. A typical gradient-
descent optimizer implements step(L(θ), X, θ) ⇒ θopt.
RLlib’s policy optimizers instead operate over the local
policy graph G and a set of remote evaluator replicas,
i.e., step(G, ev1 . . . evn, θ)⇒ θopt, capturing the sampling
phase of RL as part of optimization (i.e., calling sample()

on policy evaluators to produce new simulation data).

The policy optimizer abstraction has the following advan-
tages. By separating execution strategy from policy and loss
definitions, specialized optimizers can be swapped in to take
advantage of available hardware or algorithm features with-
out needing to change the rest of the algorithm. The policy
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Figure 5. RLlib’s centrally controlled policy optimizers match or
exceed the performance of implementations in specialized systems.
The RLlib parameter server optimizer using 8 internal shards is
competitive with a Distributed TensorFlow implementation tested
in similar conditions. RLlib’s Ape-X policy optimizer scales to
160k frames per second with 256 workers at a frameskip of 4,
more than matching a reference throughput of ∼45k fps at 256
workers, demonstrating that a single-threaded Python controller
can efficiently scale to high throughputs.

graph class encapsulates interaction with the deep learning
framework, allowing algorithm authors to avoid mixing dis-
tributed systems code with numerical computations, and
enabling optimizer implementations to be improved and
reused across different deep learning frameworks.

As shown in Figure 4, by leveraging centralized control, pol-
icy optimizers succinctly capture a broad range of choices
in RL optimization: synchronous vs asynchronous, allre-
duce vs parameter server, and use of GPUs vs CPUs. RL-
lib’s policy optimizers provide performance comparable to
optimized parameter server (Figure 5(a)) and MPI-based
implementations (Section 5). Pulling out this optimizer ab-
straction is easy in a logically centralized control model
since each policy optimizer has full control over the dis-
tributed computation it implements.

3.4. Completeness and Generality of Abstractions

We demonstrate the completeness of RLlib’s abstractions by
formulating the algorithm families listed in Table 2 within
the API. When applicable, we also describe the concrete
implementation in RLlib:

DQNs: DQNs use y1 for storing TD error, implement n-step
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Table 2. RLlib’s policy optimizers and evaluators capture common components (Evaluation, Replay, Gradient-based Optimizer) within a
logically centralized control model, and leverages Ray’s hierarchical task model to support other distributed components.

Algorithm Family Policy Evaluation Replay Buffer Gradient-Based Optimizer Other Distributed Components

DQNs X X X
Policy Gradient X X
Off-policy PG X X X
Model-Based/Hybrid X X Model-Based Planning
Multi-Agent X X X
Evolutionary Methods X Derivative-Free Optimization
AlphaGo X X X MCTS, Derivative-Free Optimization

return calculation in ρθ, and the Q loss in L. Target updates
are implemented in u1, and setting the exploration ε in u2.

DQN implementation: To support experience replay, RLlib’s
DQN uses a policy optimizer that saves collected samples
in an embedded replay buffer. The user can alternatively
use an asynchronous optimizer (Figure 4(c)). The target
network is updated by calls to u1 between optimizer steps.

Ape-X implementation: Ape-X (Horgan et al., 2018) is a
variation of DQN that leverages distributed experience pri-
oritization to scale to many hundreds of cores. To adapt our
DQN implementation, we created policy evaluators with a
distribution of ε values, and wrote a new high-throughput
policy optimizer (∼200 lines) that pipelines the sampling
and transfer of data between replay buffer actors using Ray
primitives. Our implementation scales nearly linearly up
to 160k environment frames per second with 256 workers
(Figure 5(b)), and the optimizer can compute gradients for
∼8.5k 80×80×4 observations/s on a V100 GPU.

Policy Gradient / Off-policy PG: These algorithms store
value predictions in y1, implement advantage estimation
using ρθ, and combine actor and critic losses in L.

