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Abstract

Modern computing platforms are highly-configurable with thou-
sands of interacting configuration options. However, configuring
these systems is challenging and misconfigurations can cause un-
expected non-functional faults. This paper proposes CADET (short
for Causal Debugging Toolkit) that enables users to identify, ex-
plain, and fix the root cause of non-functional faults early and in a
principled fashion. CADET builds a causal model by observing the
performance of the system under different configurations. Then,
it uses casual path extraction followed by counterfactual reason-
ing over the causal model to (a) identify the root causes of non-
functional faults, (b) estimate the effects of various configuration
options on the performance objective(s), and (c) prescribe candi-
date repairs to the relevant configuration options to fix the non-
functional fault. We evaluated CADET on 5 highly-configurable
systems by comparing with state-of-the-art configuration optimiza-
tion and ML-based debugging approaches. The experimental results
indicate that CADET can find effective repairs for faults in multiple
non-functional properties with (at most) 13% more accuracy, 32%
higher gain, and 13× speed-up than other ML-based performance
debugging methods. Compared to multi-objective optimization ap-
proaches, CADET can find fixes (at most) 8× faster with comparable
or better performance gain. Our study of non-functional faults re-
ported in NVIDIA’s forum shows that CADET can find 14% better
repairs than the experts’ advice in less than 30 minutes.

1 Introduction

Modern computing systems are highly configurable and can seam-
lessly be deployed on various hardware platforms and under differ-
ent environmental settings. The configuration space is combinatori-
ally large with 100s if not 1000s of software and hardware configura-
tion options that interact non-trivially with one another [38, 49, 99].
Unfortunately, configuring these systems to achieve specific goals
is challenging and error-prone.

Incorrect configuration (misconfiguration) elicits unexpected in-
teractions between software and hardware resulting non-functional
faults, i.e., faults in non-functional system properties such as latency
and energy consumption. These non-functional faults—unlike reg-
ular software bugs—do not cause the system to crash or exhibit
an obvious misbehavior [75, 82, 94]. Instead, misconfigured sys-
tems remain operational while being compromised, resulting severe
performance degradation in latency, energy consumption, and/or
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Figure 1: Observational data (in Fig. 1a) (incorrectly) shows

that high GPU memory growth leads to high latency. The trend

is reversed when the data is segregated by swap memory.

heat dissipation [15, 71, 74, 84]. The sheer number of modalities
of software deployment is so large that exhaustively testing every
conceivable software and hardware configuration is impossible.
Consequently, identifying the root cause of non-functional faults is
notoriously difficult [35] with as much as 99% of them going unno-
ticed or unreported for extended durations [4]. This has tremendous
monetary repercussions costing companies worldwide an estimated
$5 trillion in 2018 and 2019 [34]. Further, developers on online fo-
rums are quite vocal in expressing their dissatisfaction. For example,
one developer on NVIDIA’s developer forum bemoans: “I am quite
upset with CPU usage on TX2 [8],” while another complained, “I
don’t think it [the performance] is normal and it gets more and more
frustrating [7].” Crucially, these exchanges provoke other unan-
swered questions, such as, “what would be the effect of changing
another configuration ‘X’? [2].” Therefore, we seek methods that
can identify, explain, and fix the root cause of non-functional faults
early in a principled fashion.
Existing work.Much recent work has focused on configuration
optimization, which are approaches aimed at finding a configura-
tion that optimizes a performance objective [29, 72, 86, 100, 105].
Finding the optimum configuration using push-button optimization
approaches is not applicable here because they do not give us any
information about the underlying interactions between the faulty
configuration options that caused the non-functional fault. This
information is sought after by developers seeking to address these
non-functional faults [82, 93].

Some previous work has used machine learning-based perfor-
mance modeling approaches [36, 86, 87, 96]. These approaches are
adept at inferring the correlations between certain configuration
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options and performance, however, they lack the mathematical lan-
guage to express how orwhy the configuration options affect perfor-
mance. Without this, we risk drawing misleading conclusions. They
also require significant time to gather the training samples, which
grows exponentially with the number of configurations [56, 103].
Limitations of existing work. In Fig. 1, we present an example
to help illustrate the limitations with current techniques. Here,
the observational data gathered so far indicates that GPU memory
growth is positively correlated with increased latency (as in Fig. 1a).
An ML-model built on this data will, with high confidence, predict
that larger GPU memory growth leads to larger latency. However,
this is counter-intuitive because higher GPU memory growth should,
in theory, reduce latency not increase it. When we segregate the
same data on swap memory (as in Fig. 1b), we see that there is in-
deed a general trend downward for latency, i.e., within each group
of swap memory, as GPU memory growth increases the latency de-
creases. We expect this because GPU memory growth controls how
much memory the GPU can “borrow” from the swap memory. De-
pending on resource pressure imposed by other host processes, a
resource manager may arbitrarily re-allocate some swap memory;
this means the GPU borrows proportionately more/less swap mem-
ory thereby affecting the latency correspondingly. This is reflected
by the data in Fig. 1b. If the ML-based model were to consult the
available data (from Fig. 1a) unaware of such underlying factors,
these models would be incorrect. With thousands of configurations,
inferring such nuanced information from optimization or ML-based
approaches would require a considerable amount of measurements
and extensive domain expertise which can be impractical, if not
impossible, to possess in practice.
Our approach. In this paper, we design, implement, and evalu-
ate CADET (short for Causal Debugging Toolkit). CADET uses
causal structural discovery algorithms [91] to construct a causal
model using observational data [78]. Then, it uses counterfactual
reasoning over the causal model to (a) identify the root causes of
non-functional faults, (b) estimate the effects of various config-
urable parameters on the non-functional properties, and (c) pre-
scribe candidate repairs to the relevant configuration options to fix
the non-functional fault. For example, in Fig. 1, CADET constructs
a causal model from observational data (as in Fig. 1c). This causal
model indicates that GPU memory growth indirectly influences la-
tency (via a swap memory) and that the configuration options may
be affected by certain other factors, e.g., resource manager allo-
cating resources for other processes running on the host. CADET
uses counterfactual questions such as, “what is the effect of GPU
memory growth on latency if the available swap memory was 2Gb?”
to diagnose the faults and recommend changes to the configuration
options to mitigate these faults.
Evaluation. We evaluate CADET on 5 real-world highly config-
urable systems (three machine learning systems, a video encoder,
and a database system) deployed on 3 architecturally different
NVIDIA Jetson systems-on-chip. We compare CADET with state-
of-the-art configuration optimization and ML-based performance
debugging approaches. Overall, we find that CADET is (at most)
13× faster with 13% better accuracy and 32% higher gain than the
next best ML-based approaches for single-objective faults. Com-
pared to single-objective optimization approaches, CADET can find
repairs to misconfigurations 9× faster while performing as well

as (or better than) the best configuration discovered by the opti-
mization techniques. Further, CADET can find effective repairs for
faults in multiple performance objectives (i.e., latency and energy
consumption) with accuracy and gain as high as 16% and 36%, re-
spectively, than other ML-based performance debugging methods.
Compared to multi-objective optimization approaches, CADET can
find repairs 5× faster while having similar performance gain. Fi-
nally, with a case study, we demonstrate that CADET finds 14%
better repairs than the experts’ advice in 24 minutes.
Contributions. In summary, our contributions are as follows.
• We propose CADET, a novel causal diagnostics, and fault mitiga-
tion tool that identifies the root causes of non-functional faults and
recommends repairs to resolve non-functional faults.
• Our empirical results, conducted on on 5 highly configurable
systems deployed on 3 architecturally different hardware, CADET
outperforms current state-of-the-art ML-based diagnostics and op-
timization approaches in terms of efficacy (+16% accuracy and +36%
gain) and speed (up to 13× faster). CADET was also adept at han-
dling both single- and multi-objective performance faults.
• We offer a manually curated performance fault dataset (called
Jetson Faults) and accompanying code required to reproduce our
findings at https://git.io/JtFNG.

