Recommender systems with dimensionality
reduction in Apache Spark - A trade-off
between runtime and accuracy

Presenter: Mihai-lonut Enache

29 November 2021

Apache Spark

Open source analytics engine that can run on single machines or in a distributed
environment

Unified APl — easy to scale from my laptop to a cluster

Rich ML library: collaborative filtering, dimensionality reduction, clustering

Has existed for a while + used in the industry — extensive documentation available
Supports multiple languages: Python, Scala, Java etc.

Motivation

e Training arecommender system using collaborative filtering is expensive
e Latent factors one of the most used approaches
o Triesto predict ratings using a combination of user and movies features
e Some movies are similar
o Maybe too similar: e.g.redundant tohave HP 1, 2 ... 7 in the features set
e Question: can we trade accuracy for training time or even improve it through
dimensionality reduction?

Dimensionality Reduction

e 2 common approaches:
o Singular value decomposition
o Principal component analysis
e Both available in Spark MLib
e Butthey are computationally expensive — questions:
o |If wereduce dimension how is the accuracy affected?
o Canwe reduce dimension and spend more resources on learning the recommender
(e.g. increasing the number of iterations used to learn the parameters)?

Dimensionality Reduction (Continued)

e Anotherideaisto apply clustering for dimensionality reduction

e Few features per item — quick to compute distances — clustering can be efficient
o Avoids expensive matrix multiplication

e Flexibility through selecting e.g. number of iterations in K-means

e |dea: use clusters of movies in the recommender system instead of individual movies
o Explore trade-off between runtime and accuracy

Potential Extension: Bayesian Optimization

e Explore how Bayesian Optimization can help with recommender systems
e Many parameters to tune in a recommender system (number of latent factors,
regularization parameter etc.)
e Questions:
o CanBO help identify parameters for training the recommender system better than a
random search?
o Howdo we achieve this in Spark?

Plan

1. Install Apache Spark on my laptop

2. ldentify areasonable dataset

3. Ensurelcanrun baseline on the dataset

4. Experiment with the two standard methods of dimensionality reduction — identify which
one provides a better trade-off

5. Reduce dimensionality through clustering — compare against method from step 4

6. If steps 4 and 5 done successfully:

a. Explore how BO can be integrated in Spark in the context of recommender systems
b. Tryto find best parametersin steps 4 and 5 and in the baseline using BO
7. Write report explaining findings in steps 4-6, contrasting the benefits of each approach

Plan

H> W

o

tstal-Apache Sparkenrytaptep > Done

tdentify-areasenabledataset— Done: 27 million ratings from 280k users for 58k movies
Ensureteanrunbaseline-enthedataset — Done: baseline trained in < 2 min. 30 sec.

Experiment with the two standard methods of dimensionality reduction — identify which
one provides a better trade-off
Reduce dimensionality through clustering — compare against method from step 4
If steps 4 and 5 done successfully:
a. Explore how BO can be integrated in Spark in the context of recommender systems
b. Tryto find best parametersin steps 4 and 5 and in the baseline using BO
Write report explaining findings in steps 4-6, contrasting the benefits of each approach

