TASO: Optimizing Deep Learning Computation with Automatic
Generation of Graph Substitutions

By Zhihao Jia, Oded Padon, James Thomas, Todd Warszawski, Matei Zaharia,
Alex Aiken

Samuel Stark
22/11/2021

University of Cambridge

Background

- Deep Neural Networks can be expressed as a computational graph
- A fresh DNN may not be very performant
- DNNs can be optimized by substituting subgraphs for equivalent, faster ones

Y Y v 7
4 Y
T T t +
add ey conv conv
AT o 1x1 1x1
conv conv /\ /\ /
1x1 o concat concat concat concat DWC concat
e o 55
| | /v'\ v TN
e V3 e Wa |:> DWC e W3 Wa |:> = e | Waw, T Wy W,
33 55 3x3 5x5 o B concat concat
Wy Wa Wy W enlarge W, enlarge
5x5 X3 Xz 5x5 2
K & 4 %) 3 % x
X4 Wy W,

Example substitution chain on NasNet-A[1, Fig 7]

TASO Concept

- Previous work used manual Py
substitutions @
o) Manually Designed Input
- 155 substitutions = 53KLoC in Graph Substitutions Comp. Graph
TensorFlow
- Especially bad when new operators are
created Graph Subst. Optimizer
. Eubstltutlons are not verified, may be Data Layout Optimizer
ugsy

Optimized Comp. Graph

- The graph and the data layouts are
optimized separately

Previous DNN optimization flow[1, Fig 1]

TASO Concept

- TASO automatically generates []
substitutions @

| Operator Specifications

| Input Comp. Graph

- 743 substitutions = 1KLoC in TASO
Graph Subst. and

Data Layout

- Substitutions are formally proven to be Graph Subst. Verifier (§3) Joint Optimizer

correct (CR)
Verified Graph Subst. |

- The graph and data layouts are
optimized together

| Optimized Comp. Graph |

TASO optimization flow[1, Fig 1]

Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
- Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph
- Hash outputs for constant integer input [image not found]

3. Test matching-Fingerprint pairs with
more data
- Check with floating-point input, € = 107

Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs

- Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph

- Hash outputs for constant integer input hash

{hash i € Outputs})

sym(tensor() I

3. Test matching-Fingerprint pairs with
more data

- Check with floating-point input, € = 107

Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
- Depth-first search, excluding duplicated
computation

G1 G2 G3 G4

dof2fedl | 8f3dcb45 | dof2fedl | cfff4lao

2. Compute Fingerprint for each graph VA:OBZB:O,&C:O.SGV
- Hash outputs for constant integer input
Y w
3. Test matching-Fingerprint pairs with b =
more data
- Check with floating-point input, € = 107 T ——

Graph Substitution Generator

Goal: Find Equivalent Subgraphs

Operations that produce zeroes need more
special handling:
- relu often returns 0 for -ve units
- Use a diferent non-linear function

- enlarge literally pads with 0

- Only allow enlarge on inputs, not
intermediate values

Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

Pruning Remaining Reduction
Techniques Substitutions v.s. Initial
Initial 28744 1x
Input tensor renaming 17346 1.7x
Common subgraph 743 39%

Table 3 from [1]

Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

1. Remove substitutions that are identical other than input names

X X X X
5 i 4 4
'"at'"“l\ /’"'at'"“l matmul matmul
/ /m‘atmu»l\ /r:atmu{ / matmul matmul
A B (o] A B C A B A B
source graph: A x (B x C) target graph: (A xB) x C
source graph: A x (B x A) target graph: (A xB) x A

Figs 2a, &4a, b, ¢ from [1]

Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

X X
$ 4
add add
/ matmul matmul \
A B C B C A
source graph: A + (B x C) target graph: (B xC) + A

Figs 2a, 4a, b, ¢ from [1]

Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

X X
t 4
matmul matmul
add \ add \
A B (o] B A C
source graph: (A + B)xC target graph: (B + A)x C

Figs 2a, 4a, b, ¢ from [1]

Graph Substitution Verifier

Goal: Formally Prove Substitutions are Equivalent

- Define a set of logical properties for each operator
- 43 operators total

- Verify the operator properties hold
- Use an SMT solver to verify the properties hold for a Python version

- Use properties to prove substitutions are equivalent
- Use a theorem solver (Z3)

Vx. transpose(transpose(x)) = x transpose is its own inverse
Vx,y. transpose(ewadd(x, y)) = ewadd(transpose(x), transpose(y)) operator commutativity
Vx,y. transpose(ewmul(x, y)) = ewmul(transpose(x), transpose(y)) operator commutativity
Vx, w. smul(transpose(x), w) = transpose(smul(x, w)) operator commutativity

Table 2 from [1] 6

Substitution + Layout Joint Optimizer

Goal: Find Optimal Graph with Substitutions

- Cost-Based Backtracking Search

* Based on MetaFlow[2] for substitution s € S do

// Lavoun(G, s) returns possible layouts applying s on G.
for layout | € LavouT(G, s) do

I o graph off of p.rlor{ty queue // AprLY(G, s, 1) applies s on G with layout I.
2. Try applying substitutions G’ = Appiy(G, s,])

3. Check costs of results if G’ is valid then

4. Push results onto queue if Cost(G’) < Cost(Gopt) then

5. Repeat until queue is empty Gopt =G’

if Cost(G’) < a X Cost(Gopt) then
P .enqueue(G’)

Algorithm 1 from [1], based on [2]

