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Background

• Deep Neural Networks can be expressed as a computational graph
• A fresh DNN may not be very performant
• DNNs can be optimized by substituting subgraphs for equivalent, faster ones

Example substitution chain on NasNet-A[1, Fig 7]
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TASO Concept

• Previous work used manual
substitutions

• 155 substitutions = 53KLoC in
TensorFlow

• Especially bad when new operators are
created

• Substitutions are not verified, may be
buggy

• The graph and the data layouts are
optimized separately

Previous DNN optimization flow[1, Fig 1]
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TASO Concept

• TASO automatically generates
substitutions

• 743 substitutions = 1KLoC in TASO

• Substitutions are formally proven to be
correct

• The graph and data layouts are
optimized together

TASO optimization flow[1, Fig 1]
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Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
• Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph
• Hash outputs for constant integer input

3. Test matching-Fingerprint pairs with
more data

• Check with floating-point input, 𝜖 = 10−5

[image not found]
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Graph Substitution Generator

Goal: Find Equivalent Subgraphs

1. Enumerate potential graphs
• Depth-first search, excluding duplicated
computation

2. Compute Fingerprint for each graph
• Hash outputs for constant integer input

3. Test matching-Fingerprint pairs with
more data

• Check with floating-point input, 𝜖 = 10−5

ℎ𝑎𝑠ℎ𝑠𝑦𝑚({ℎ𝑎𝑠ℎ𝑡𝑒𝑛𝑠𝑜𝑟(𝑡𝑖) | 𝑖 ∈ Outputs})
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Graph Substitution Generator

Goal: Find Equivalent Subgraphs

Operations that produce zeroes need more
special handling:
• relu often returns 0 for -ve units

• Use a diferent non-linear function

• enlarge literally pads with 0
• Only allow enlarge on inputs, not
intermediate values
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Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

Table 3 from [1]
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Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

1. Remove substitutions that are identical other than input names

Figs 2a, 4a, b, c from [1]
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Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

Figs 2a, 4a, b, c from [1]
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Removing Redundancies

Goal: Remove Redundant/Overly Specific Substitutions

2. Remove substitutions with common subgraphs

Figs 2a, 4a, b, c from [1]
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Graph Substitution Verifier

Goal: Formally Prove Substitutions are Equivalent

• Define a set of logical properties for each operator
• 43 operators total

• Verify the operator properties hold
• Use an SMT solver to verify the properties hold for a Python version

• Use properties to prove substitutions are equivalent
• Use a theorem solver (Z3)

Table 2 from [1] 6



Substitution + Layout Joint Optimizer

Goal: Find Optimal Graph with Substitutions

• Cost-Based Backtracking Search
• Based on MetaFlow[2]

1. Pop graph off of priority queue
2. Try applying substitutions
3. Check costs of results
4. Push results onto queue
5. Repeat until queue is empty

• Hyperparameter 𝛼 tunes backtracking
• 1 = No backtracking
• 1.05 chosen for evaluation Algorithm 1 from [1], based on [2]
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TASO Cost Function

• TASO improves the cost function to
include data layout

• 𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐿𝑎𝑦𝑜𝑢𝑡) measured
on-device

• Data Layout = Column-Major or
Row-Major

• Consider each permutation of data
layouts

• 𝐶𝑜𝑠𝑡(𝐺) = ∑𝐶𝑜𝑠𝑡(𝑜𝑖, 𝑙𝑖)

Column/Row-Major Order
Cmglee, CC BY-SA 4.0, via Wikimedia

Commons
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TASO Cost Function

• TASO improves the cost function to
include data layout

• 𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐿𝑎𝑦𝑜𝑢𝑡) measured
on-device
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Row-Major
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layouts

• 𝐶𝑜𝑠𝑡(𝐺) = ∑𝐶𝑜𝑠𝑡(𝑜𝑖, 𝑙𝑖)

Fig 5 from [1]
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TASO Cost Function

• TASO improves the cost function to
include data layout

• 𝐶𝑜𝑠𝑡(𝑂𝑝𝑒𝑟𝑎𝑡𝑜𝑟, 𝐿𝑎𝑦𝑜𝑢𝑡) measured
on-device

• Data Layout = Column-Major or
Row-Major

• Consider each permutation of data
layouts

• 𝐶𝑜𝑠𝑡(𝐺) = ∑𝐶𝑜𝑠𝑡(𝑜𝑖, 𝑙𝑖) Fig 12 from [1]
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Evaluation - Interesting Note

• TASO evaluates cost from real-world
performance

• This allows it to find optimal strategies
which might be device-specific

• But this might prevent it from mapping
to distributed computing

Fig 9 from [1] 9



Evaluation - Overall Optimization

• Consistently better performance than alternatives
• Although they don’t specify alternative optimization configs

• Only 27/743 optimizations actually used...

Fig 7 from [1] 10



Evaluation - Overall Optimization

• Consistently better performance than alternatives
• Although they don’t specify alternative optimization configs

• Only 27/743 optimizations actually used...

Fig 10 from [1]
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Where are they now?

• Repo has 480+ GitHub stars!

• Repo is basically dead.
• Only bugfixes since 2019

• Paper has 42 citations, was directly followed up by first author
• Pet (next presentation!) relaxes the need for completely equivalent transformations, and
then strengthens it again.

• TensorFlow has stuck with Grappler[3]
• Applies generic optimizations
• e.g. constant folding
• Similar to how compilers work
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Summary

Pros

• Formal verification of substitutions

• Optimizing Layout + Graph together is
very cool

• Low ratio of code/optimizations

• Produces good results!

Cons

• Lots of redundancy in generated
substitutions

• Only 27 end up used at all!

• Substitutions limited to size=4

• Doesn’t evaluate time taken to optimize

• Cost model = Sum, no parallelization
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Summary

Pros

• Formal verification of substitutions

• Optimizing Layout + Graph together is
very cool

• Low ratio of code/optimizations

• Produces good results!

Cons

• Lots of redundancy in generated
substitutions

• Only 27 end up used at all!

• Substitutions limited to size=4

• Doesn’t evaluate time taken to optimize

• Cost model = Sum, no parallelization

Questions?
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