
An Inquiry into Machine Learning-based
Automatic Configuration Tuning
Services on Real-World Database

Management Systems

Dana Van Aken , Dongsheng Yang, Sebastien Brillard, Ari Fiorino Bohan
Zhang , Christian Bilien, Andrew Pavlo

Background & Related Work

• Self-adaptive (Physical Design)
• Automatic Index Selection
• Automatic partitioning

• Self-tuning (Autotune Knob Configuration)
• Heuristics

• Only target subset of knobs
• Static rules does not capture relationship between knobs
• Example: BestConfig

• ML
• Ability to consider more knobs
• Able to handle dependencies between knobs
• Example: iTuned (BO), CDBTune (RL), iBTune (DNN)

Presenter
Presentation Notes
Previous automatic database tuning focuses more on optimizing the physical design of the database, which they called self-adaptive DBMSs, like automatic index selection and partitioning.

Then, there is self-tuning DBMS which focuses on autotuning the knob configuration. There are two methods to tuning knobs heuristics and Machine Learning

In heuristics, they use a predefined set of rules to tune the configurations. And most of them only focus on the subset of knobs. Also these static rules cannot capture the non-linearity relationship between knobs.

ML-based tuner can consider more knobs and capture more complex relationship, examples are

Motivation

• Previous ML-based tuning studies did not consider Real-world
• Workload Complexity
• System Complexity
• Operating Environment

• This paper
• Tries to model real-world complexity
• Focus on enterprise Oracle DBMS (v12) instance
• Use a real-world workload in a production environment
• Use virtualised computing infrastructure with non-local storage

Presenter
Presentation Notes
Workload Complexity
	synthetic benchmarks with uniform workload patterns
	TPC-C 	
		OLTP benchmark from the early 1990s,
		many unrealistic aspects of TPC-C are due to its simplistic database schema
		No support of large objects in production databases.
System Complexity
	simplistic nature of workloads -> fewer tuning opportunities
	open-source DBMSs with limited tuning potential

Operating Environment
	they all used dedicated local storage
	But
	real-world DBMS use non-local, shared-disk storage
	high latency write and read

Ottertune – ML-based DB tuner

Presenter
Presentation Notes
(1) Controller executes the target workload on the DBMS

(2) After the workload finishes, the controller collects the runtime metrics and knob configuration from the DBMS

(3) Controller uploads them to the tuning manager

(4) Tuning manager receives the result from the controller, preprcoess it, and stores it in its repository.

(5) Tuning manager uses data to train its ML models, use the models to generate the next knob configuration and returns it to the controller

(6) Controller applies the knob configuration to the DBMS and starts the next tuning iteration.

(7) This loop continues until the user is satisfied with the improvements over the original configuration.

Ottertune ML
Algorithms
• Gaussian Process Regression

(GPR)
• Deep Neural Networks (DNN)

• Deep Deterministic Policy
Gradient (DDPG)

(1) Data Preprocessing

(2) Knob Recommendation

Presenter
Presentation Notes
Now I want to focus on what the tuning manager does. After receiving metrics and knobs, the tuning manager first process it and store it into its repository. Then it uses those data to train their model.

Next, it uses the trained models to give knob recommendation. Ottertune supports three kinds of ML algorithms, which are GPR, DNN, and DDPG.

In the next few slides, I’m going to talk how Ottertune does its data preprocessing and knob recommendation in specific

GPR and DNN
Data Preprocessing
• Metric Pruning

• Factor Analysis
• K-means Clustering

• Knob Ranking
• Lasso Regression

• Y = w1x1 + w2x2 + ….

• Workload Mapping
• Workload Characterisation

(Metrics)
• Euclidean Distance

Presenter
Presentation Notes
Reduce the metrics to a smaller set of factors. These factors capture the correlation patterns of the original metrics. Then it does k-means clustering on these factors. It groups the factors with similar correlation patterns and selects one representative factor (metric) from each group.

Starts with a high penalty setting where all weights are zero, and thus no features are selected in the regression model. Decreases the penalty. The order in which knobs appear first determines their impact.

Uses this previous data to bootstrap the new session.
We use metrics to characterize how a workload behaves.
Calculate the Euclidean distance between past workload matrices and the target workload matrices, and choose the past workload with the smallest distance.

