An Inquiry into Machine Learning-based Automatic Configuration Tuning Services on Real-World Database Management Systems

Dana Van Aken , Dongsheng Yang, Sebastien Brillard, Ari Fiorino Bohan Zhang , Christian Bilien, Andrew Pavlo

Background & Related Work

- Self-adaptive (Physical Design)
 - Automatic Index Selection
 - Automatic partitioning
- Self-tuning (Autotune Knob Configuration)
 - Heuristics
 - Only target subset of knobs
 - Static rules does not capture relationship between knobs
 - Example: BestConfig
 - ML
 - Ability to consider more knobs
 - Able to handle dependencies between knobs
 - Example: iTuned (BO), CDBTune (RL), iBTune (DNN)

Motivation

- Previous ML-based tuning studies did not consider Real-world
 - Workload Complexity
 - System Complexity
 - Operating Environment
- This paper
 - Tries to model real-world complexity
 - Focus on enterprise Oracle DBMS (v12) instance
 - Use a real-world workload in a production environment
 - Use virtualised computing infrastructure with non-local storage

Ottertune – ML-based DB tuner

Ę

Ottertune ML Algorithms

- Gaussian Process Regression (GPR)
- Deep Neural Networks (DNN)
- Deep Deterministic Policy Gradient (DDPG)

GPR and DNN Data Preprocessing

- Metric Pruning
 - Factor Analysis
 - K-means Clustering
- Knob Ranking
 - Lasso Regression
 - Y = w1x1 + w2x2 +
- Workload Mapping
 - Workload Characterisation (Metrics)
 - Euclidean Distance

GPR and DNN Knob Recommendation

• GPR

- Input: Array of knobs
- Output: Target Metrics and Uncertainty Value
- Acquisition Func: Upper Confidence Bound
- Cons: Do not perform well on high dimension
- DNN
 - Input: Knobs
 - Output: Predicted Metrics
 - Structure: Two hidden layers with 64 neurons each + Dropout Regularisation

• Actor

Ę

- Input: State (Metrics)
- Output: Action (Which value to use for a knob)
- Decide how to set a knob
- Critic
 - Input: Action, State
 - Output: Q-value
 - Provide feedback on the choice of knob
- Replay Memory
 - Store training tuples in ranked order
 - Ranked by the error of predicted Q-value

Ottertune – Field Study

Ę

Evaluation – Performance Variability

• Problem

- Latency in shared-disk -> Inconsistent results
- Performance on same VM can fluctuate
- Cannot reliability compare tuning sessions
- Solution
 - Three tuning sessions per algorithm
 - Run optimal configurations consecutively, 3 times, on 3 different VMs

Minor Criticism

- No Comparison to other ML-based tuner
- Each tuning session is extremely time consuming
 - 3 to 5 days to complete
- Missing some minor details on
 - No explanation on how reward is calculated in DDPG
 - How measurement of workload similarity is conducted in GPR and DNN
- Evaluation is heavily affected by latency of non-local storage