2 Motivation

2.1 A real-world example

This section illustrates the challenges both users and component
developers face when configuring and composing complex systems
with a concrete issue report from the NVIDIA forum [6]. Here, a
user notices some strange behavior when trying to transplant their
code for real-time computation of depth information from stereo-
cameras from NVIDIA Jetson TX1 to TX2. Since TX2 has twice the
computational power, they expected at least 30% lower latency, but
observed 4 times higher latency. The user indicates working with a
reliable reference implementation of their code and is puzzled by
the occurrence of this fault.

To solve this, the user solicits advice from the NVIDIA forums.
After discussions spanning two days, they learn that they havemade
several misconfigurations: (1) Wrong compilation flags: Their
compilation does not take into account the microarchitectural dif-
ferences between the two platforms. These may be fixed by setting
the correct microarchitecture with -gencode=arch parameter and
compiling the code dynamically by disabling the CUDA_USE_STATIC
flag. (2)Wrong CPU/GPU clock frequency: Their hardware con-
figuration is set incorrectly. Thesemay be fixed by setting the config-
uration -nvpmodel=MAX-N which changes the CPU and GPU clock
settings. The Max-N setting in TX2 provides almost twice the perfor-
mance of TX1 [30] due to a number of factors including increased
clock speeds and TX2’s use of 128-bit memory bus width versus
the 64-bit in TX1 [30]. If TX2 is not configured to leverage these
differences, it will face high latency. (3) Wrong fan modes: Their
fan needs to be configured correctly to achieve higher CPU/GPU
clock speeds. If the fan modes are not configured to be high, TX2
will thermal throttle the CPU and GPU to prevent overheating [3]
and invariably increasing latency [17].

https://git.io/JtFNG
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Figure 2: An example of

multi-objective nf-faults.

The previous example is one
of many examples wherein
misconfigurations severely im-
pact performance and energy
consumption. Such examples
abound in many other sys-
tems and domains, including
IoT ubiquitous systems (e.g.
Amazon Alexa) [13, 25] and
production-scale cloud-based
systems [35]. We term such
anomalies as non-functional
faults (hereafter, nf-faults),
and they represent a mismatch
between the expected perfor-
mance of a non-functional
property (such as the latency or energy consumption) and what is
actually observed when a system is deployed. Specifically, for cer-
tain configurations the software system may experience tail values
of latency, energy consumption, or heat dissipation, i.e., they take
values worse than predetermined SLA (we choose performance
worse than 99th percentile). In certain cases, the software system
might suffer from tail values in multiple non-functional properties
simultaneously, i.e., multi-objective nf-faults.

Fig. 2 illustrates the distribution of two non-functional proper-
ties (latency and energy consumption) measured for 2000 different
configuration setting for an NVIDIA TX2 SoC running an image
recognition task. There exist two types of non-functional faults that
may be discerned from Fig. 2: (1) configurations whose latency or
energy is worse that 99.99% of other configurations (shown in •); (2)
configurations where both latency and energy is worse that 99.99%
of other configurations (shown in •). The remaining configurations
(shown in •) are not considered to be faulty.

2.3 Manual Study

To further understand the nature of nf-faults, we explored the
NVIDIA developer forums and analyzed 47 reported issues for
different ML systems (e.g., image recognition, self-driving cars,
IoT, etc.). The reports and corresponding discussions highlight the
challenges that developers and users face when building complex
systems and how they are remedied. Specifically, we studied com-
posed systems deployed on NVIDIA’s hardware platforms for vari-
ous applications such as image processing, voice recognition, and
speech recognition deployed on heterogeneous hardware platforms
(TX1, TX2, Xavier) allowing users to compose a custom system
to meet specific functional and non-functional needs. The exten-
sibility of composed systems exposes them to frequent misconfig-
urations resulting in non-functional faults. Analyzing the issues
and discussions around these misconfigurations, we found the fol-
lowing: (1) There are different types of nf-faults across all

systems as a result of misconfigurations related to (i) latency
(42%), (ii) energy consumption (36%), and (iii) thermal problems
(22%). (2) Configuration options interact with one another in

different ways across environments. 25% of issues report mul-
tiple types of nf-faults simultaneously, highlighting challenging

tradeoffs users need tomake between, for example, reducing latency
by increasing core frequency results in higher energy consumption.
(3) Non-functional faults take a long time to resolve. Most
performance issues (i.e., 61%) took more than 1 week (average 5
weeks, max 11 months) to resolve in comparison to other types of
non-performance issues and require frequent back and forth be-
tween users and support teams, e.g. [1, 5]. Most of these issues are
environment-specific and since the developers do not have access
to the user’s environment, they usually cannot replicate them.

To address these issues, developers manually inspect trace logs
obtained by utilities such as perf. These traces present a large
amount of information pertaining to the current state of the sys-
tem. The volume of information presented makes it extremely bur-
densome for developers to decipher the actual root-cause of non-
functional faults. To overcome this challenge, we propose using
causal inference accompanied by counterfactuals to reason about
and address these nf-faults.

3 Background: Causal Inference

Causal inference is a systematic study to understand the inter-
actions between variables in a system in terms of their cause-
effect relationships between one another. This section provides
a brief overview of how one may reason about causal relation-
ships using the running example from example from Fig. 1. Ac-
cordingly, let us assume that we have gathered several samples
of GPU memory growth, swap memory, and latency. If we are inter-
ested in how latency behaves given GPU memory growth, then,
from a causal perspective, this can be formulated in three ways:
observational, interventional, and counterfactual [78, 79].

3.1 Observation and Intervention

In the observational formulation, we measure the distribution of
a target variable (e.g., latency 𝑌 ) given that we observe another
variable GPU memory growth (𝑋 ) takes a certain value ‘x’ (i.e.,𝑋 = 𝑥 ),
denoted by 𝑃𝑟 (𝑌 | 𝑋 = 𝑥). This is a familiar expression that, given
adequate data, modern supervised ML algorithms can estimate.

The interventional inference tackles a harder task of estimating
the effects of deliberate actions. For example, in Fig. 1, we measure
how the distribution of Latency (𝑌 ) would change if we (artificially)
intervened during the data gathering process by forcing the variable
GPU memory growth (X) to take a certain value ‘x’, i.e., 𝑋 = 𝑥 , but
otherwise retain the other variables (i.e., swap memory) as is. This
is done by building causal graphs and modifying them to reflect
our intervention. Then, using the modified causal graph and do-
causal calculus rules [78] we may estimate the outcome of the
artificial intervention. This process is computationally efficient
since we reason over existing data instead of gathering additional
measurements.

