REGAL: Transfer Learning for Fast Optimization of Computation Graphs Aditya Paliwal, Felix Gimeno, Vinod Nair, Yujia Li, Miles Lubin, Pushmeet Jhli, Oriol Vinyals

Zak Singh 08/11/21

REGAL optimizes device placement and scheduling for static computation graphs

A simple approach: Genetic Algorithm

Computation graph

Genetic Algorithm

Goal: minimize peak memory usage

Placement, schedule

Biased Random-Key Genetic Algorithm

Each chromosome (i.e. schedule/placement):

Task

Op-to-dev

[#ops Size:

0.12	0.53	0.34	0.10	0.79	
------	------	------	------	------	--

placement	Scheduling	Tensor placement
vice affinities	Op Priorities	Tensor-to-device prioriti
* #devices]	[#ops]	[#tensors * #devices]

• Made up of s=[devices*(ops + tensors) + ops] genes

Each gene a float b/w 0 and 1

Biased Random-Key Genetic Algorithm (BRKGA)

Each chromosome (i.e. schedule/placement):

olacement	Scheduling	Tensor placement
vice affinities	Op Priorities	Tensor-to-device prioriti
* #devices]	[#ops]	[#tensors * #devices]

- *D* is a set of Beta distributions (1 for each gene) from which each new chromosome is sampled
- Elite Bias: For cross-over, each gene of the elite has a probability p in [0.5, 1) of the offspring inheriting that gene

BRKGA Params, Revisualized

Computation graph

Each node (aka "op") is mapped to [devices + 1] Beta distributions, corresponding to its device affinities and scheduling priority

How it works

Computation graph (to be optimized)

Contribution (metaoptimizer)

Placement, Schedule

Α

A

Designing the metaoptimizer

- We want each node in the computation graph to be mapped to a representation which encodes the structure of its neighborhood
 - Roughly: think convolution on an image (pixel gets) weighted average value of its neighborhood)
 - Implemented via a Graph Neural Network with messagepassing
 - Why do we need this? To make the metaoptimizer generalizable to all graphs
 - Nodes from different computation graphs with similar neighborhoods map to similar representations

Learned Representations

0.12

Training the Policy Network

- Our policy network maps node representations (states) to a quantized mean and variance of the Beta distributions for that node (actions)
- The Beta distributions serve as our GA parameters
- To find the reward, we plug the outputted distributions into BRKGA and evaluate the resulting schedule and placement based on our maximum memory usage criteria
- The policy network is then updated via the REINFORCE lacksquarealgorithm (similar to gradient descent and backprop method we're familiar with)

Metaoptimizer Pipeline

Network

Computation graph

Representations

BRKGA (Genetic Algorithm)

Learned Policy

Evaluation

- Used dataset of 372 unique real-world Tensorflow graphs to train
 - Each graph is augmented 100 times, altering the tensor sizes for each
- Tested on a 2-machine cluster

- Baselines:
 - **CP-SAT**: Guaranteed to find optimum with enough time
 - **BRKGA 5K:** BRKGA w/ with uniform distributions, ran for 5k iterations

REGAL

Table 1: Performance for all methods, averaged over the graphs in the test set of the TensorFlow and XLA datasets.

TensorFlow		XLA dataset 🛶		Not used for training	
	dataset (test)				Avg. ~9X more nodes
	% Improv.	% Gap	% Improv.	% Gap	TensorFlow dataset, ~
	over	from	over	from	more edges
	BRKGA5K	best	BRKGA5K	best	C
	-1.77%	13.89%	-47.14%	71.35%	
	-6.51%	16.63%	-21.43%	39.86%	
	0.63%	8.65%	-6.69%	21.98%	
	0%	9.65%	0%	14.04%	
	0.8%	8.54%	0.452%	13.52%	
	0.16%	9.33%	-1.1%	15.36%	
	3.56%	4.44 %	3.74%	9.40 %	

than 13x

Results

Table 2: Average running times for all methods.

Algorithm	TensorFlow dataset (test)	XLA dataset	
CP SAT	~2 hours	12+ hours	
GP + DFS	144 sec	500 sec	
Local Search	122 sec	1343 sec	
BRKGA 5K	0.89 sec	8.82 sec	
Tuned BRKGA	1.04 sec	10.0 sec	
GAS	1.04 sec	10.1 sec	
REGAL	1.04 sec	10.1 sec	

Results

• Elite biases during crossover resulted in worse performance than not using them!

Placement	Scheduling	Elite Bias	Valid	Test	XLA
Yes	No	No	-0.4%	-0.2%	-0.4%
No	Yes	No	4.4%	3.65%	1%
Yes	Yes	No	4.67 %	3.56%	3.74 %
Yes	No	Yes	-1.53%	-1.1%	-2.2%
No	Yes	Yes	2.47%	1.4%	-0.4%
Yes	Yes	Yes	2.58%	1.88%	-0.7%

Results

• Performance not always better

Criticism

- Overly complex buzzword soup? (Graph Neural Networks, Deep Reinforcement Learning, Genetic Algorithms, etc.)
- Some aspects of implementation details, hyperparams are unexplained (especially for the RL agent)
- Only 3.56% reduced memory usage worth the trouble?
- More exhaustive benchmarks
 - More than 2 devices
 - Optimize for a different metric (execution time?)

In conclusion

- It does so by adding a metaoptimizer on top of BRKGA (a genetic algorithm)
- REGAL jointly addresses the placement and scheduling problems for static computation graphs
- The metaoptimizer consists of:
 - a GNN to learn node representations which encode graph structure,
 - a deep RL Policy Network which converts each node representation into Beta distributions for use in BRKGA
- Key difference from prior work: metaoptimizer only needs to be trained once, and is afterwards generalizable to any computation graph
- May be overly complex for the small improvements yielded

Questions?