
Zak Singh 08/11/21

REGAL: Transfer Learning for
Fast Optimization of
Computation Graphs
Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin,
Pushmeet Jhli, Oriol Vinyals

REGAL optimizes device placement and
scheduling for static computation graphs

Computation graph

Genetic
Algorithm

A

BA

BA

B

Placement, schedule

A simple approach: Genetic Algorithm

Goal: minimize

peak memory

usage

Biased Random-Key Genetic Algorithm

Op-to-device affinities

Task placement

 Op Priorities

Scheduling

Tensor-to-device priorities

Tensor placement

Each chromosome (i.e. schedule/placement):

Size:

• Made up of s=[devices*(ops + tensors) + ops] genes

• Each gene a float b/w 0 and 1

[#ops * #devices] [#ops] [#tensors * #devices]

0.12 0.53 0.34 0.10 0.79 …

Biased Random-Key Genetic Algorithm (BRKGA)

Op-to-device affinities

Task placement

 Op Priorities

Scheduling

Tensor-to-device priorities

Tensor placement

Each chromosome (i.e. schedule/placement):

[#ops * #devices] [#ops] [#tensors * #devices]

• D is a set of Beta distributions (1 for
each gene) from which each new
chromosome is sampled

• Elite Bias: For cross-over, each gene of
the elite has a probability p in [0.5, 1) of
the offspring inheriting that gene

Initialize pop. from D

Sort by min peak mem. usage

elites non-elites

Children

Cross-over Initialize from D

Q: How do we find D and p?
A: Need a meta optimizer!

Size:

BRKGA Params, Revisualized

[devices + 1] Beta distributions

…

[devices + 1] Beta distributions

…

…

…

Each node (aka “op”) is mapped to [devices + 1]
Beta distributions, corresponding to its device
affinities and scheduling priority

Computation graph

How it works

Computation graph

(to be optimized)

Graph Neural
Network

BRKGA
(Genetic Algorithm)

Contribution (metaoptimizer)

Goal: minimize

memory usage

Output:

representations

of nodes

Deep-RL
Policy Network

Output:

GA params

A

BA

BA

B

Placement,

Schedule

Designing the metaoptimizer

• We want each node in the computation graph to be
mapped to a representation which encodes the structure
of its neighborhood

• Roughly: think convolution on an image (pixel gets
weighted average value of its neighborhood)

• Implemented via a Graph Neural Network with message-
passing

• Why do we need this? To make the metaoptimizer
generalizable to all graphs

• Nodes from different computation graphs with similar
neighborhoods map to similar representations

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

Learned

Representations

Training the Policy Network
• Our policy network maps node representations (states)

to a quantized mean and variance of the Beta
distributions for that node (actions)

• The Beta distributions serve as our GA parameters

• To find the reward, we plug the outputted distributions
into BRKGA and evaluate the resulting schedule and
placement based on our maximum memory usage
criteria

• The policy network is then updated via the REINFORCE
algorithm (similar to gradient descent and backprop
method we’re familiar with)

[devices + 1] Beta distributions

…

[devices + 1] Beta distributions

…

…

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

Learned

Representations Actions

Metaoptimizer Pipeline

[devices + 1] Beta distributions

…

[devices + 1] Beta distributions

…

…

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

0.12

0.53

0.34

…

Computation

graph

Learned

Representations

Learned Policy

BRKGA
(Genetic Algorithm)

Graph Neural
Network

Deep-RL
Policy Network

Evaluation
• Used dataset of 372 unique real-world Tensorflow graphs to train

• Each graph is augmented 100 times, altering the tensor sizes for
each

• Tested on a 2-machine cluster

• Baselines:

• CP-SAT: Guaranteed to find optimum with enough time

• BRKGA 5K: BRKGA w/ with uniform distributions, ran for 5k
iterations

Results

Not used for training
Avg. ~9X more nodes than
TensorFlow dataset, ~13x
more edges

Results

Results
• Elite biases during crossover resulted in worse

performance than not using them!

Results
• Performance not always better

Criticism
• Overly complex — buzzword soup? (Graph Neural Networks, Deep

Reinforcement Learning, Genetic Algorithms, etc.)

• Some aspects of implementation details, hyperparams are unexplained
(especially for the RL agent)

• Only 3.56% reduced memory usage— worth the trouble?

• More exhaustive benchmarks

• More than 2 devices

• Optimize for a different metric (execution time?)

In conclusion
• REGAL jointly addresses the placement and scheduling problems for static computation graphs

• It does so by adding a metaoptimizer on top of BRKGA (a genetic algorithm)

• The metaoptimizer consists of:

• a GNN to learn node representations which encode graph structure,

• a deep RL Policy Network which converts each node representation into Beta distributions
for use in BRKGA

• Key difference from prior work: metaoptimizer only needs to be trained once, and is
afterwards generalizable to any computation graph

• May be overly complex for the small improvements yielded

Questions?

