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Review of Tensor Programs

• Deployment of neural networks uses
optimized tensor programs (e.g.
TensorFlow).

• Program structure is represented as a
DAG of computation nodes, with
tensors flowing across edges

• Graph structure allows for
parallelization and distribution of
computation.
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Optimization of Tensor Programs

• Node assignment: some hardware is optimized for certain types of computations.
• Graph creation: there are often equivalent ways to solve a problem.
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Related Work

• TensorFlow, Pytorch and several other systems use heuristic-based optimization to
apply transformations.

• TASO: Automatically generates and verifies transformations using deep learning.
Claims up to 2.8× speedup compared to manual versions.

• All current systems rely on fully equivalent transformations.

• NeoCPU and other work explore optimizing CNNs by reducing layout
transformations. PET builds on these ideas.

• Automatic statistician, TPOT use non-equivalent transformations to propose
different neural network architectures, but require evaluations at the end to test the
effects on accuracy.
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Partially Equivalent Transformations

• Transformations that do not preserve outputs exactly.
• May be more efficient or allow for hardware specialization.
• Partially equivalent transformations require corrections to ensure model accuracy.

5/17



Overview

• PET uses partially equivalent transformations to further optimize tensor programs.

• Mutation Generator: the component that generates potential mutations to the
graph layout that take same inputs and produce outputs with the same shape.

• Mutation Corrector: automatically produces correction kernels that adjust the
outputs of a mutant subprogram to match the original.

• Without optimizations, this is a combinatorially hard problem.
• PET only tests a few representative input/output combinations to find these corrections.

• Program optimizer: makes the search for mutations efficient by splitting the
program into subprograms and mutating individually, then applying optimizations
across subprogram boundaries.
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Mutation Generator

• Mutations are generated on linear portions of a neural network such as matrix
multiplication and convolution, and not on non-linear portions such as activation
functions.

• Using a defined set of operations, the generator uses DFS to explore all possible
mutants (up to a certain depth), and prunes those that are invalid.

• Reshape and transpose: transform tensor layouts– well established for improving
performance.

• Single operator mutants: take advantage of optimized kernels for convolution,
matrix multiplication instead of their variants such as dilated convolutions.

• Multi-operator mutants: replace multiple operators at a time. For example,
convolution on multiple inputs at the same time can be more efficient.
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Mutation Corrector

• To maintain predictability, PET corrects partial equivalencies so that outcomes are
identical.

• PET first identifies all the elements of the output tensor that may not be identical
to the original program.

• Then, PET generates a kernel to correct those outputs.

• Both of these operations are infeasible if the program just tests every possibility, but
the authors introduce 2 theorems that help generate these kernels in O(1) time.
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Mutation Corrector: Theorem 1

• Any single output of a multi linear tensor program can be described as

P(I1, . . . , In)[v⃗ ] =
∑

r⃗∈R(v⃗)

n∏
j=1

Ij [Lj(v⃗ , r⃗)]

where R(v⃗) describes the summation region for an output.

• Theorem 1: If a program has an m-dimensional output tensor, then only m + 1
positions have to be evaluated for equivalence in each summation region.

• Example: in a convolution, the edges of a matrix have a different summation region
than the center.
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Mutation Corrector: Theorem 2

• Theorem 2: If two programs with n dimensional inputs are not equivalent and
inputs are drawn from p values, then for a random input vector v⃗ , the probability
that the outputs are the same is at most n

p
.

• If tensors are allowed to take values from a large set of integers, this means only a
few inputs need to be sampled to test equivalence.
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Mutation Corrector Algorithm

• Box propagation: find a set of split points that define the boundaries of summation
regions and propagate through a program.

• Random testing: For each box, randomly test m + 1 positions at t random points.

• Correction kernel generation: PET runs the original program on the boxes that are
not equivalent and uses existing libraries to generate correction kernels.
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Program Optimizer

• Break program into subprograms, and generate mutant versions.

• Estimate runtime of each version using a similar algorithm to TASO based on
summing the execution times of each component, keep top k .

• Apply post optimizations: remove inverse transformations, fuse operators when
possible

• Choose program with fastest expected runtime.
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Experiments and Results

The authors test 5 models optimized by PET and compare it to contemporary systems:
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Experiments and Results

The authors perform an ablation study by using pieces of TASO to test which
components of PET improve performance:

14/17



Major Contributions

• PET is the first use of partially equivalent transformations for optimizing tensor
programs. This provides a much larger search space for optimizations than other
frameworks.

• The authors provide 2 theorems that prove automatic correction generation can be
efficient.

• Efficient search is used to explore a large program space.

• PET achieves up to 2.5× speed up compared to TASO.
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Criticism

• Well written paper:
• Contributions in theory and applications
• Good experiments and case studies
• Ablation study

• Extending framework to optimize training as well would be even more useful

• Authors mention that some operations are optimized for different hardware types. It
would be useful to explicitly include this computation in the execution chosen.

• In most cases, very low improvement over TASO. This is hardly discussed.

• Search time is up to 25 minutes. This could be unreasonable in some cases.
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