Device Placement Optimization with Reinforcement Learning Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean

Zak Singh 22/11/21

Device Placement

Computation graph

Placement

Placement Challenges

- Heterogeneous clusters (may have mix of CPU/GPUs)
- Traditionally done by a human expert or algorithmic methods (graph partitioning)
 - Unfeasible for complex computation graphs
- Can't use regular deep learning as our reward (runtime) is nondifferentiable -> need to use Reinforcement Learning (RL)
- The placement of a node should take into account the placement of its neighborhood
 - Requires some type of state or '*memory*' as we place each operation

The proposed solution: Use a sequence-to-sequence model as a RL policy network to place operations to devices

Sequence-to-sequence

- Ex: translate a sentence in Spanish to a sentence in English
- May not be a one-to-one mapping (English sentence may be shorter or longer than the Spanish one)
- Typically structured with two RNNs:
 - "Encoder" network takes our Spanish sentence and converts it to a latent representation
 - "Decoder" network takes the latent representation and converts it to English

Sequence-to-sequence in our domain

Encoder RNN

- Maps operators to latent • Fixed number of timesteps space: equal to the number of nodes
 - Type (MatMul, conv2d) +
 - Size of operation's output tensors +
 - Adjacency information

Decoder LSTM

- At each step, output the device for the operator corresponding to that timestep
 - This assignment is then fed as input to the next decoder timestep

Recurrent Neural Networks & LSTMs

- RNNs maintain internal state, allowing information from past inputs to stay present over time
 - Does so by having cycles which feed activations from prior time step as inputs to the network
 - Often used for sequence data: NLP, speech recognition, financial trading, etc.
- **Problem**: RNNs fail to learn when there are large gaps between the relevant input event and target signal (e.g. more than 10)
 - Vanishing/exploding gradient as inputs cycle through the network's recurrent connections

LSTMs handle this!

Policy Network

- signal)

Uses REINFORCE policy gradient algorithm to minimize running time (our reward)

• Running time = one forward pass + one backward pass + one parameter update

Co-location heuristics

- Problem: Tensorflow graphs can have tens of thousands of nodes • Would take too long to run all of them through LSTM
- Solution: group operators via heuristics
 - If operation A is only used by operation B, they are co-located
 - All operations in an LSTM "step" are co-located
- This shrinks problem space: no longer finding placement for ALL nodes; we only have to solve placement for each group
- <u>Required</u> to make training time reasonable

6 -> 4 placements

Model	#operations	#group
RNNLM	8943	188
NMT	22097	280
Inception-V3	31180	83

Table 1. Model statistics.

Benchmarks

Many LSTM cells in a 'grid' structure, where each is only dependent on two of its neighbors. Therefore highly parallelizable

Similar to RNNLM, but more hidden states, so much more computationally expensive

Inception-V3 Image recognition and visual feature extraction

Convolutional network. Lots of parallelization within each "block" of conv + pooling etc., but blocks must be executed sequentially

Results

Tasks	Single-CPU	Single-GPU	#GPUs	Scotch	MinCut	Expert	RL-based	Speedup
RNNLM (batch 64)	6.89	1.57	2 4	13.43 11.52	11.94 10.44	3.81 4.46	1.57 1.57	0.0% 0.0%
NMT (batch 64)	10.72	OOM	2 4	14.19 11.23	11.54 11.78	4.99 4.73	4.04 3.92	23.5% 20.6%
Inception-V3 (batch 32)	26.21	4.60	2 4	25.24 23.41	22.88 24.52	11.22 10.65	4.60 3.85	0.0% 19.0%

Results (cont.)

• RL agent achieves better balance...

NMT model

Results (cont.)

• But only when it makes sense to!

Problems...

- important metric. 12 to 27 hours on their benchmarks!
- would be uncomputable otherwise.
- **Downsides**:
 - Some good placements are made impossible (i.e. an LSTM step cannot be parallelized using their heuristics)
 - - Back to using human experts!

• Network must be re-trained for each computation graph; therefore training time is an

• Co-location heuristics are a "necessary evil" to improve training time. Some graphs

• The user must configure which heuristics should be used on their computation graph.

Follow-up: A Hierarchical Model for Device Pacement Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, Jeff Dean

How it works

- Replace the co-location heuristics with a network which learns to assign operations to groups. (The "Grouper")
- Use the previous LSTM approach as before to find placements for each group. (The "Placer")
- Why?
 - No more human involvement (co-location is automatically learned)
 - Can handle large graphs (by grouping down until its feasible to solve)
 - Can find placements that co-location heuristics would omit

Architecture

Results

Tasks	CPU	GPU	#GPUs	Human	Scotch	MinCut	Hierarchical	Runtime
	Only	Only		Expert			Planner	Reduction
Inception-V3	0.61	0.15	2	0.15	0.93	0.82	0.13	16.3%
ResNet	-	1.18	2	1.18	6.27	2.92	1.18	0%
RNNLM	6.89	1.57	2	1.57	5.62	5.21	1.57	0%
NMT (2-layer)	6.46	OOM	2	2.13	3.21	5.34	0.84	60.6% v.
NMT (4-layer)	10.68	OOM	4	3.64	11.18	11.63	1.69	53.7% v.
NMT (8-layer)	11.52	OOM	8	3.88	17.85	19.01	4.07	-4.9% V.

In Conclusion

- Training time limitation still present. Hierarchical approach is 3hrs instead of 27hrs, but still not insignificant.
- These are the first two papers to use RL for device placement
- A small set of others works have tried this since, with varying success:
 - REGAL: use RL to tune a genetic algorithm to solve placement
 - Placeto: use a GNN to learn representations, then use RL for placement (no RNNs)
 - Big bonus: generalizable to other graphs! (No more retraining)
 - Still not fully successful...

Questions?