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REGAL optimizes device placement and 
scheduling for static computation graphs
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Biased Random-Key Genetic Algorithm

Op-to-device affinities

Task placement
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Tensor-to-device priorities

Tensor placement

Each chromosome (i.e. schedule/placement):

Size:

• Made up of s=[devices*(ops + tensors) + ops] genes


• Each gene a float b/w 0 and 1

[#ops * #devices] [#ops] [#tensors * #devices]

0.12 0.53 0.34 0.10 0.79 …



Biased Random-Key Genetic Algorithm (BRKGA)

Op-to-device affinities

Task placement

 Op Priorities

Scheduling

Tensor-to-device priorities

Tensor placement

Each chromosome (i.e. schedule/placement):

[#ops * #devices] [#ops] [#tensors * #devices]

• D is a set of Beta distributions (1 for 
each gene) from which each new 
chromosome is sampled


• Elite Bias: For cross-over, each gene of 
the elite has a probability p in [0.5, 1) of 
the offspring inheriting that gene

Initialize pop. from D

Sort by min peak mem. usage

elites non-elites

Children

Cross-over Initialize from D

Q: How do we fi
A: Need a meta optimizer!

Size:



BRKGA Params, Revisualized
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Each node (aka “op”) is mapped to [devices + 1] 
Beta distributions, corresponding to its device 
affinities and scheduling priority

Computation graph



How it works
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Designing the metaoptimizer

• We want each node in the computation graph to be 
mapped to a representation which encodes the structure 
of its neighborhood 

• Roughly: think convolution on an image (pixel gets 
weighted average value of its neighborhood)


• Implemented via a Graph Neural Network with message-
passing


• Why do we need this? To make the metaoptimizer 
generalizable to all graphs 

• Nodes from different computation graphs with similar 
neighborhoods map to similar representations
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Training the Policy Network
• Our policy network maps node representations (states) 

to a quantized mean and variance of the Beta 
distributions for that node (actions)


• The Beta distributions serve as our GA parameters


• To find the reward, we plug the outputted distributions 
into BRKGA and evaluate the resulting schedule and 
placement based on our maximum memory usage 
criteria


• The policy network is then updated via the REINFORCE 
algorithm (similar to gradient descent and backprop 
method we’re familiar with)
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Metaoptimizer Pipeline
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Evaluation
• Used dataset of 372 unique real-world Tensorflow graphs to train


• Each graph is augmented 100 times, altering the tensor sizes for 
each


• Tested on a 2-machine cluster


• Baselines: 


• CP-SAT: Guaranteed to find optimum with enough time


• BRKGA 5K: BRKGA w/ with uniform distributions, ran for 5k 
iterations



Results

Not used for training 
Avg. ~9X more nodes than 
TensorFlow dataset, ~13x 
more edges



Results



Results
• Elite biases during crossover resulted in worse 

performance than not using them!



Results
• Performance not always better



Criticism
• Overly complex — buzzword soup? (Graph Neural Networks, Deep 

Reinforcement Learning, Genetic Algorithms, etc.)


• Some aspects of implementation details, hyperparams are unexplained 
(especially for the RL agent)


• Only 3.56% reduced memory usage— worth the trouble?


• More exhaustive benchmarks


• More than 2 devices


• Optimize for a different metric (execution time?)



In conclusion
• REGAL jointly addresses the placement and scheduling problems for static computation graphs


• It does so by adding a metaoptimizer on top of BRKGA (a genetic algorithm)


• The metaoptimizer consists of:


• a GNN to learn node representations which encode graph structure,


• a deep RL Policy Network which converts each node representation into Beta distributions 
for use in BRKGA


• Key difference from prior work: metaoptimizer only needs to be trained once, and is 
afterwards generalizable to any computation graph


• May be overly complex for the small improvements yielded



Questions?


