
Recommender systems with dimensionality
reduction in Apache Spark - A trade-off
between runtime and accuracy

Presenter: Mihai-Ionut Enache

29 November 2021

Apache Spark

● Open source analytics engine that can run on single machines or in a distributed

environment

● Unified API → easy to scale from my laptop to a cluster

● Rich ML library: collaborative filtering, dimensionality reduction, clustering

● Has existed for a while + used in the industry → extensive documentation available

● Supports multiple languages: Python, Scala, Java etc.

Motivation

● Training a recommender system using collaborative filtering is expensive

● Latent factors one of the most used approaches

○ Tries to predict ratings using a combination of user and movies features

● Some movies are similar

○ Maybe too similar: e.g. redundant to have HP 1, 2 … 7 in the features set

● Question: can we trade accuracy for training time or even improve it through

dimensionality reduction?

Dimensionality Reduction

● 2 common approaches:

○ Singular value decomposition

○ Principal component analysis

● Both available in Spark MLib

● But they are computationally expensive → questions:

○ If we reduce dimension how is the accuracy affected?

○ Can we reduce dimension and spend more resources on learning the recommender

(e.g. increasing the number of iterations used to learn the parameters)?

Dimensionality Reduction (Continued)

● Another idea is to apply clustering for dimensionality reduction

● Few features per item → quick to compute distances → clustering can be efficient

○ Avoids expensive matrix multiplication

● Flexibility through selecting e.g. number of iterations in K-means

● Idea: use clusters of movies in the recommender system instead of individual movies

○ Explore trade-off between runtime and accuracy

Potential Extension: Bayesian Optimization

● Explore how Bayesian Optimization can help with recommender systems

● Many parameters to tune in a recommender system (number of latent factors,

regularization parameter etc.)

● Questions:

○ Can BO help identify parameters for training the recommender system better than a

random search?

○ How do we achieve this in Spark?

Plan
1. Install Apache Spark on my laptop

2. Identify a reasonable dataset

3. Ensure I can run baseline on the dataset

4. Experiment with the two standard methods of dimensionality reduction → identify which

one provides a better trade-off

5. Reduce dimensionality through clustering → compare against method from step 4

6. If steps 4 and 5 done successfully:

a. Explore how BO can be integrated in Spark in the context of recommender systems

b. Try to find best parameters in steps 4 and 5 and in the baseline using BO

7. Write report explaining findings in steps 4-6, contrasting the benefits of each approach

Plan
1. Install Apache Spark on my laptop → Done

2. Identify a reasonable dataset → Done: 27 million ratings from 280k users for 58k movies

3. Ensure I can run baseline on the dataset → Done: baseline trained in < 2 min. 30 sec.

4. Experiment with the two standard methods of dimensionality reduction → identify which

one provides a better trade-off

5. Reduce dimensionality through clustering → compare against method from step 4

6. If steps 4 and 5 done successfully:

a. Explore how BO can be integrated in Spark in the context of recommender systems

b. Try to find best parameters in steps 4 and 5 and in the baseline using BO

7. Write report explaining findings in steps 4-6, contrasting the benefits of each approach