PPO implementation: Since PPO’s loss function permits
multiple SGD passes over sample data, when there is suffi-
cient GPU memory RLlib chooses a GPU-optimized policy
optimizer (Figure 4(b)) that pins data into local GPU mem-
ory. In each iteration, the optimizer collects samples from
evaluator replicas, performs multi-GPU optimization locally,
and then broadcasts the new model weights.

A3C implementation: RLlib’s A3C can use either the asyn-
chronous (Figure 4(c)) or sharded parameter server policy
optimizer (4(d)). These optimizers collect gradients from
the policy evaluators to update the canonical copy of θ.

DDPG implementation: RLlib’s DDPG uses the same replay
policy optimizer as DQN. L includes both actor and critic
losses. The user can also choose to use the Ape-X policy
optimizer with DDPG.

Model-based / Hybrid: Model-based RL algorithms ex-
tend πθ(ot, ht) to make decisions based on model rollouts,
which can be parallelized using Ray. To update their envi-

ronment models, the model loss can either be bundled with
L, or the model trained separately (i.e., in parallel using Ray
primitives) and its weights periodically updated via u1.

Multi-Agent: Policy evaluators can run multiple policies
at once in the same environment, producing batches of ex-
perience for each agent. Many multi-agent algorithms use
a centralized critic or value function, which we support by
allowing ρθ to collate experiences from multiple agents.

Evolutionary Methods: Derivative-free methods can be
supported through non-gradient-based policy optimizers.

Evolution Strategies (ES) implementation: ES is a derivative-
free optimization algorithm that scales well to clusters with
thousands of CPUs. We were able to port a single-threaded
implementation of ES to RLlib with only a few changes, and
further scale it with an aggregation tree of actors (Figure
8(a)), suggesting that the hierarchical control model is both
flexible and easy to adapt algorithms for.

PPO-ES experiment: We studied a hybrid algorithm that
runs PPO updates in the inner loop of an ES optimiza-
tion step that randomly perturbs the PPO models. The
implementation took only ∼50 lines of code and did not
require changes to PPO, showing the value of encapsulat-
ing parallelism. In our experiments, PPO-ES converged
faster and to a higher reward than PPO on the Walker2d-v1
task. A similarly modified A3C-ES implementation solved
PongDeterministic-v4 in 30% less time.

AlphaGo: We sketch how to scalably implement the Al-
phaGo Zero algorithm using a combination of Ray and
RLlib abstractions. Pseudocode for the ∼70 line main algo-
rithm loop is provided in the Supplementary Material.

1. Logically centralized control of multiple distributed
components: AlphaGo Zero uses multiple distributed com-
ponents: model optimizers, self-play evaluators, candidate
model evaluators, and the shared replay buffer. These com-
ponents are manageable as Ray actors under a top-level
AlphaGo policy optimizer. Each optimizer step loops over
actor statuses to process new results, routing data between
actors and launching new actor instances.

2. Shared replay buffer: AlphaGo Zero stores the experi-
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train()

(a) Ape-X

train() PPO
train()

(b) PPO-ES
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sample data
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MCTSMCTSMCTSMCTS
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(c) AlphaGo Zero

Figure 6. Complex RL architectures are easily captured within RLlib’s hierarchical control model. Here blue lines denote data transfers,
orange lines lighter overhead method calls. Each train() call encompasses a batch of remote calls between components.

ences from self-play evaluator instances in a shared replay
buffer. This requires routing game results to the shared
buffer, which is easily done by passing the result object
references from actor to actor.

3. Best player: AlphaGo Zero tracks the current best
model and only populates its replay buffer with self-play
from that model. Candidate models must achieve a ≥ 55%
victory margin to replace the best model. Implementing this
amounts to adding an if block in the main control loop.

4. Monte-Carlo tree search: MCTS (i.e., model-based
planning) can be handled as a subroutine of the policy graph,
and optionally parallelized as well using Ray.