3.2 Counterfactual Inference

These problems involve probabilistic answers to “what if?” ques-
tions. They pertain to alternate possibilities that are counter to the
current facts (hence counterfactual) and their consequences. For
example, in Fig. 1, a counterfactual question may ask:
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Given that we observed a high latency, and given that GPU
memory growth was set to (say) 33%, and given everything
else we know about the circumstances of the observation (i.e.,
available swap memory), what is the probability of decreasing
latency, had we set the GPU memory growth to 66%?

In other words, we are interested in a scenario where:
• We hypothetically have low latency;
Conditioned on the following events:
• We actually observed high latency;
• GPU memory growth was initially set to 33%;
• We hypothetically set the new GPU memory growth to 66%; and
• Other circumstances (available swap memory, resource load, etc)
remain the same;
Formally we represent this, by abusing notations, as:

𝑃𝑟 (𝑌 = 𝑦𝑙𝑜𝑤 | 𝑋 = 0.66, 𝑋 = 0.33, 𝑌 = 𝑦ℎ𝑖𝑔ℎ, 𝑍 ) (1)

Here, 𝑌 stands for observed latency, 𝑋 stands for current GPU
memory growth, and 𝑍 stands for current swap memory. The vari-
ables 𝑋 and 𝑌 are as yet unobserved (or hypothetical), i.e., these
are variables that are either being predicted for (𝑌 = 𝑦𝑙𝑜𝑤 ) or being
hypothetically changed to a new value (𝑋 = 0.66).

Questions of this nature require precise mathematical language
lest they will be misleading. For example, in Eq. (1), we are simul-
taneously conditioning on two values of GPU memory growth (i.e.,
𝑋 = 0.66 and 𝑋 = 0.33). Traditional machine learning approaches
cannot handle such expressions. Instead, we must resort to causal
models to compute them.

Computing counterfactual questions using causal models in-
volves three steps [78, Section 7]: (i) Abduction: where we update
our model of the world using observational data; (ii) Action: where
we modify the model to reflect the counterfactual assumption being
made; and (iii) Prediction: wherewe use the obtainedmodifiedmodel
from the previous step to compute the value of the consequence of
the counterfactual.

4 CADET: Causal Performance Debugging

Leveraging the Causal Analysis, described in Section 3, we build
CADET, to debug the root causes and fix nf-faults. This section
presents a detailed description of CADET (outlined in Fig. 3).
Usage Scenario. In a typical scenario, CADET can be used when
a developer experiences nf-faults induced by misconfigurations
to (a) identify which configuration options are the root-cause of the
faults, and (b) prescribe how to set the root-cause configuration
values to fix the non-functional fault. To do this, the user queries
CADET with their questions about the non-functional fault (e.g.,
“what is the root cause of the non-functional fault?”, or “how to
improve the latency by 90%?”, etc).
Overview. CADET works in three phases: (I) causal structure dis-
covery, (II) causal path extraction, and (III) debug and repair using
a counterfactual query. For Phase-I, we first generate a few dozen
observed data, i.e., dynamic traces for measuring the non-functional
properties of the system (e.g., latency, energy consumption, etc.)
under different configuration settings. Using these traces, we con-
struct a causal graph that captures the causal relationships between
various configuration options and the system’s non-functional prop-
erties. For Phase-II, we use the causal graph to identify causal
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Observational Data Build Causal Graph Extract Causal Paths

Best �ery

Yes

No

update
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data

Counterfactual �eries
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What if questions.
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Phase I Phase II

Phase III

Figure 3: Overview of CADET

paths—paths that lead from configuration options to the non- func-
tional properties. Next, in Phase-III, given an observed nf-fault,
we aim to debug and repair the misconfigurations. In particular, we
generate a series of counterfactual queries, i.e., what-if questions
about specific changes to the values of each configuration option.
Given a nf-fault as input, we check which of the counterfactual
queries has the highest causal effect on remedying the nf-fault,
and we generate a new configuration using that query. Finally, we
evaluate the new configuration to assert if the newly generated
configuration mitigates the fault. If not, we add this new configu-
ration to the observational data of Phase-I and repeat the process
until the nf-fault is fixed.

4.1 Phase-I: Causal Graph Discovery

In this stage, we express the relationships between configuration op-
tions (e.g., CPU freq, etc.) and the non-functional properties (e.g., la-
tency, etc) using a causal model. A causal model is an acyclic directed
mixed graph (hereafter, ADMG), i.e., an acyclic graph consisting
of directed and bidirected edges representing the causal direction
and existence of latent common cause(s), respectively [26, 83]. The
nodes of the ADMG have the configuration options and the non-
functional properties (e.g., latency, etc). Additionally, we enrich
the causal graph by including nodes that represent the status of
internal systems events, e.g., resource pressure (as in Fig. 1). Un-
like configuration options, these system events cannot be modified.
However, they can be observed and measured to explain how the
causal-effect of changing configurations propagates to latency or
energy consumption, e.g., in Fig. 1 resource pressure is a system
event that determines how GPU memory growth affects latency.
Data collection. To build the causal model we gather a set of
initial observational data resembling Table 4a1. It consists of con-
figuration options set to randomly chosen values; various system
events occurring when these configurations were used; and the
measure of latency and energy consumption.
Fast Causal Inference. To convert observational data into a
causal graph, we use a prominent structure discovery algorithm
called Fast Causal Inference (hereafter, FCI) [91]. We picked FCI
1For our systems, we found that 25 initial samples were adequate to build an initial
version of a causal model. However, this is a parameter that may change with the
system.
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Figure 4: From observational data to a fully connected graph, a skeleton graph, and finally to partial ancestral graph (PAG).

because it has several useful properties. First, it accommodates for
the existence of unobserved confounders [32, 76, 91], i.e., it oper-
ates even when there are unknown variables that have not been, or
cannot be, measured. This is important because we do not assume
absolute knowledge about configuration space, hence there could
be certain configurations we could not modify or system events we
have not observed. Second, it accommodates variables that belong
to various data types such as nominal, ordinal, and categorical data
common across the system stack.

FCI operates in three stages. First, we construct a fully connected
undirected graph where each variable is connected to every other
variable. Second, we use statistical independence tests to prune
away edges between variables that are independent of one another.
Finally, we orient undirected edges using prescribed edge orienta-
tion rules [19, 20, 32, 76, 91] to produce a partial ancestral graph (or
PAG). A PAG contains the following types of (partially) directed
edges:
• 𝑋 𝑌 indicating that vertex 𝑋 causes 𝑌 .
• 𝑋 𝑌 which indicates that there are unmeasured confounders
between vertices 𝑋 and 𝑌 .

In addition, FCI produces two types of partially directed edges:
• 𝑋 𝑌 indicating that either 𝑋 causes 𝑌 , or that there are
unmeasured confounders that cause both 𝑋 and 𝑌 .

• 𝑋 𝑌 which indicates that either: (a) vertices 𝑋 causes 𝑌 , or
(b) vertex 𝑌 causes 𝑋 , or (c) there are unmeasured confounders
that cause both 𝑋 and 𝑌 .

