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Background

- Deep Neural Networks can be expressed as a computational graph
- A fresh DNN may not be very performant
- DNNs can be optimized by substituting subgraphs for equivalent, faster ones
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Example substitution chain on NasNet-A[1, Fig 7]



TASO Concept

- Previous work used manual Py
substitutions @
o ) Manually Designed Input
- 155 substitutions = 53KLoC in Graph Substitutions Comp. Graph
TensorFlow
- Especially bad when new operators are
created Graph Subst. Optimizer
. Eubstltutlons are not verified, may be Data Layout Optimizer
ugsy

Optimized Comp. Graph

- The graph and the data layouts are
optimized separately

Previous DNN optimization flow[1, Fig 1]



TASO Concept

- TASO automatically generates [ ]
substitutions @

| Operator Specifications

| Input Comp. Graph

- 743 substitutions = 1KLoC in TASO
Graph Subst. and

Data Layout

- Substitutions are formally proven to be Graph Subst. Verifier (§3) Joint Optimizer

correct (CR)
Verified Graph Subst. |

- The graph and data layouts are
optimized together

| Optimized Comp. Graph |

TASO optimization flow[1, Fig 1]



Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
- Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph
- Hash outputs for constant integer input [image not found]

3. Test matching-Fingerprint pairs with
more data
- Check with floating-point input, € = 107
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Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
- Depth-first search, excluding duplicated
computation

G1 G2 G3 G4

dof2fedl | 8f3dcb45 | dof2fedl | cfff4lao

2. Compute Fingerprint for each graph VA:OBZB:O,&C:O.SGV
- Hash outputs for constant integer input
Y w
3. Test matching-Fingerprint pairs with b =
more data
- Check with floating-point input, € = 107 T ——




Graph Substitution Generator

Goal: Find Equivalent Subgraphs

Operations that produce zeroes need more
special handling:
- relu often returns 0 for -ve units
- Use a diferent non-linear function

- enlarge literally pads with 0

- Only allow enlarge on inputs, not
intermediate values




Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

Pruning Remaining Reduction
Techniques Substitutions  v.s. Initial
Initial 28744 1x
Input tensor renaming 17346 1.7x
Common subgraph 743 39%

Table 3 from [1]



Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

1. Remove substitutions that are identical other than input names
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5 i 4 4
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/ /m‘atmu»l\ /r:atmu{ / matmul matmul
A B (o] A B C A B A B
source graph: A x (B x C) target graph: (A xB) x C
source graph: A x (B x A) target graph: (A xB) x A

Figs 2a, &4a, b, ¢ from [1]



Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

X X
$ 4
add add
/ matmul matmul \
A B C B C A
source graph: A + (B x C) target graph: (B xC) + A

Figs 2a, 4a, b, ¢ from [1]



Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

X X
t 4
matmul matmul
add \ add \
A B (o] B A C
source graph: (A + B)xC target graph: (B + A)x C

Figs 2a, 4a, b, ¢ from [1]



Graph Substitution Verifier

Goal: Formally Prove Substitutions are Equivalent

- Define a set of logical properties for each operator
- 43 operators total

- Verify the operator properties hold
- Use an SMT solver to verify the properties hold for a Python version

- Use properties to prove substitutions are equivalent
- Use a theorem solver (Z3)

Vx. transpose(transpose(x)) = x transpose is its own inverse
Vx,y. transpose(ewadd(x, y)) = ewadd(transpose(x), transpose(y)) operator commutativity
Vx,y. transpose(ewmul(x, y)) = ewmul(transpose(x), transpose(y)) operator commutativity
Vx, w. smul(transpose(x), w) = transpose(smul(x, w)) operator commutativity

Table 2 from [1] 6



Substitution + Layout Joint Optimizer

Goal: Find Optimal Graph with Substitutions

- Cost-Based Backtracking Search

* Based on MetaFlow[2] for substitution s € S do

// Lavoun(G, s) returns possible layouts applying s on G.
for layout | € LavouT(G, s) do

I o graph off of p.rlor{ty queue // AprLY(G, s, 1) applies s on G with layout I.
2. Try applying substitutions G’ = Appiy(G, s, ])

3. Check costs of results if G’ is valid then

4. Push results onto queue if Cost(G’) < Cost(Gopt) then

5. Repeat until queue is empty Gopt =G’

if Cost(G’) < a X Cost(Gopt) then
P .enqueue(G’)

Algorithm 1 from [1], based on [2]

- Hyperparameter a tunes backtracking

- 1= No backtracking
- 1.05 chosen for evaluation



- TASO improves the cost function to
include data layout

- Cost(Operator, Layout) measured
on-device

- Data Layout = Column-Major or
Row-Major

- Consider each permutation of data
layouts

- Cost(G) = Y COSt(O’-, l,')

TASO Cost Function

Row-major order
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Column-major order
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Column/Row-Major Order
Cmglee, CC BY-SA 4.0, via Wikimedia
Commons


https://creativecommons.org/licenses/by-sa/4.0

TASO Cost Function

- TASO improves the cost function to
include data layout

- Cost(Operator, Layout) measured X X
on-device f©) t©)
transpose matmul
' . . () R~ \_CR)
Data LaYOUt B Column—MaJor 9 matmul transpose transpose
Row-Major ©,” X0© ©t t©
A B B A
- Consider each permutation of data source graph: (A x B)T target graph: (BT x AT)
layouts

Fig 5 from [1]

- Cost(G) = Y COSt(O’-, l,')



TASO Cost Function

- TASO improves the cost function to
include data layout

Graph Opt.; 3.67
- Cost(Operator, Layout) measured
- Data Layput = Column-Major or Sequential’ 315
Row-Major
Joint Opt. 277
- Consider each permutation of data (TASO)
layouts 00 05 10 15 20 25 30 35 40

Execution Time (ms)

- Cost(G) = ¥ Cost(o,, [.) Fig 12 from [1]



Evaluation - Interesting Note
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(d) Performance comparison.

Fig 9 from [1] °



Evaluation - Overall Optimization

- Consistently better performance than alternatives
- Although they don't specify alternative optimization configs

- Only 27/743 optimizations actually used...
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Fig 7 from [1] 10



Evaluation - Overall Optimization

- Consistently better performance than alternatives
- Although they don't specify alternative optimization configs

- Only 27/743 optimizations actually used...
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Fig 10 from [1]



Where are they now?

- Repo has 480+ GitHub stars!

- Repo is basically dead.
- Only bugfixes since 2019

- Paper has 42 citations, was directly followed up by first author
- Pet (next presentation!) relaxes the need for completely equivalent transformations, and
then strengthens it again.

- TensorFlow has stuck with Grappler[3]
- Applies generic optimizations
- e.g. constant folding
- Similar to how compilers work

1



Pros Cons
- Formal verification of substitutions - Lots of redundancy in generated
substitutions
- Optimizing Layout + Graph together is * Only 27 end up used at all
very cool

- Substitutions limited to size=4
- Low ratio of code/optimizations

- Doesn’t evaluate time taken to optimize
- Produces good results!

- Cost model = Sum, no parallelization



Pros Cons
- Formal verification of substitutions - Lots of redundancy in generated
substitutions
- Optimizing Layout + Graph together is * Only 27 end up used at all
very cool

- Substitutions limited to size=4
- Low ratio of code/optimizations

- Doesn’t evaluate time taken to optimize
- Produces good results!

- Cost model = Sum, no parallelization

Questions?
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