HyperBand and Population Based Training: Ray in-
cludes distributed implementations of hyperparameter
search algorithms such as HyperBand and PBT (Li et al.,
2016; Jaderberg et al., 2017). We were able to use these to
evaluate RLlib algorithms, which are themselves distributed,
with the addition of ∼15 lines of code per algorithm. We
note that these algorithms are non-trivial to integrate when
using distributed control models due to the need to modify
existing code to insert points of coordination (Figure 3). RL-
lib’s use of short-running tasks avoids this problem, since
control decisions can be easily made between tasks.

4. Framework Performance
In this section, we discuss properties of Ray (Moritz et al.,
2017) and other optimizations critical to RLlib.

4.1. Single-node performance

Stateful computation: Tasks can share mutable state with
other tasks through Ray actors. This is critical for tasks
that operate on and mutate stateful objects like third-party
simulators or neural network weights.

Shared memory object store: RL workloads involve shar-
ing large quantities of data (e.g., rollouts and neural network
weights). Ray supports this by allowing data objects to be
passed directly between workers without any central bottle-
neck. In Ray, workers on the same machine can also read
data objects through shared memory without copies.

Vectorization: RLlib can batch policy evaluation to im-
prove hardware utilization (Figure 7), supports batched en-
vironments, and passes experience data between actors effi-
ciently in columnar array format.

4.2. Distributed performance

Lightweight tasks: Remote call overheads in Ray are on
the order of ∼200µs when scheduled on the same machine.
When machine resources are saturated, tasks spill over to
other nodes, increasing latencies to around ∼1ms. This
enables parallel algorithms to scale seamlessly to multiple
machines while preserving high single-node throughput.

Nested parallelism: Building RL algorithms by composing
distributed components creates multiple levels of nested
parallel calls (Figure 1). Since components make decisions
that may affect downstream calls, the call graph is also
inherently dynamic. Ray supports this by allowing any
Python function or class method to be invoked remotely as
a lightweight task. For example, func.remote() executes
func remotely and immediately returns a placeholder result
which can later be retrieved or passed to other tasks.

Resource awareness: Ray allows remote calls to specify
resource requirements and utilizes a resource-aware sched-
uler to preserve component performance. Without this,
distributed components can improperly allocate resources,
causing algorithms to run inefficiently or fail.

Fault tolerance and straggler mitigation: Failure events
become significant at scale (Barroso et al., 2013). RLlib
leverages Ray’s built-in fault tolerance mechanisms (Moritz
et al., 2017), reducing costs with preemptible cloud compute
instances (Amazon, 2011; Google, 2015). Similarly, strag-
glers can significantly impact the performance of distributed
algorithms at scale (Dean & Barroso, 2013). RLlib supports
straggler mitigation in a generic way via the ray.wait()
primitive. For example, in PPO we use this to drop the
slowest evaluator tasks, at the cost of some bias.

Data compression: RLlib uses the LZ4 algorithm to com-
press experience batches. For image observations, LZ4
reduces network traffic and memory usage by more than an
order of magnitude, at a compression rate of∼1 GB/s/core.
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5. Evaluation
Sampling efficiency: Policy evaluation is an important
building block for all RL algorithms. In Figure 7 we bench-
mark the scalability of gathering samples from policy evalu-
ator actors. To avoid bottlenecks, we use four intermediate
actors for aggregation. Pendulum-CPU reaches over 1.5
million actions/s running a small 64×64 fully connected
network as the policy. Pong-GPU nears 200k actions/s on
the DQN convolutional architecture (Mnih et al., 2015).

Large-scale tests: We evaluate the performance of RLlib
on Evolution Strategies (ES), Proximal Policy Optimization
(PPO), and A3C, comparing against specialized systems
built specifically for those algorithms (OpenAI, 2017; Hesse
et al., 2017; OpenAI, 2016) using Redis, OpenMPI, and
Distributed TensorFlow. The same hyperparameters were
used in all experiments. We used TensorFlow to define
neural networks for the RLlib algorithms evaluated.