In the last two cases, the circle (◦) indicates that there is an ambigu-
ity in the edge type. In other words, given the current observational
data, the circle can indicate an arrow head ( ) or no arrow head
(—), i.e., for 𝑋 𝑌 , all three of 𝑋 𝑌 , 𝑌 𝑋 , and 𝑋 𝑌

might be compatible with current data, i.e., the current data could

be faithful to each of these statistically equivalent causal graphs
inducing the same conditional independence relationships.
Resolving partially directed edges. For subsequent analyses
over the causal graph, the PAG obtained must be fully resolved
(directed with no ◦ ended edges) in order to generate an ADMG,
i.e., we must fully orient partially directed edges by replacing the
circles in and with the correct edge direction.

Resolving these partial edges from PAG is an open problem. This
is tackled in two ways: (1) Solicit expert advice to orient edges [42],
but this may be too cumbersome especially when the graph is com-
plex [42]; or (2) Use alternative information-theoretic approaches
to discover the correct orientations [58, 102]. In this paper, we use
the information-theoretic approach, enabling us to orient all edges
automatically without any expert intervention. Specifically, this
paper uses an entropic approach proposed in [59, 60] to discover
the true causal direction between two variables. Entropic causal
discovery is inspired by Occam’s razor, and the key intuition is that,
among the possible orientations induced by partially directed edges
(i.e., and ), the most plausible orientation is that which
has the lowest entropy.

Our work extends the theoretic underpinnings of entropic causal
discovery to generate a fully directed causal graph by resolving the
partially directed edges produced by FCI. For each partially directed
edge, we follow two steps: (1) establish if we can generate a latent
variable (with low entropy) to serve as a common cause between
two vertices; (2) if such a latent variable does not exist, then pick
the causal direction which has the lowest entropy.

For the first step, we assess if there could be an unmeasured
confounder (say 𝑍 ) that lies between two partially oriented nodes
(say𝑋 and 𝑌 ). For this, we use the LatentSearch algorithm proposed
by Kocaoglu et al. [60]. LatentSearch outputs a joint distribution
𝑞(𝑋,𝑌, 𝑍 ) of the variables𝑋 ,𝑌 , and𝑍 which can be used to compute
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the entropy 𝐻 (𝑍 ) of the unmeasured confounder 𝑍 . Following the
guidelines of Kocaoglu et al., we set an entropy threshold \𝑟 =

0.8 ×𝑚𝑖𝑛 {𝐻 (𝑋 ), 𝐻 (𝑌 )}. If the entropy 𝐻 (𝑍 ) of the unmeasured
confounder falls below this threshold, then we declare that there is
a simple unmeasured confounder 𝑍 (with a low enough entropy)
to serve as a common cause between 𝑋 and 𝑌 and accordingly, we
replace the partial edge with a bidirected (i.e., ) edge.

When there is no latent variable with a sufficiently low entropy,
there are two possibilities: (a) variable 𝑋 causes 𝑌 ; then, there is
an arbitrary function 𝑓 (·) such that 𝑌 = 𝑓 (𝑋, 𝐸), where 𝐸 is an
exogenous variable (independent of 𝑋 ) that accounts for noise in
the system; or (b) variable 𝑌 causes 𝑋 ; then, there is an arbitrary
function 𝑔(·) such that 𝑋 = 𝑔(𝑌, 𝐸), where 𝐸 is an exogenous vari-
able (independent of 𝑌 ) that accounts for noise in the system. The
distribution of 𝐸 and 𝐸 can be inferred from the data [59, see §3.1].
With these distributions, we measure the entropies 𝐻 (𝐸) and 𝐻 (𝐸).
If 𝐻 (𝐸) < 𝐻 (𝐸), then, it is simpler to explain the 𝑋 𝑌 (i.e., the
entropy is lower when 𝑌 = 𝑓 (𝑋, 𝐸)) and we choose 𝑋 𝑌 as the
causal direction. Otherwise, we choose 𝑌 𝑋 .
Example. Fig. 4 shows the steps involved in generating the final
ADMG from Fig. 1c. First, we build a dense graph by connecting
all pairs of variables with an undirected egde (see Fig. 4b). Next,
we use Fisher’s exact test [21] to evaluate the independence of
all pairs of variables conditioned on all remaining variables. Prun-
ing edges between the independent variables results in skeleton
graph as shown in Fig. 4c. Next, we orient undirected edges using
edge orientation rules [20, 32, 76, 91] to produce a partial ancestral
graph (as in Fig. 4d). In our example, we identify that there are two
edges that are partially oriented (outlined in red in Fig. 4d): (i) swap
memory GPU memory growth; and (ii) resource pressure
latency. To resolve these two edge, we use the entropic orientation
strategy. The steps involved to orient these edges are illustrated in
Fig. 4e. After this step, we get the final ADMG shown in Fig. 4f.

4.2 Phase-II: Causal Path Extraction

In this stage, we extract paths from the causal graph (referred to
as causal paths) and rank them from highest to lowest based on
their average causal effect on latency, energy consumption, and
heat dissipation (our three non-functional properties). Using path
extraction and ranking, we reduce the complex causal graph into
a small number of useful causal paths for further analyses. The
configurations in this path are more likely to be associated with
the root cause of the fault.
Extracting causal paths with backtracking. A causal path is a
directed path originating from either the configuration options or
the system event and terminating at a non-functional property (i.e.,
latency and/or energy consumption). To discover causal paths, we
backtrack from the nodes corresponding to each non-functional
property until we reach a node with no parents. If any intermediate
node has more than one parent, then we create a path for each
parent and continue backtracking on each parent.
Ranking causal paths. A complex causal graph can result in a
large number of causal paths. It is not practical to reason over all
possible paths as it may lead to a combinatorial explosion. Therefore,
we rank the paths in descending order from ones having the highest

causal effect to ones having the lowest causal effect on each non-
functional property. For further analysis, we use paths with the
highest causal effect. To rank the paths, we measure the causal
effect of changing the value of one node (say GPU memory growth or
𝑋 ) on its successor in the path (say swap memory or 𝑍 ). We express
this with the do-calculus notation: E[𝑍 | do(𝑋 = 𝑥)]. This notation
represents the expected value of𝑍 (swap memory) if we set the value
of the node 𝑋 (GPU memory growth) to 𝑥 . To compute the average
causal effect (ACE) of 𝑋 → 𝑍 (i.e., GPU memory growth swap
memory), we find the average effect over all permissible values of 𝑋
(GPU memory growth), i.e.,

ACE (𝑍,𝑋 ) =
1
𝑁

·
∑︁

∀𝑎,𝑏∈𝑋
E [𝑍 | do (𝑋 = 𝑏) ] − E [𝑍 | do (𝑋 = 𝑎) ] (2)

Here, 𝑁 represents the total number of values 𝑋 (GPU memory
growth) can take. If changes in GPU memory growth result in a
large change in swap memory, then the ACE (𝑍,𝑋 ) will be larger,
indicating that GPU memory growth on average has a large causal
effect on swap memory. For the entire path, we extend Eq. (2) as:

Path𝐴𝐶𝐸 =
1
𝐾

·
∑︁

ACE(𝑍,𝑋 ) ∀𝑋,𝑍 ∈ 𝑝𝑎𝑡ℎ (3)

Eq. (3) represents the average causal effect of the causal path. The
configuration options the lie in paths with larger 𝑃𝐴𝐶𝐸 tend to
have a greater causal effect on the corresponding non-functional
properties in those paths. We select the top 𝐾 paths with the largest
P𝐴𝐶𝐸 values, for each non-functional property. In this paper, we
use K=3, however, this may be modified in our replication package.

