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The complexity of modern Machine
Learning systems has led to a sharp
increase in the number and
sensitivity of hyper-parameters
necessary to tune them

Problems:
The curse of dimensionality
Training time limits fitness
evaluations
Highly distributed




Grows in complexity
based on the data
Can model any

function given enough
samples

Acquisition Function

Encodes the
exploration-exploitati
on trade-off

It is not guaranteed to
converge, especially
in high-dimensional
spaces

Gaussian Process

Common
non-parametric
model

Entirely defined by
its mean and
covariance function




Bayesian

Input: Objective function f()
Input: Acquisition function «()
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: Initialize the Gaussian process G
: fori=1,2,...do
Sample point: x; < arg max, a(G(x))
Evaluate new point: y: < f(x:)
Update the Gaussian process: G < G | (x¢, yt)
end for
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Limitations

Bayesian Optimization is not
guaranteed to converge in
high-dimensional (>10) domains

Reasons:

e The curse of dimensionality
o Tackled by SBO
e Non-convergence of the
acquisition function

o Requires complex decomposition
and algorithms




Structured Bayesian Optimization

Probabilistic Programming
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SBO:

Draw values from random distributions
Constrain variable values to those
observed

Output variable distribution

Structured Bayesian Optimization allows
for the injection of domain knowledge
into Bayesian Optimization

In the form of a probabilistic program

. bias

# Draw from distributions
uniform_draw(0.0, 1.0)
bernoulli_draw(bias)

flip

# Observe an outcome
observe(flip, true)

s # Output the resulting distribution

predict(bias)

Listing 4.1: A very simple probabilistic program.
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Figure 1: Procedure of Structured Bayesian Optimization



. . doubl dict(int int int mtt
e Semi-Parametric Model: ouble predict(int ygs, int sr, Int mtt) {
. . . return gp.predict({ygs, sr, mtt}) + parametric(ygs, sr);
o Custom parametric model is encoded in )
probabilistic program
0 Non—parametric program learns the double observe(int ygs, int sr, int mtt, double observed_rate){
difference between the actual data and return gp-Obser"e({ggs’ o MEL}, ,
the parametric program , observed_rate - parametric(ygs, sr));
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BOAT
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Bespoke system auto-tuner

Boat is meant to allow for the easy
construction of a bespoke
auto-tuner by defining
semi-parametric models of the
system.

It requires defining:

e The configuration space

e Objective function and metrics

e Probabilistic Program to model
system behaviour



In order to make high-dimensional
optimization problems tractable
BOAT has several restrictions

The larger model must be split
into multiple components

E'Iiciencv Components should only

predict one value
Components should be
assembled into a model
assuming conditional
independence




Garbage Gollection Case Study

struct CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){
// Calculate the size of the heap regions

GC Average Latency Predicted double es = ygs * sr / (sr + 2.0);// Eden space’s size
GC Flags Duration Model Model Latency double ss = ygs / (sr + 2.0); // Survivor space’s size
// Define the dataflow between semi-parametric models
/ double rate = output('rate", rate_model, es);
GC Rate double duration = output("duration", duration_model,
es, ss, mtt);
MOdG' double latency = output("latency", latency_model,
rate, duration, es, ss, mtt);
. . }
Figure 2: Dataflow of our garbage collection model ProbEngine<GCRateModel> rate_model;

ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;
};
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Figure 5: Results for YCSB workloads A, B and D. Figure 6: Convergence of the frameworks on workload B.



case St“dv Optimizes BOAT for the notoriously

difficult NN scheduling problem
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Figure 8: Convergence of the frameworks on Setting C using
SpeechNet with a 2'® batch size.




Classical Bayesian Optimization

[ Non-Parametric model ] [ Acquisition Function ]




Classical Bayesian Optimization

[ Non-Parametric model ] [ Acquisition Function
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[ Semi-Parametric Model ] [ Probabilistic Programming

Structured Bayesian Optimization




Since Publication:
e ProBO:
o Probabilistic-programming-language agnostic
o Coming up next

e Arrow:
o Same idea as BOAT, applied to cloud VM architectures
e BoTorch:

o Bayesian Optimization which can leverage the PyTorch to more efficiently solve the
acquisition function
o Uses probabilistic models implemented in PyTorch

Authors Future Work Ideas:
e Allow for easier modelling of “stacked” systems where each layer depends on the previous
e Allow for use in real-time systems
e Allow for more general modelling



Opentuner can also be customised
o A comparison against Opentuner with a similar amount of customization and time
investment could have helped strengthen the evaluation
o Could have shown that it is either easier to customize or faster for the same amount
of effort
The Neural Network example is significantly more complex than presented in the paper, it
requires different algorithms for the acquisition function alongside decomposition tricks
o Does not lower the impact of successfully optimizing a 32 dimensional problem
o It does indicate that solving such problems is more complex than simply defining
probabilistic programs
No mention in the final paper that the probabilistic programming library cannot handle
models with more than 5 parameters, strongly implied by the encouragement to slowly add
structure
My future work ideas:
o New acquisition function, several have been proposed
o Rebuilding the framework structure on top of BoTorch






