
Zak Singh 22/11/21

Device Placement Optimization 
with Reinforcement Learning
Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, 
Yuefeng Zhou, Naveen Kumar, Mohammad Norouzi, Samy Bengio, Jeff Dean



Device Placement

Computation graph

A

BA

BA

B

Placement

?



Placement Challenges
• Heterogeneous clusters (may have mix of CPU/GPUs)


• Traditionally done by a human expert or algorithmic methods 
(graph partitioning)


• Unfeasible for complex computation graphs


• Can’t use regular deep learning as our reward (runtime) is non-
differentiable -> need to use Reinforcement Learning (RL)


• The placement of a node should take into account the placement 
of its neighborhood


• Requires some type of state or ‘memory' as we place each 
operation

A

BA

B?

AA or B?



Use a sequence-to-sequence model as a RL 
policy network to place operations to devices

The proposed solution:



Sequence-to-sequence
• Ex: translate a sentence in Spanish to a sentence in 

English


• May not be a one-to-one mapping (English sentence may 
be shorter or longer than the Spanish one)


• Typically structured with two RNNs:


• “Encoder” network takes our Spanish sentence and 
converts it to a latent representation


• “Decoder” network takes the latent representation and 
converts it to English



Encoder RNN

• Maps operators to latent 
space:


• Type (MatMul, conv2d) +


• Size of operation’s output 
tensors +


• Adjacency information

Decoder LSTM

• Fixed number of timesteps 
equal to the number of nodes


• At each step, output the 
device for the operator 
corresponding to that timestep


• This assignment is then fed as 
input to the next decoder 
timestep

Sequence-to-sequence in our domain



Recurrent Neural Networks & LSTMs
• RNNs maintain internal state, allowing information from past inputs to stay 

present over time


• Does so by having cycles which feed activations from prior time step as 
inputs to the network


• Often used for sequence data: NLP, speech recognition, financial trading, etc.


• Problem: RNNs fail to learn when there are large gaps between the relevant 
input event and target signal (e.g. more than 10)


• Vanishing/exploding gradient as inputs cycle through the network’s recurrent 
connections

LSTMs handle this!



Policy Network

• Uses REINFORCE policy gradient algorithm to minimize running time (our reward 
signal)


• Running time = one forward pass + one backward pass + one parameter update



Co-location heuristics
• Problem: Tensorflow graphs can have tens of thousands of nodes


• Would take too long to run all of them through LSTM


• Solution: group operators via heuristics


• If operation A is only used by operation B, they are co-located


• All operations in an LSTM “step” are co-located


• This shrinks problem space: no longer finding placement for ALL 
nodes; we only have to solve placement for each group


• Required to make training time reasonable

6 -> 4 placements



Benchmarks

RNNLM 
Recurrent Neural Network 

Language Model

NMT 
Neural Machine Translation 
with attention mechanism

Inception-V3 
Image recognition and visual 

feature extraction

Many LSTM cells in a ‘grid’ 
structure, where each is only 

dependent on two of its neighbors. 
Therefore highly parallelizable

Similar to RNNLM, but more hidden 
states, so much more 

computationally expensive

Convolutional network. Lots of 
parallelization within each “block” of 
conv + pooling etc., but blocks must 

be executed sequentially



Results
Learned policy places entire network on one GPU

Nontrivial placement



Results (cont.)
• RL agent achieves better balance…

NMT model



Results (cont.)
• But only when it makes sense to!

Inception-V3



Problems…
• Network must be re-trained for each computation graph; therefore training time is an 

important metric. 12 to 27 hours on their benchmarks!


• Co-location heuristics are a “necessary evil” to improve training time. Some graphs 
would be uncomputable otherwise. 


• Downsides:


• Some good placements are made impossible (i.e. an LSTM step cannot be 
parallelized using their heuristics)


• The user must configure which heuristics should be used on their computation graph.


• Back to using human experts!



A Hierarchical Model for Device 
Placement
Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc 
V. Le, Jeff Dean

Follow-up:



How it works
• Replace the co-location heuristics with a network which learns to assign 

operations to groups. (The “Grouper”)


• Use the previous LSTM approach as before to find placements for each 
group. (The “Placer”)


• Why? 

• No more human involvement (co-location is automatically learned)


• Can handle large graphs (by grouping down until its feasible to solve)


• Can find placements that co-location heuristics would omit



Architecture

OLD

NEW
• The Grouper makes co-location decisions 

independently (simple feed-forward 
network)


• The Placer is conditional based upon 
prior device assignments (LSTM + 
attention)



Results

v. 19.0%
v. OOM
v. OOM



In Conclusion
• Training time limitation still present. Hierarchical approach is 3hrs instead of 27hrs, 

but still not insignificant.


• These are the first two papers to use RL for device placement


• A small set of others works have tried this since, with varying success:


• REGAL: use RL to tune a genetic algorithm to solve placement


• Placeto: use a GNN to learn representations, then use RL for placement (no RNNs)


• Big bonus: generalizable to other graphs! (No more retraining)


• Still not fully successful…



Questions?