4.3 Phase-III: Debugging non-functional faults

In this stage, we use the top 𝐾 paths to (a) identify the root cause
of non-functional faults; and (b) prescribe ways to fix the non-
functional faults. When experiencing non-functional faults, a devel-
oper may ask specific queries to CADET and expect an actionable
response. For this, we translate the developer’s queries into formal
probabilistic expressions that can be answered using causal paths.
We use counterfactual reasoning to generate these probabilistic
expressions. To understand query translation, we use the example
causal graph of Fig. 4f where a developer observes high latency, i.e.,
a latency fault, and has the following questions:
? “What is the root cause of my latency fault?” To identify
the root cause of a non-functional fault we must identify which con-
figuration options have the most causal effect on the performance
objective. For this, we use the steps outlined in §4.2 to extract the
paths from the causal graph and rank the paths based on their aver-
age causal effect (i.e., Path𝐴𝐶𝐸 from Eq. (3)) on latency. We return
the configurations that lie on the top𝐾 paths. For example, in Fig. 4f
we may return the path (say) GPU memory growth swap memory

Latency and the configuration options GPU memory growth and
swap memory both being probable root causes.
? “How to improve my latency?” To answer this query, we first
find the root cause as described above. Next, we discover what
values each of the configuration options must take in order that
the new latency is better (low latency) than the fault (high latency).
For example, we consider the causal path GPU memory growth
swap memory Latency, we identify the permitted values for the
configuration options GPU memory growth and swap memory that
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can result in a low latency (𝑌 low) that is better than the fault (𝑌high).
For this, we formulate the following counterfactual expression:

Pr(𝑌 low𝑟𝑒𝑝𝑎𝑖𝑟 |¬𝑟𝑒𝑝𝑎𝑖𝑟,𝑌high¬𝑟𝑒𝑝𝑎𝑖𝑟 ) (4)

Eq. (4) measures the probability of “fixing” the latency fault with
a “repair” (𝑌 low

𝑟𝑒𝑝𝑎𝑖𝑟
) given that with no repair we observed the fault

(𝑌high
¬𝑟𝑒𝑝𝑎𝑖𝑟 ). In our example, the repairs would resemble GPU memory

growth =0.66 or swap memory =4𝐺𝑏, etc. We generate a repair set
(R) where the configurations GPU memory growth and swap memory
are set to all permissible values, i.e.,

R ≡
⋃

{GPU memory growth = 𝑥, swap memory = 𝑧, ...}
∀𝑥 ∈ GPU memory growth, 𝑧 ∈ swap memory, . . . (5)

Next, we compute the individual treatment effect (ITE) on the
latency (𝑌 ) for each repair in the repair set R. In our case, for each
repair r ∈ R, ITE is given by:

ITE(r) = Pr(𝑌 low𝑟 | ¬𝑟, 𝑌high¬𝑟 ) − Pr(𝑌high𝑟 | ¬𝑟, 𝑌high¬𝑟 ) (6)

ITEmeasures the difference between the probability that the latency
is low after a repair 𝑟 and the probability that the latency is still
high after a repair 𝑟 . If this difference is positive, then the repair
has a higher chance of fixing the fault. In contrast, if the difference
is negative then that repair will likely worsen the latency. To find
the most useful repair (Rbest ), we find a repair with the largest
(positive) ITE, i.e.,

Rbest = argmax
∀𝑟 ∈ R

[ITE(r)]

This provides the developer with a possible repair for the con-
figuration options that can fix the latency fault.
Remarks. The ITE computation of Eq. (6) occurs only on the obser-
vational data. Therefore we may generate any number of repairs
and reason about them without having to deploy those interven-
tions andmeasuring their performance in the real-world. This offers
significant monetary and runtime benefits.

4.4 Incremental Learning

Using the output of Phase-III, the system is reconfigured with
the new configuration. If the new configuration addresses the nf-
fault, we return the recommended repairs to the developer. Since
the causal model uses limited observational data, there may be a
discrepancy between the actual performance of the system after
the repair and the value of the estimation derived from the current
version of the causal graph. The more accurate the causal graph,
the more accurate the proposed intervention will be [19, 20, 32, 76,
91]. Therefore, in case our repairs do not fix the faults, we update
the observational data with this new configuration and repeat the
process. Over time, the estimations of causal effects will become
more accurate. We terminate the incremental learning once we
achieve the desired performance.

5 Case Study: Latency Fault in TX2

This section revisits the real-world latency fault previously dis-
cussed in §2.1. For this study, we reproduce the developers’ setup
to assess how effectively CADET can diagnose the root-cause of
the misconfigurations and fix them. For comparison, we use SMAC
(an optimization approach) and BugDoc (an ML-based diagnosis

Problem [6]: For a real-time scene detection task, TX2 (faster platform)
only processed 4 frames/sec whereas TX1 (slower platform) processed 17
frames/sec, i.e., the latency is 4× worse on TX2.
Observed Latency (frames/sec): 4 FPS
Expected Latency (frames/sec): 22-24 FPS (30-40% better)

Configuration Options CA
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A
CE

†

CPU Cores Ë Ë Ë Ë 3%
CPU Frequency Ë Ë Ë Ë 6%
EMC Frequency Ë Ë Ë Ë 13%
GPU Frequency Ë Ë Ë Ë 22%
Scheduler Policy · Ë Ë · .
Sched rt runtime · · Ë · .
Sched child runs · · Ë · .
Dirty bg. Ratio · · · · .
Dirty Ratio · · Ë · .
Drop Caches · Ë Ë · .
CUDA_STATIC Ë Ë Ë Ë 55%
Cache Pressure · · · · .
Swappiness · Ë Ë · 1%

Latency (TX2 frames/sec) 26 24 20 23
Latency Gain (over TX1) 53% 42% 21% 39%
Latency Gain (over default) 6.5× 6× 5× 5.75×
Resolution time 24 mins 4 hrs 3.5 hrs 2 days

    Energy Consumption

context-switches

CPU Frequency

Latencyswappiness

CUDA_STATIC

EMC Freq

CPU Cores

GPU Freq

Figure 5: Using CADET on the real-world example from §2.1.

