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Weak Supervision

• Modern ML problems require huge amounts of data. It is expensive to hand label
all this data.

• Weak supervision uses noisy labels for training data learn a model that can
(hopefully) improve on the performance of the noisy labels.

• This makes more problems feasible because noisy labels can be generated
automatically.
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Snorkel

• Snorkel is an open source project that makes weak supervision projects tractable.

• Provides an interface to easily create noisy training labels easily.

• End-to-end implementation of ‘data programming’ which makes it easy to train ML
models for problems where there is not enough labeled data.
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Snorkel Architecture

• Labeling functions: noisy automatic label generators. Should be programmed by
subject area experts

• Generative model: model that learns to generate probabilistic labels for training
data based on labeling functions.

• Discriminative model: train a predictive model based on probabilistic labels.
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Results and Extensions
• Within 3.6% of hand-labeled accuracy on ‘average’ over a couple datasets
• Creating labeling functions is 2− 3× faster than hand labeling data in the examples
tested.
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Generative Model

• For each training data point, the generative model creates a vector describing the
‘votes’ of each labeling function.

• Snorkel wants to learn coefficients for to account for correlations between the
labeling functions.

• Snorkel alternates Gibbs sampling and SGD steps to maximize the likelihood of the
aggregated votes by changing correlation parameters.

• From here, Snorkel can create probabilistic training labels.
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Discriminative Model

• Any type of discriminative model can be trained on the probabilistic labels created
by the generative model.

• Loss function should be noise-aware:

θ̂ = argmin
θ

m∑
i=1

Ey∼Y [l(hθ(xi), y)].

• By combining the ‘knowledge’ of labeling functions, the discriminative model can
sometimes generalize beyond the predictions of any labeling function.
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Project Overview

• First goal: understand how the accuracy of the labeling functions affects end model
performance.

• Can Snorkel discriminate between good and bad labeling functions? How accurate
should labeling functions be to avoid ‘damaging’ a model?

• Extension goal: Design a ‘hook’ in Snorkel to input true data labels for a small
hand-labeled dataset.

• The generalization of this would be to allow prior knowledge of labeling function
accuracy.
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Project Plan

• Recreate a Snorkel model based on the original paper and tutorials.

• Split true dataset into train/test groups and use ‘training data’ as an extra labeling
function.

• Create a bad labeling function that gives random votes for each input.

• Measure the accuracy and coverage of each labeling function created by domain
experts in the paper and tutorial.

• Test different combinations of these labeling functions to learn how well Snorkel
actually can generalize from noisy labels.
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Project Extensions

• Use Snorkel for multi-fidelity modeling: give it access to a small amount of real data
to learn labeling function correlations and errors more accurately.

• Other papers have showed success with multifidelity modeling by training multiple
neural networks: one to make predictions based on noisy data, and the rest to learn
correlations between noisy and true labels.

• Another idea: train two GPs to estimate the loss functions of 2 different
discriminative models: high and low fidelity. Then, pick a label based on these
estimates.

• Emukit is another open source project that supports multi-fidelity emulation, could
be modified for this architecture.
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