- Hyperparameter a tunes backtracking

- 1= No backtracking
- 1.05 chosen for evaluation

- TASO improves the cost function to
include data layout

- Cost(Operator, Layout) measured
on-device

- Data Layout = Column-Major or
Row-Major

- Consider each permutation of data
layouts

- Cost(G) = Y COSt(O’-, l,')

TASO Cost Function

Row-major order
_ .
3
L 3

Column-major order

1 2 3
1 2 3
L 1 2 3

Column/Row-Major Order
Cmglee, CC BY-SA 4.0, via Wikimedia
Commons

https://creativecommons.org/licenses/by-sa/4.0

TASO Cost Function

- TASO improves the cost function to
include data layout

- Cost(Operator, Layout) measured X X
on-device f©) t©)
transpose matmul
' . . () R~ _CR)
Data LaYOUt B Column—MaJor 9 matmul transpose transpose
Row-Major ©,” X0© ©t t©
A B B A
- Consider each permutation of data source graph: (A x B)T target graph: (BT x AT)
layouts

Fig 5 from [1]

- Cost(G) = Y COSt(O’-, l,')

TASO Cost Function

- TASO improves the cost function to
include data layout

Graph Opt.; 3.67
- Cost(Operator, Layout) measured
- Data Layput = Column-Major or Sequential’ 315
Row-Major
Joint Opt. 277
- Consider each permutation of data (TASO)
layouts 00 05 10 15 20 25 30 35 40

Execution Time (ms)

- Cost(G) = ¥ Cost(o,, [.) Fig 12 from [1]

Evaluation - Interesting Note

‘Qutput Qutput Qutput
) +
concat concat
v, ¢
cona o compa | S0 emsa TR s
\f/ \W:VS/
- TASO evaluates cost from real-world s,,?t { sp?t
pe rformance Input Input Input
(a) Multi-branch (b) Grouped (c) Multi-branch grouped
convolution. convolution. convolution.
- This allows it to find optimal strategies .
which might be device-specific EZZT
5o
Eos
- But this might prevent it from mapping §on
to distributed computing :..
w

1 2 4 8 16 32
Num. Convolutions Per Group

(d) Performance comparison.

Fig 9 from [1] °

Evaluation - Overall Optimization

- Consistently better performance than alternatives
- Although they don't specify alternative optimization configs

- Only 27/743 optimizations actually used...

mmm (A) TensorFlow mmm (C) TensorRT W (E) TASO w/ cuDNN (F) TVM B (G) TASO w/ TVM
(B) TensorFlow XLA (D) MetaFlow

E 25 30
; 10 2 2 2.0
£ Lo 1.3x &
= 1.1x & * 1.4y 20 15 L-ax
o 1° * 8 1.4x
] 6 15
5 1.0 6 1.0
% 8 N 10 B 1.4x 1.3x
€ os 05
£ 2 5 2.8x| 1.8x

0.0 0 o o 0.0

A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G
ResNet-50 NasNet-A ResNeXt-50 NasRNN BERT

Fig 7 from [1] 10

Evaluation - Overall Optimization

- Consistently better performance than alternatives
- Although they don't specify alternative optimization configs

- Only 27/743 optimizations actually used...

sl s2 s3 s4 s5 s6 s7 s8 s9 s10 sll sl2 sl3 sl4 sl5 sl6 sl7 s18 s19 s20 s21 s22 s23 s24 s25 s26 s27

40
ResNet50 6 6 1 5 5
NasNet-A- 3 n 14 H 3 15 19 19 9 10 30
ResNeXt»S()'H 5 H 1 n 3 7 5 7 20

NasRNN- 10 n 20 20 10

Bl =B

Fig 10 from [1]

Where are they now?

- Repo has 480+ GitHub stars!

- Repo is basically dead.
- Only bugfixes since 2019

- Paper has 42 citations, was directly followed up by first author
- Pet (next presentation!) relaxes the need for completely equivalent transformations, and
then strengthens it again.

- TensorFlow has stuck with Grappler[3]
- Applies generic optimizations
- e.g. constant folding
- Similar to how compilers work

1

Pros Cons
- Formal verification of substitutions - Lots of redundancy in generated
substitutions
- Optimizing Layout + Graph together is * Only 27 end up used at all
very cool

- Substitutions limited to size=4
- Low ratio of code/optimizations

- Doesn’t evaluate time taken to optimize
- Produces good results!

- Cost model = Sum, no parallelization

Pros Cons
- Formal verification of substitutions - Lots of redundancy in generated
substitutions
- Optimizing Layout + Graph together is * Only 27 end up used at all
very cool

- Substitutions limited to size=4
- Low ratio of code/optimizations

- Doesn’t evaluate time taken to optimize
- Produces good results!

- Cost model = Sum, no parallelization

Questions?

References i

References

[1] Zhihao Jia et al. “TASO: Optimizing Deep Learning Computation with Automatic
Generation of Graph Substitutions”. In: Proceedings of the 27th ACM Symposium on
Operating Systems Principles. SOSP "19. New York, NY, USA: Association for Computing
Machinery, 27th October 2019, pp. 47-62. ISBN: 978-1-4503-6873-5. DOI: 10/886C64.

[2] Zhihao Jia et al. “Optimizing DNN Computation with Relaxed Graph Substitutions”. In:
(2019), p. 13. URL:

https://cs.stanford.edu/~zhihao/papers/sysml19b.pdf

[3] Rasmus Munk Larsen and Tatiana Shpeisman. TensorFlow Graph Optimizations. 2019.
URL: https://research.google/pubs/pub48051.pdf.

https://doi.org/10/gg6c64
https://cs.stanford.edu/~zhihao/papers/sysml19b.pdf
https://research.google/pubs/pub48051.pdf

	Intro
	Appendix
	References