CADET is better and faster than other methods.

tool). We evaluate the methods against the recommendations by
the domain experts on the forum.
Findings. Fig. 5 illustrates our findings. We find that:
• CADET could diagnose the root-cause of the misconfiguration
and recommends a fix within 24 minutes. Using the recommended
configuration fixes fromCADET, we achieved a frame rate of 26 FPS
(53% better than TX1 and 6.5× better than the fault). This exceeds
the developers’ initial expectation of 30 − 40% improvement.
• Using configuration optimization (SMAC), we auto-tune the sys-
tem to find a near-optimal configuration. This (near-optimal) config-
uration had a latency of 24 FPS (which was 42% better than TX1 and
6× better than the fault). While SMAC also meets the developer’s
expectations, it performed slightly worse than CADET, and took 4
hours (6× longer than CADET). Further, the near-optimal config-
uration found by SMAC, change several unrelated configurations
which were not recommended by the experts ( Ë in Fig. 5).
• BugDoc (ML-based approach) has the least improvement com-
pared to other approaches (21% improvement over TX1) while tak-
ing 3.5 hours (mostly spent on collecting training samples to train
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internal the decision tree.). BugDoc failed to meet the developer’s
expectation. BugDoc also changed several unrelated configurations
(depicted by Ë ) not endorsed by the domain experts.
Why CADET works better (and faster)? CADET discovers the mis-
configurations by constructing a causal model (a simplified version
of this is shown in Fig. 5). This causal model rules out irrelevant
configuration options and focuses on the configurations that have
the highest (direct or indirect) causal effect on latency, e.g., we
found the root-cause CUDA STATIC in the causal graph which indi-
rectly affects latency via context-switches (an intermediate system
event); this is similar to other relevant configurations that indirectly
affected latency (via energy consumption). Using counterfactual
queries, CADET can reason about changes to configurations with
the highest average causal effect (last column in Fig. 5). The counter-
factual reasoning occurs no additional measurements, significantly
speeding up inference.

Together, the causal model and the counterfactual reasoning
enable CADET to pinpoint the configuration options that were
misconfigured and recommend a fix for them in a timely manner.
As shown in Fig. 5, CADET accurately finds all the configuration
options recommended by the forum (depicted by Ë in Fig. 5). Fur-
ther, CADET recommends fixes to these options that result in 24%
better latency than the recommendation by domain experts in the
forum. More importantly, CADET takes only 24 minutes (vs. 2 days
of forum discussion) without modifying unrelated configurations.

6 Experimental Setup

6.1 Study subjects

Hardware Systems. This study uses three NVIDIA Jetson Plat-
forms: TX1, TX2, and Xavier. Each platform has different hard-
ware specifications, e.g., different CPU micro-architectures (ARM
Caramel, Cortex), GPUmicro-architectures (Maxwell, Pascal, Volta),
energy requirements (5W–30W).
Software systems.Wedeploy five software systems on eachNVIDIA
Jetson Platform: (1) CNN based Image recognition with Xception
to classify 5000 images from the CIFAR10 dataset [18]; (2) BERT (a
transformer-based model) to perform sentiment analysis on 10000
reviews from the IMDb dataset [24]; (3) DeepSpeech an RNN based
voice recognition on 5sec long audio files [41]; (4) SQLite, a database
management system, to perform read, write, and insert operations;
and (5) x264 video encoder to encode a video file of size 11MB with
resolution 1920 x 1080.
Configuration Options. This work uses 28 configuration options
including 10 software configurations, 8 OS/Kernel configurations,
and 10 hardware configurations (c.f. Fig. 5). We also record the
status of 19 non-intervenable system events. We choose these con-
figurations and system events based on NVIDIA’s configuration
guides/tutorials and other related work [37].

6.2 Benchmark Dataset

We curate a non-functional faults dataset, called the Jetson Faults
dataset, for each of the software and hardware system used in our
study. This dataset and the data collection scripts are available in
our replication package.

Data Collection.We exhaustively set each configuration option
to all permitted values. Note, for continuous configuration options
we choose 10 equally spaced values between the minimum and
maximum permissible values, e.g., for GPU memory growth, we vary
the value between 0% and 100% in steps of 10%. Next, we measure
the latency, energy consumption, and heat dissipation for every
configuration. We repeat each measurement 5 times and record the
average to handle system noise and other variabilities [47].
Labelingmisconfigurations. By definition, non-functional faults
have latency, energy consumption, and heat dissipation that take
tail values [35, 57], i.e., they are worse than the 99th percentile.
We filter our data set to find the configurations that result in tail
values for latency and/or energy consumption, and label these
configurations as ‘faulty’.
Ground Truth. We create a ground-truth data by inspecting each
configuration labeled faulty and identifying their root-causes man-
ually. We also manually reconfigure each faulty configuration to
achieve the best possible latency, energy consumption, and/or heat
dissipation thereby dispensing with the non-functional fault . For
each reconfiguration, we record the changed configuration options
and the values; these are used as a reference for evaluation.

6.3 Baselines

CADET is compared against four alternative state of-the-art ML-
based methods for fault diagnostic and mitigation: (1) CBI [90]: A
correlation based feature selection algorithm for identifying and
fixing fault inducing configurations; (2) Delta Debugging [9]:
A debugging technique that minimizes the difference between a
pair of configurations, where one configuration causes a fault while
the other does not; (3) EnCore [106]: A rule based technique that
learns correlational information about misconfigurations from a
given set of sample configurations. (4) BugDoc [66]: A Debugging
Decision Tree based approach to automatically infer the root causes
and derive succinct explanations of failures.

We also compare CADET with the near-optimal configurations
from two state-of-the-art configuration optimization methods: (1)
SMAC [46]: A sequential model based optimization technique to
auto-tune software systems; (2) PESMO [43]: A multi-objective
bayesian optimization to find Pareto-optimal configurations.

6.4 Evaluation Metrics

Relevance scores.We evaluate the predicted root-causes in terms
of (a) the true positive rate (recall), (b) the true discovery rate (preci-
sion), and (c) accuracy (jaccard similarity). We prefer high accuracy,
precision, and recall. To compute these metrics, we compare the set
of configuration options identified by CADET to be the root cause
with the true root-cause from the ground truth (§6.2).
Repair quality. To assess the quality of fixes, we measure the
percentage improvement (gain %) after applying the recommended
repairs using Δ𝑔𝑎𝑖𝑛 defined as: Δ𝑔𝑎𝑖𝑛 =

NFPfault−NFPnofault
NFPfault × 100.

Here NFPfault is the value of the faulty non-functional property
(latency,etc.) and NFPno fault is the the value of the faulty non-
functional property after applying the repairs recommended by
CADET. The larger the Δ𝑔𝑎𝑖𝑛 , the better the recommended fix.

https://bit.ly/30Q4PSC
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Table 1: Efficiency of CADET compared to other approaches. Cells highlighted in blue indicate improvement over faults.

(a) Single objective performance fault in latency and energy consumption.
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(b) Multi-objective non-functional faults in Energy, Latency.

