Link Prediction with GraphX, Spark and MLlib

Brady

What is Link Prediction

- Given current state of the graph
- Predict the likelihood of a future association between two nodes
- Application: bioinformatics, e-commerce, security domain
- Difficult Problem: Negative Link >> Positive Link (Huge class skew)

Why GraphX

• View the same data as both graphs and collections

- Support from Spark
 - lineage-based fault tolerance
 - Benefit from Spark ecosystem
- Performance Comparable to other Frameworks
 - Giraph, GraphLab

(b) PageRank Twitter

Project

Ę

- Goal: Predict future co-authorships using DBLP citation dataset
- Tool: GraphX, Spark, MLlib
- Process
 - Pre-processing
 - Load Data
 - Build Graph
 - Actual Prediction
 - Unsupervised Learning
 - Supervised Learning
 - Evaluation
 - Unsupervised vs Supervised Learning

Actual Prediction

- Unsupervised Learning (Similarity Metrics)
 - Common Neighbors (CN)
 - Jaccard's coefficient (JC)
 - Adamic/Adar (Adar)
 - preferential attachment (PA)
- Supervised Learning (Decision Tree MLlib)
 - Feature Vector

Node A	Node B	CN	JC	Adar	PA	Label
						(0/1)

Work Plan

- Literature Review (2 weeks)
- Pre-processing (6 Dec 12 Dec)
 - Implement Similarity Metrics Algorithms (6 Dec 12 Dec)
 - Implement Supervised Learning (13 Dec 19 Dec)
 - Evaluation (20 Dec 26 Dec)
 - Project Report (27 Dec 2 Jan)