
TASO: Optimizing Deep Learning Computation with Automatic
Generation of Graph Substitutions
By Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia,
Alex Aiken

Samuel Stark
22/11/2021

University of Cambridge



Background

• Deep Neural Networks can be expressed as a computational graph
• A fresh DNN may not be very performant
• DNNs can be optimized by substituting subgraphs for equivalent, faster ones

Example substitution chain on NasNet-A[1, Fig 7]

1



TASO Concept

• Previous work used manual
substitutions

• 155 substitutions = 53KLoC in
TensorFlow

• Especially bad when new operators are
created

• Substitutions are not verified, may be
buggy

• The graph and the data layouts are
optimized separately

Previous DNN optimization flow[1, Fig 1]

2



TASO Concept

• TASO automatically generates
substitutions

• 743 substitutions = 1KLoC in TASO

• Substitutions are formally proven to be
correct

• The graph and data layouts are
optimized together

TASO optimization flow[1, Fig 1]

3



Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
• Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph
• Hash outputs for constant integer input

3. Test matching-Fingerprint pairs with
more data

• Check with floating-point input, 𝜖 = 10−5

[image not found]

4



Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
• Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph
• Hash outputs for constant integer input

3. Test matching-Fingerprint pairs with
more data

• Check with floating-point input, 𝜖 = 10−5

ℎ𝑎𝑠ℎ𝑠𝑦𝑚({ℎ𝑎𝑠ℎ𝑡𝑒𝑛𝑠𝑜𝑟(𝑡𝑖) | 𝑖 ∈ Outputs})

4



Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
• Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph
• Hash outputs for constant integer input

3. Test matching-Fingerprint pairs with
more data

• Check with floating-point input, 𝜖 = 10−5

4



Graph Substitution Generator

Goal: Find Equivalent Subgraphs

Operations that produce zeroes need more
special handling:
• relu often returns 0 for -ve units

• Use a diferent non-linear function

• enlarge literally pads with 0
• Only allow enlarge on inputs, not
intermediate values

4



Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

Table 3 from [1]

5



Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

1. Remove substitutions that are identical other than input names

Figs 2a, 4a, b, c from [1]

5



Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

Figs 2a, 4a, b, c from [1]

5



Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

Figs 2a, 4a, b, c from [1]

5



Graph Substitution Verifier

Goal: Formally Prove Substitutions are Equivalent

• Define a set of logical properties for each operator
• 43 operators total

• Verify the operator properties hold
• Use an SMT solver to verify the properties hold for a Python version

• Use properties to prove substitutions are equivalent
• Use a theorem solver (Z3)

Table 2 from [1] 6



Substitution + Layout Joint Optimizer

Goal: Find Optimal Graph with Substitutions

• Cost-Based Backtracking Search
• Based on MetaFlow[2]

1. Pop graph off of priority queue
2. Try applying substitutions
3. Check costs of results
4. Push results onto queue
5. Repeat until queue is empty

• Hyperparameter 𝛼 tunes backtracking
• 1 = No backtracking
• 1.05 chosen for evaluation Algorithm 1 from [1], based on [2]

7



TASO Cost Function

• TASO improves the cost function to
include data layout

• 𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐿𝑎𝑦𝑜𝑢𝑡) measured
on-device

• Data Layout = Column-Major or
Row-Major

• Consider each permutation of data
layouts

• 𝐶𝑜𝑠𝑡(𝐺) = ∑𝐶𝑜𝑠𝑡(𝑜𝑖, 𝑙𝑖)

Column/Row-Major Order
Cmglee, CC BY-SA 4.0, via Wikimedia

Commons
8

https://creativecommons.org/licenses/by-sa/4.0


TASO Cost Function

• TASO improves the cost function to
include data layout

• 𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐿𝑎𝑦𝑜𝑢𝑡) measured
on-device

• Data Layout = Column-Major or
Row-Major

• Consider each permutation of data
layouts

• 𝐶𝑜𝑠𝑡(𝐺) = ∑𝐶𝑜𝑠𝑡(𝑜𝑖, 𝑙𝑖)

Fig 5 from [1]

8



TASO Cost Function

• TASO improves the cost function to
include data layout

• 𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐿𝑎𝑦𝑜𝑢𝑡) measured
on-device

• Data Layout = Column-Major or
Row-Major

• Consider each permutation of data
layouts

• 𝐶𝑜𝑠𝑡(𝐺) = ∑𝐶𝑜𝑠𝑡(𝑜𝑖, 𝑙𝑖) Fig 12 from [1]

8



Evaluation - Interesting Note

• TASO evaluates cost from real-world
performance

• This allows it to find optimal strategies
which might be device-specific

• But this might prevent it from mapping
to distributed computing

Fig 9 from [1] 9



Evaluation - Overall Optimization

• Consistently better performance than alternatives
• Although they don’t specify alternative optimization configs

• Only 27/743 optimizations actually used...

Fig 7 from [1] 10



Evaluation - Overall Optimization

• Consistently better performance than alternatives
• Although they don’t specify alternative optimization configs

• Only 27/743 optimizations actually used...

Fig 10 from [1]

10



Where are they now?

• Repo has 480+ GitHub stars!

• Repo is basically dead.
• Only bugfixes since 2019

• Paper has 42 citations, was directly followed up by first author
• Pet (next presentation!) relaxes the need for completely equivalent transformations, and
then strengthens it again.

• TensorFlow has stuck with Grappler[3]
• Applies generic optimizations
• e.g. constant folding
• Similar to how compilers work

11



Summary

Pros

• Formal verification of substitutions

• Optimizing Layout + Graph together is
very cool

• Low ratio of code/optimizations

• Produces good results!

Cons

• Lots of redundancy in generated
substitutions

• Only 27 end up used at all!

• Substitutions limited to size=4

• Doesn’t evaluate time taken to optimize

• Cost model = Sum, no parallelization

12



Summary

Pros

• Formal verification of substitutions

• Optimizing Layout + Graph together is
very cool

• Low ratio of code/optimizations

• Produces good results!

Cons

• Lots of redundancy in generated
substitutions

• Only 27 end up used at all!

• Substitutions limited to size=4

• Doesn’t evaluate time taken to optimize

• Cost model = Sum, no parallelization

Questions?
12



References i

References

[1] Zhihao Jia et al. “TASO: Optimizing Deep Learning Computation with Automatic
Generation of Graph Substitutions”. In: Proceedings of the 27th ACM Symposium on
Operating Systems Principles. SOSP ’19. New York, NY, USA: Association for Computing
Machinery, 27th October 2019, pp. 47–62. isbn: 978-1-4503-6873-5. doi: 10/gg6c64.

[2] Zhihao Jia et al. “Optimizing DNN Computation with Relaxed Graph Substitutions”. In:
(2019), p. 13. url:
https://cs.stanford.edu/~zhihao/papers/sysml19b.pdf.

[3] Rasmus Munk Larsen and Tatiana Shpeisman. TensorFlow Graph Optimizations. 2019.
url: https://research.google/pubs/pub48051.pdf.

https://doi.org/10/gg6c64
https://cs.stanford.edu/~zhihao/papers/sysml19b.pdf
https://research.google/pubs/pub48051.pdf

	Intro
	Appendix
	References