Accuracy Precision Recall Gain (Latency) Gain (Energy) Time†
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7 Experimental Results

RQ1. CADET vs. Model-Based Diagnostics

Motivation. Machine learning approaches are commonly used
in model-based fault diagnostics [9, 66, 90, 106]. These models
are trained to learn the correlation between the configuration op-
tions and the non-functional properties (e.g, latency, etc) which are
then extrapolated to diagnose and fix faults. This research ques-
tion compares CADET and four state-of-the-art ML-based methods
(described in §6.3) for single objective fault diagnostics and multi-
objective fault diagnostics.
Note. All approaches require some initial observational data to
operate. For CADET we begin with 25 initial samples to let CADET
incrementally generate, evaluate, and update the causal model with
candidate repairs. Other methods require a larger pool of training
data. However, collecting the training data is expensive and time-
consuming. Therefore, we use a budget of 3 hours to generate
random configuration samples to train the other methods.
Approach. Weassess the effectiveness of diagnostics for two types
of non-functional faults: (a) “single-objective” faults that occur ei-
ther in latency or in energy consumption, and (b) “multi-objective”
faults where misconfigurations affect multiple non-functional prop-
erties simultaneously, i.e., in latency and energy consumption. For
brevity, we evaluate latency faults in TX2 and energy consumption
faults in Xavier. Our findings generalize over other hardware.
Approach. Tables 1a and 1b compare the effectiveness of CADET
over other ML-based fault diagnosis approaches. We observe:
• Accuracy, precision, and recall: CADET significantly outper-
forms ML-based methods in all cases. For example, in image recogni-
tion with Xception on TX2, CADET achieves 13% more accuracy,
19% larger Precision compared to BugDoc and 14% more recall

compared to EnCore. We observe similar trends in energy faults
and multi-objective faults, i.e., CADET outperforms other methods.
• Gain. CADET can recommend repairs for faults that significantly
improve latency and energy usage. Applying the changes to the
configurations recommended by CADET increases the performance
drastically. We observed latency gains as high as 83% (23% more
than BugDoc) on TX2 and energy gain of 83% (32% more than
BugDoc) on Xavier for image recognition.
• Wallclock time. CADET can resolve misconfiguration faults sig-
nificantly faster than ML-based approaches. In Tables 1a and 1b,
the last two columns indicate the time taken (in hours) by each
approach to diagnosing the root cause. For all methods, we set a
maximum budget of 4 hours. We find that, while other approaches
use the entire budget to diagnose and resolve the faults, CADET can
do so significantly faster, e.g., CADET is 13× faster in diagnosing
and resolving faults in energy usage for x264 deployed on Xavier
and 10× faster for latency faults for NLP task on TX2.
Discussion. Based on the above, we answer the following addi-
tional questions:
1. Why is CADET better than model-based approaches? Model-based
methods rely only on correlation, and this can be misleading since
they cannot incorporate the intrinsic complex causal structure of
the underlying configuration space. In contrast, CADET relies on
causal inference (instead of correlation) to model the configuration
space thereby overcoming the limitations with current ML-models.
2. Why is CADET faster than model-based approaches? ML-based
methods require a large number of initial observational data for
training. They spend most of their allocated 4-hour budget on
gathering these training samples. In contrast, CADET starts with
only 25 samples and uses incremental learning (§4.4) to judiciously
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Figure 6: CADET vs. optimization with SMAC and PESMO.

update the casual graph with new configurations until a repair has
been found. This drastically reduces the inference time.

RQ2: CADET vs. Search-Based Optimization

Motivation. Search basedmethods use techniques such as Bayesian
optimization [85, 89] to explore the relationships between configu-
ration options and corresponding non-functional properties. Albeit
recent approaches seem promising [23, 45, 70], these methods are
not viable for diagnostics since our objective is not to find an opti-
mal configuration, rather it is to fix an already encountered fault.
In this RQ, we explore the challenges of using optimization for
fault diagnostics in terms of their efficacy (RQ2-A), their analysis
time (RQ2-B), and their sensitivity to external changes (RQ2-C), by
comparing CADET with two popular optimization approaches: (a)
SMAC and (b) PESMO (see §6.3).
RQ2-A. How effective is optimization? In this RQ, we compare
CADET with SMAC for fixing latency faults in TX2 (for Image
recognition). In general, the fixes recommended by CADET were
observed to have better latency gains than the near-optimal configu-
ration discovered by SMAC (see Fig. 6a). Most notably, in numerous
cases, SMAC generated “near-optimal” configurations which in fact
lead to significant deterioration in other non-functional properties
such as energy consumption and heat dissipation (denoted by ♦ in
Fig. 6a). Out of 21 latency faults in image recognition on TX2, we
found 7 cases (33%) where the near-optimal configuration caused a
significant deterioration in energy consumption. In one case the
optimal configuration increased the energy consumption by 96%!
To overcome the above problem, we use a multi-objective optimiza-
tion such as PESMO [43] to find a configuration that optimizes for
energy and latency simultaneously. CADET can natively accom-
modate such multi-objective by slightly altering the counterfactual
query (c.f. §4.3).

Fig. 6b compares CADET with PESMO for fixing energy and
latency faults in TX2 (for Image recognition). As with the previous
instance, we find that CADET performs better than PESMO, i.e.,
CADET recommends fixes misconfigurations that result in better
gain than the Pareto-optimal configuration found by PESMO.
RQ2-B. What is the analysis time of optimization? The anal-
ysis time of all approaches are reported in Fig. 6c. Optimization

methods run until they converge, however it is a common practice
to assign a maximum budget (we use 4 hours) to limit inference
time and cost. CADET was found to have comparatively lesser in-
ference time compared to the other methods. While SMAC takes
slightly more than 3 hours to find a near-optimum in TX2 (image
recognition), CADET resolved the faults in 20 minutes on average
(9× faster). Likewise, PESMO takes close 4 hours compared to 45
minutes with CADET (5× faster).

Since CADET uses causal models to infer candidate fixes using
only the available observational data, it tends to be much faster
than SMAC and PESMO. During incremental learning, CADET
judiciously evaluates the most promising fixes until the fault is
resolved. This limits the number of times the system is reconfig-
ured and profiled. In contrast, optimization techniques sample the
configuration space exhaustively to find an optimal configuration.
Every sampled configuration is deployed and profiled. Optimiza-
tion techniques sample several sub-optimal configurations in their
search process and they are all evaluated. This issue is compounded
when performing multi-objective optimization.
RQ2-C. How sensitive are optimization techniques to exter-

nal changes in the software? Configuration optimization meth-
ods are prone to be very sensitive to minor changes to the software
stack. To demonstrate this, we use three larger additional image
recognition workloads: 10K, 20K, and 50K test images (previous ex-
periments used 5K test images). We evaluate two variants of SMAC:
(1) SMAC (Reuse) where we reuse the near-optimum found with
a 5K tests image on the larger workloads; and (2) SMAC (Rerun)
where we rerun SMAC afresh on each workload.

Our experimental results demonstrate that CADET performs
better than the two variants of SMAC (c.f. Fig. 6d). SMAC (Reuse)
performs the worst when the workload changes. With 10K images,
reusing the near-optimal configuration from 5K images results
in latency gain of 39%, compared to 79% with CADET. With a
workload size of 50K images, SMAC (Reuse) only achieves a latency
improvement of 24% over the faulty configurations whereasCADET
finds a fix that improves latency by 72%. SMAC (Rerun) performs
better than SMAC (Reuse) but worse than CADET.

In Fig. 6e we report the inference times for SMAC (Rerun) and
CADET. In keeping with the previous results, SMAC (Rerun) takes
significantly longer than CADET, i.e., SMAC (Rerun) exceeds the
4 hour budget in all workloads whereas CADET takes at most 30
minutes for the largest workload to diagnose and fix the latency
faults. We have to rerun SMAC every time the workload changes,
and this limits its practical usability. In contrast, CADET incremen-
tally updates the internal causal model with new samples from
the larger workload to learn new relationships from the larger
workload. Therefore, it is less sensitive and much faster.

