Comparative analysis of
distributed data parallel
training packages

Andreea Zaharia — R244 Mini-project proposal

1

Motivation

Contribution of the project

 Deep learning models

* Distributed training across multiple workers/multiple GPUs
 Multiple packages implementing similar solutions

» Different optimisations or communication backends

* |ack of performance comparison between the most used frameworks

Open-source solutions

Native all-reduce modules

* Synchronous, decentralised approach

* All-Reduce pattern
* QOverlap between communication and computation
* Native to their respective frameworks:

* Pylorch DistributedDataParallel and DataParallel

* Tensorflow MirroredStrategy and MultiWorkerMirroredStrategy

Open-source solutions

Horovod

e Supports Tensorflow, PyTorch, and MXNet.

* Ring all-reduce.

@ |ma | @ EA |
$13 (819|421 S$13 /819|565
‘mc \ ‘ma | |mc //I' #
927(315| 8 4 811 42 77 927|717 | 8 4 42 77

Horovod performance

Actual throughput: Tf vs Horovod vs ideal

Training with synthetic data on NVIDIA® Pascal™ GPUs
18,000.0
16,000.0
14,000.0
12,000.0
10,000.0

8,000.0
6,000.0
4,000.0 i
o — e e i
1 B 16 32 64 128 1 8 16 32

Inception V3 ResNet-101
Number of GPUs and model name

Images/sec

64 128

¥ Distributed TensorFlow ¥ Horovod Oldeal

Figure 6: A comparison of images processed per second with standard distributed TensorFlow and
Horovod when running a distributed training job over different numbers of NVIDIA Pascal GPUs for
Inception V3 and ResNet-101 TensorFlow models over 25GbE TCP.

arXiv:1802.05799v3 [cs.LG] 21 Feb 2018

Horovod: fast and easy distributed deep learning in

TensorFlow
Alexander Sergecy Mike Del Balso
Uber Technalogies, Inc Uber Technologies, Inc
asergeeviuber . com odb@uber . con
Abstract

Training modern deep learning models requires large amounts of computation,
aften provided by GPUs. Scaling computation from one GPU 1o many can enable
much faster training and research progress but entails two complications. First,
the training library must support mier-GPU communication. Depeading on the
particular methods employed, this communication may entall anywhere from
neghigble 10 ugmaficant overhead. Secced, the sser must modify has or her traaning
code 1o take advantage of inter-GPU communication. Depending on the training
library’s APL the modification requised may be either significant o minkmal.

Existing methods for enshling multi-GPU traiming under the TemsorFlow library
entail noa-negligible communication overhead and roquire users to heavily mod
ify their model-building code, leading many rescarchers 0 avosd the whole
mess and suck with slower sangle GPU training. In this paper we introduce
Horovod, an open source libeary that improves on both obstructions 10 scaling
it employs efficient inter-GPU communication via ring reduction and requires
only a few limes of modufication 10 user code, enabling faster, easier dustriduted
training in TeasorFlow. Horovod is available under the Apache 20 license s
https://githudb. con/uber/Borovod.

1 Introduction

Over the past few years, advances in deep learning have drivea tremendous progress in image
processing., speech recognition, and forecasting. At Uber, we apply deep learning across our business:
froes self -driving research to trip forecasting and frand preventioa, deep learming cnables cur cogineers
and dats scientists 1o create better experiences for oar userns

TensoeFlow [1] has bee & preferred deep) g lbrary st Uber for a variety of ressons. To
start, the framework is cae of the most widely used open source frameworks for deep learmmg, which
makes it casy 10 onboard new wsers. It also combines high performance with an ability o tinker
with bow-level model details—for intance, we can use both high-level AP, such & Keras [2), and
implement our own custom operators using NVIDIA's CUDA wolkit. Addisonally, TemsorFlow
has end-10-end support for 2 wide vaniety of decp learning use cases. from conducting exploratory
research 10 deploying models in production oa cloud servers, mobile apps, and even self driving
vehickes.

In September 2017, Uber Eng 2 duced Michelangelo [3), an intemal Ml -as-a-service
platform that democratizes machine learning and makes it easy to build and deploy these systems
at scale, In tus paper, we introduce Horoved, aa open-source component of Michelangelo's doep
learning toolkit which makes it eaier 0 wan—and speed stributed deep learing projects with
Trm«f’lwA Herovod is available under the Apache 2.0 license at https://github. com/uber/

horoveod

Experiment ideas

Experiment design and implementation

* |mplement the same models in Tensorflow and PyTorch
* [raining tasks: e.g. ResNet50, MobileNetV2, AlexNet

* Multiple physical GPUs (prototyping on multiple logical GPUSs)

e Run each with its native framework

e Run each with Horovod, instead of the native frameworks

* VVary communication backends (NCCL, GLOO).

6

Experiment ideas

Experiment metrics

 Comparative analysis of time and performance with respect to resources

« Example metrics:
* Per-epoch accuracy as the number of GPUs increases
e Speedup as the number of GPUs increases

* Distributed train time per step (ms/step) and train time in total

e Etc.

Objectives

Outcome and contribution

 Run the experiments presented (or equivalent ones)
 Compile the data into a performance evaluation
 Write a compelling comparative analysis of the three solutions

 Hypothesise on the causes of differences observed (if any)

Work plan

Preliminary reading and next steps

 Read and reviewed the PyTorch DDP paper.
 Read through existing evaluations of each framework.

* Explored options for setting up the multi-GPU system.

 Next step:
* Implement the experiment code on the logical GPUs setup.

 Configure an adjustable distributed system with feedback loop.

9

Questions? Suggestions?

