
Zak Singh, 29/11/21

Alternative Graph Embeddings 
for Placeto



What is Placeto?
• Placeto is a method for device placement (assigning operations in a 

computation graph to devices)


• Why does it exist?


• Existing RL-based placement solvers must be trained for each 
computation graph individually 

• In some cases upwards of 24hrs


• Placeto’s main goal: generalize to unseen computation graphs



Placeto’s Iterative Placement



Co-location heuristics
• Problem: Tensorflow graphs can have tens of thousands of 

nodes, would take too long to process each operator iteratively


• Solution: group operators via heuristics


• If operation A is only used by operation B, they are co-
located


• All operations in an LSTM “step” are co-located


• This shrinks problem space: no longer finding placement for 
ALL nodes; we only have to solve placement for each group


• Required to make training time reasonable

6 -> 4 placements

(Slide adapted from my prev. presentation on Mirhoseini et al.’s work)



Graph Embedding
• Map each “group” of operators to a representation vector which encodes its neighborhood 

information


• Goal: groups of operators from similar graphs get mapped to similar representations


• Generalizability! 

• Implemented via traditional bidirectional messaging passing, plus…


• Each node gets “pooled attributes” appended to its representation to capture regional information


• Set of all upstream nodes


• Set of all downstream nodes


• Set of unreachable nodes



Limits of Generalizability
• Placeto’s authors only show that the learned policy can generalize to “computation 

graphs from the same family as the training set”


• Meaning: if the policy is trained on convolutional networks, it can only place other 
CNNs


• Questions remain:


• Why can’t the policy be trained on a set consisting of multiple types of networks 
(CNNs + Transformers + MLPs etc…)?


• How limiting is this? No benchmarks on “cross-family” placement are provided


• Is it caused by the graph embedding procedure?



Proposed: Alternative graph embeddings
• “Pooled attributes” are one of many solutions to encode regional graph 

information into node representations


• GNN literature has papers dedicated solely to this problem domain


• Example: Position-aware GNNs


• Proposed work: extend Placeto with these alternative graph embedding 
procedures, benchmark vs. “pooled attributes” approach


• Understand the value of contextual information in operator placement decisions


• Is it the limiting factor in Placeto’s generalizability issues?



Position-aware GNNs

• Goal: learn position in 
broader graph structure 


• Node position can be 
captured by quantifying the 
distance between each node 
and a set of “anchor sets”


• Anchor sets are chosen 
randomly


• Process can be repeated 
multiple times (similar to 
message passing)



Extension: Automatic Grouping
• Placeto’s colocation heuristics are manual


• Could implement the network used by Mirhoseini et al. (discussed last week) 
to learn these groups instead of relying on heuristics


• Would fully automate placement and make this scalable to any computation 
graph



Challenges so far
• Placeto’s published GitHub repo is missing some files, code doesn’t compile 

as-is…


• Mostly utilities they used during development (simplified graphs to test on, 
benchmarking code, etc)


• Looks like they selectively published files and omitted ones they didn’t think 
were needed for reproducing their results, probably an honest mistake



Timeline
• 29/11-3/12: Finish repairing codebase, replicate results from the paper


• 6/12-10/12: Implement alternative graph embeddings (Directed Acyclic 
GNNs, Position-aware GNNs)


• 13/12-17/12: Benchmark alternative graph embeddings, develop automatic 
grouping if time permits


• 17/12-deadline: Draft report



Questions?