RQ3. Scalability of CADET

Motivation. To examine the scalability of CADET, we attempt
to remedy latency issues in SQLite database deployed on Xavier
by running the speedtest workload. SQLite was chosen because
it offers a large number of configurable options, much more than
DNN-based applications. These configurations control the compute,
memory, data reuse operations of SQLite. Further, each of these
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Table 2: Scalability of CADET for SQLite on Xavier.
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28 19 32 191 3.6 93 9 14 291

242 88 181 3136 1.8 94 68 141 1692

242 288 441 22372 1.6 92 111 854 5312

options can take on a large number of permitted values making
SQLite a useful candidate to study scalability of CADET.
Approach. The causal graphs of previous experiments used 47
variables with 28 hardware, kernel/OS, and software configuration
options in addition to 19 system events (c.f. §6.2). With SQLite,
there are two additional scenarios: (a) 28 configuration options and
19 system events when we manually select the most relevant soft-
ware/hardware options and events, (b) 242 configuration options
and 88 events when we select all modifiable software and hard-
ware options and system events, and (c) 242 configuration options
and 288 events when we select not only all modifiable software
and hardware options and system events but also intermediate
tracepoint events. For each scenario, we track the time required
to discover the causal structure, evaluate the counterfactual queries,
and total time to resolve latency faults.
Results. Our findings, tabulated in Table 2, show that, with a
larger number of configuration options, there are significantly more
paths and queries from CADET. This adds to the causal graph
discovery and query evaluation time. However, with as much as
242 configuration options and 88 events (Table 2, row 2), causal
graph discovery takes roughly one minute, evaluating all 3136
queries takes roughly two minutes, and the total time to diagnose
and fix a fault is roughly 28 minutes. This trend is observed even
when the with 242 configuration options, 288 events (Table 2, row
3), and finer granularity of configuration values—the time required
to causal model recovery is less than two minutes and the total time
to diagnose and fix a fault is less than 2 hours. This indicates that
CADET can scale to a much larger configuration space without an
exponential increase in runtime for any of the intermediate stages.
This property can be attributed to the sparsity of the causal graph
(average degree of a node in Table 2 is at most 3.6 and it reduces
to 1.6 when the number of configurations increase). This makes
sense because not all variables (i.e., configuration options and/or
system events) affect non-functional properties and a high number
of variables in the graph end up as isolated nodes. Therefore, the
number of paths and consequently the evaluation time do not grow
exponentially as the number of variables increase.

Finally, the latency gain associated with repairs from larger con-
figuration space with configurations was similar to the original
space of 28 configurations (both were 93%). This indicates that:
(a) imparting domain expertise to select most important configura-
tion options can speedup the inference time of CADET, and (b) if
the user chooses instead to use more configuration options (perhaps
to avoid initial feature engineering), CADET can still diagnose and
fix faults satisfactorily within a reasonable time.

8 Related Work

Performance Faults in Configurable Systems. Previous empir-
ical studies have shown that a majority of performance issues are
due to misconfigurations [39], with severe consequences in produc-
tion environments [67, 92], and configuration options that cause
such performance faults force the users to tune the systems them-
selves [108]. However, the configuration options keep increasing
over time [103] and make the configuration-aware testing a diffi-
cult endeavor, where testing can be only practical by evaluating
a representative sample of all possible configurations [81], by em-
ploying sampling strategies to discover potential (performance)
faults [68]. Previous works have used static and dynamic program
analysis to identify the influence of configuration options on per-
formance [65, 97, 98] and to detect and diagnose misconfigura-
tions [10, 11, 104, 107]. None of the white-box analysis approaches
target configuration space across system stack, where it limits their
applicabilities in identifying the true causes of a performance fault.
The evaluation results indicate that by targeting the whole system
stack, CADET goes beyond the existing approaches in terms of
detecting and fixing performance faults.
PerformanceModeling and Optimization. Performance behav-
ior of configurable systems is complex (non-linear, non-convex, and
multi-modal) [50, 99], where such behavior becomes even more
intricate when multiple objectives are needed to be traded-off for
performance-related tasks [48, 61, 73]. A common strategy to un-
derstand such complex performance behavior is to use machine-
learning by building a black box model that characterizes system
performance [36, 86, 96]. The learned performance model can then
be used for performance debugging [36, 86, 99] and tuning [44].
While the sheer size of the configuration space and complex perfor-
mance behavior prohibit any guarantee of finding a globally optimal
configuration, optimization algorithms attempt to find near-optimal
configurations under a limited sampling budget using a clever com-
bination of sampling, model construction, and search.While there is
no silver bullet [33], several methods have been attempted including
hill climbing [101], optimization via guessing [77], Bayesian opti-
mization [49], and multi-objective optimization [48, 100]. However,
if one of the contextual/environmental conditions (e.g., hardware,
workload) of the system changes, one needs to rerun the optimiza-
tion approach again [52], therefore, transfer learning in terms of
transferring measurement data or extracting some types of knowl-
edge across environments has been used [47, 51, 53, 54, 63, 95, 96].
For a more comprehensive treatment of the literature, we refer
to [80, 88]. Although black-box models have used extensively for
optimization, they cannot diagnose non-functional faults as they are
unaware of underlying causal factors due to their blind exploration
without having access to the underlying causal relationships.
Statistical andModel-basedDebugging.Debugging approaches
such as Statistical Debugging [90], HOLMES [16], XTREE [62],
BugDoc [66], EnCore [66], Rex [69], and PerfLearner [40] have
been proposed to detect root causes of system faults. These methods
make use of statistical diagnosis and pattern mining to rank the
probable causes based on their likelihood of being the root causes
of faults. However, these approaches may produce correlated predi-
cates that lead to incorrect explanations.
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Causal Testing and Profiling. Causal inference has been used for
fault localization [12, 28], resource allocations in cloud systems [31],
and causal effect estimation for advertisement recommendation
systems [14]. More recently, AID [27] detects root causes of a inter-
mittent software failure using fault injection as interventions and
utilizing a guided search to pinpoint the root causes and generate
an explanation how the root cause triggers the failure. Similarly
LDX [64] determines causal dependencies of events for detection
of information leak and security attacks. Causal Testing and
Holmes [55] modifies the system inputs to observe behavioral
changes in order to build a causal model and then utilizes counter-
factual reasoning to find the root causes of bugs. Causal profiling ap-
proaches like CoZ [22] points developers where optimizations will
improve performance and quantifies their potential impact, where
the interventions happen by virtual program speedups. Causal in-
ference methods like X-Ray [10] and ConfAid [11] had previously
been applied to analyze program failures using run-time control
and data flow behavior. All approaches above are either orthogonal
or complimentary to CADET, mostly they focus on functional bugs
(e.g., Causal Testing) or if they are performance related, they are
not configuration-aware (e.g., CoZ).

9 Conclusion

Modern computer systems are highly-configurable with thousands
of interacting configurations with a complex performance behavior.
Misconfigurations in these systems can elicit complex interactions
between software and hardware configuration options resulting
in non-functional faults. We propose CADET, a novel approach
for diagnostics that learns and exploits the causal structure of con-
figuration options, system events, and performance metrics. Our
evaluation shows that CADET effectively and quickly diagnoses the
root cause of non-functional faults and recommends high-quality
repairs to mitigate these faults.
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