GPR and DNN Knob
Recommendation
• GPR

• Input: Array of knobs
• Output: Target Metrics and Uncertainty Value
• Acquisition Func: Upper Confidence Bound
• Cons: Do not perform well on high dimension

• DNN
• Input: Knobs
• Output: Predicted Metrics
• Structure: Two hidden layers with 64 neurons

each + Dropout Regularisation

Presenter
Presentation Notes
Feed into GPR or DNN

In GPR, the inputs are the array of knobs and the output are Target Metrics and Uncertatinty value. The acquisisiton function it uses is the upper confidence bound, and the acquisition function is responsible to recommend new configuration. Howver, the problem of gaussian process is that it does not perform well on high dimension

So ottertune provides DNN, where the input is also knobs and the output is the predicted metrics. It uses two hidden layers with dropout regularisation

DDPG

• Actor
• Input: State (Metrics)
• Output: Action (Which value to use for a knob)
• Decide how to set a knob

• Critic
• Input: Action, State
• Output: Q-value
• Provide feedback on the choice of knob

• Replay Memory
• Store training tuples in ranked order
• Ranked by the error of predicted Q-value

Presenter
Presentation Notes
Actor network, Critic network and replay memory

After receicng knobs and metrics from controller, it turns them into a training tuple consist of state, action and reward and store the tuple into the replay memory. The DDPG network then fetches a mini-batch of the top-ranked tuples from the memory and updates the actor and critic weights via backpropagation. After training, it feeds the current metrics 𝑚 into the actor to get the recommendation of the knobs.

Ottertune – Field Study

Presenter
Presentation Notes

Conduct experiment on a French Bank’s Enterprise Oracle database. The process is the same as described before in previous slide

Evaluation –
Performance
Variability
• Problem

• Latency in shared-disk ->
Inconsistent results

• Performance on same VM can
fluctuate

• Cannot reliability compare tuning
sessions

• Solution
• Three tuning sessions per algorithm
• Run optimal configurations

consecutively, 3 times, on 3
different VMs

Presenter
Presentation Notes

Same workload Same VM but in different time

Our VMs run on the same physical machines during this time, but the other tenants on these machines may change

VM02’s DB Time in July is higher than what we measured in the previous month. The next observation is that the relative performance of VMs can vary as well, even within a short time window.

Knobs
Selected
by DBA

Knobs
Selected
by
Ottertune

5/10 11/20

Presenter
Presentation Notes
Evaluates the quality of the configurations that the tuning algorithms generate when increasing the number of knobs that they tune.

LHS is the random sampling method

Upper one is the knobs selected by DBA

Below is the knobs selected by OtterTune

Dimension Increase DNN and GPR performs better than DDPG and DDPG++.
The paper suggests that the reason maybe that DDPG, and DDPG++ require more data to converge and carry out more exploration so cannot converge well in limited iterations.

When comparing the knob rankings selected by OtterTune and the DBA, we find that five of the top 10 knobs selected by OtterTune also appear in the DBA’s top 10 knobs. For the top 20 OtterTune- selected knobs, 11 of them overlap with the ones chosen by the DBA. Crucially, OtterTune’s top 10 knobs include the three most important knobs from Table 2.

Overall, we can see there is less improvement when the knobs is selected by Ottertune compared to DBA selected Knobs. The paper suggests that the reason that the overall poor performance of the 20-knob configurations is partly due to more shared storage noise at that time.

And Although we can see some difference in the performance of tuning 10 knobs, the paper consider the results comparable, so it doesn’t mention why the performance is worse, and state that the reason that result is comparable is because the Lasso algorithm correctly identified the most important kob

Minor Criticism

• No Comparison to other ML-based tuner
• Each tuning session is extremely time consuming

• 3 to 5 days to complete

• Missing some minor details on
• No explanation on how reward is calculated in DDPG
• How measurement of workload similarity is conducted in GPR and DNN

• Evaluation is heavily affected by latency of non-local storage

	An Inquiry into Machine Learning-based Automatic Configuration Tuning Services on Real-World Database Management Systems �
	Background & Related Work
	Motivation
	Ottertune – ML-based DB tuner
	Ottertune ML Algorithms
	GPR and DNN�Data Preprocessing
	GPR and DNN Knob Recommendation
	DDPG
	Ottertune – Field Study
	Evaluation – Performance Variability
	Slide Number 11
	Minor Criticism