RLlib’s ES implementation scales well on the Humanoid-
v1 task to 8192 cores using AWS m4.16xl CPU instances
(Amazon, 2017). With 8192 cores, we achieve a reward
of 6000 in a median time of 3.7 minutes, which is over
twice as fast as the best published result (Salimans et al.,
2017). For PPO we evaluate on the same Humanoid-v1 task,
starting with one p2.16xl GPU instance and adding m4.16xl
instances to scale. This cost-efficient local policy optimizer
(Table 3) outperformed the reference MPI implementation
that required multiple expensive GPU instances to scale.

We ran RLlib’s A3C on an x1.16xl machine and solved
the PongDeterministic-v4 environment in 12 minutes using
an asynchronous policy optimizer and 9 minutes using a
sharded param-server optimizer, which matches the perfor-
mance of a well-tuned baseline (OpenAI, 2016).

Multi-GPU: To better understand RLlib’s advantage in the
PPO experiment, we ran benchmarks on a p2.16xl instance
comparing RLlib’s local multi-GPU policy optimizer with
one using an allreduce in Table 3. The fact that different
strategies perform better under different conditions suggests
that policy optimizers are a useful abstraction.

Policy Optimizer Gradients computed on Environment SGD throughput

Allreduce-based
4 GPUs, Evaluators Humanoid-v1 330k samples/s

Pong-v0 23k samples/s

16 GPUs, Evaluators Humanoid-v1 440k samples/s
Pong-v0 100k samples/s

Local Multi-GPU
4 GPUs, Driver Humanoid-v1 2.1M samples/s

Pong-v0 N/A (out of mem.)

16 GPUs, Driver Humanoid-v1 1.7M samples/s
Pong-v0 150k samples/s

Table 3. A specialized multi-GPU policy optimizer outperforms
distributed allreduce when data can fit entirely into GPU memory.
This experiment was done for PPO with 64 Evaluator processes.
The PPO batch size was 320k, The SGD batch size was 32k, and
we used 20 SGD passes per PPO batch.
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Figure 7. Policy evaluation throughput scales nearly linearly from
1 to 128 cores. PongNoFrameskip-v4 on GPU scales from 2.4k
to ∼200k actions/s, and Pendulum-v0 on CPU from 15k to 1.5M
actions/s. We use a single p3.16xl AWS instance to evaluate from 1-
16 cores, and a cluster of four p3.16xl instances from 32-128 cores,
spreading actors evenly across the cluster. Evaluators compute
actions for 64 agents at a time, and share the GPUs on the machine.
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Figure 8. The time required to achieve a reward of 6000 on the
Humanoid-v1 task. RLlib implementations of ES and PPO outper-
form highly optimized reference optimizations.

6. Related work
There are many reinforcement learning libraries (Caspi,
2017; Duan et al., 2016; Hafner et al., 2017; Hesse et al.,
2017; Kostrikov, 2017; Schaarschmidt et al., 2017). These
often scale by creating long-running program replicas that
each participate in coordinating the distributed computa-
tion as a whole, and as a result do not generalize well to
complex architectures. RLlib instead uses a hierarchical con-
trol model with short-running tasks to let each component
control its own distributed execution, enabling higher-level
abstractions such as policy optimizers to be used for com-
posing and scaling RL algorithms.

Outside of reinforcement learning, there has been a strong
effort to explore composition and integration between dif-
ferent deep learning frameworks. ONNX (Microsoft, 2017),
NNVM (DMLC, 2017), and Gluon (Gluon, 2017) sit be-
tween model specifications and hardware to provide cross-
library optimizations. Deep learning libraries (Paszke et al.,
2017; Abadi et al., 2016; Chen et al., 2016; Jia et al., 2014)
provide support for the gradient-based optimization compo-
nents that appear in RL algorithms.

7. Conclusion
RLlib is an open source library for reinforcement learning
that leverages fine-grained nested parallelism to achieve
state-of-the-art performance across a broad range of RL
workloads. It offers both a collection of reference algorithms
and scalable abstractions for easily composing new ones.
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