
Bao: Learning to Steer Query Optimizers

Paper authors: R Marcus12, P Negi1, H Mao1, N Tatbul12, M Alizadeh1, T
Kraska1 (1MIT CSAIL, 2Intel Labs)
Presenter: Mihai-Ionut Enache

8 November 2021

Query Optimization - Background and Problem

● Domain: relational database management systems (RDMS) + others (NoSQL, Graph DBs etc.)

● Definition: query plan = list of steps followed by the database engine to execute a given query

● Problem: what is the optimal query plan?

○ What is “optimal”? Time / cost etc.?

○ What is the context? Static / dynamic schema?

Example
ID YoE

1 7

2 3

3 12

4 9

Name Employee_id

London 1

Bristol 2

London 3

Edinburgh 4

SELECT name
FROM city
INNER JOIN employee on employee.id = city.employee_id
WHERE employee.yoe >= 10

Table: Employee Table: City

Example Continued: Join Before Filter

Employee City

Join

Filter

Example Continued: Join Before Filter

Employee City

Join

Filter
ID City_name YoE

1 London 7

2 Bristol 3

3 London 12

4 Edinburgh 9

Example Continued: Join Before Filter

Employee City

Join

Filter
ID City_name YoE

1 London 7

2 Bristol 3

3 London 12

4 Edinburgh 9

ID City_name YoE

3 London 12

Example Continued: Filter Before Join

Employee City

Join

Filter

Example Continued: Filter Before Join

Employee City

Join

Filter

ID YoE

3 12

Example Continued: Filter Before Join

Employee City

Join

Filter

ID City_name YoE

3 London 12
ID YoE

3 12

Motivation

● Query execution has large impact on the application (e.g. user experience, memory footprint etc.)

● Traditional method: hand-tuned optimizers

● Recent trends: machine learning techniques, but there are limitations:

○ Sample efficiency: amount of data required is impractical

○ Brittleness: query / data / schema updates means we need to retrain

■ Many proposed schemes assume constant data / schema or need full re-training if

they change

○ Tail catastrophe: learning techniques do better than hand-tuned on average, but how about

worst case?

■ Tail latency = high-percentile latency = latencies that clients experience rarely

■ But worst case scenario is often critical to an application

New Idea!

● Information from traditional query optimizers is useful - don’t throw it away!

○ Has plenty of encoded ideas and algorithms, carefully planned and designed over the

decades

● Instead, steer the query optimizer in the right direction using hints

Multi-Armed Bandit Problem

● Fixed, finite set of resources
● Different choices
● Allocate resources for choices to maximize expected gain
● Contextual multi-armed bandit problem

○ Player has context information at the current iteration
○ Combines with rewards in the past
○ Tries to understand relation between context and

rewards at each round to improve predictions
○ Reward is assumed to be independent given the

context information

Introducing Bao
● Built on top of an optimizer

● Attempts to learn mappings from queries to subsets of hints
○ Given a query: predict useful hints to limit the search space of the optimizer

○ Hint = flag passed to the optimizer (e.g. “eliminate plans containing loop joins”)

● Treat each subset of hints as an arm in CMAB

● In short, what Bao does:

Parse
query

Choose
hints +
execute

Observe
reward

and
learn

Paper’s Main Contribution

● Bao: system for query optimization that learns how to use hints to improve performance

● Simple predictive model and featurization scheme independent of workload / data / schema

● Shows the query system performs better than open source and commercial DBs

○ Cost

○ Latency

○ Adaptability

Bao Detailed
● Goal: produce set of hints that gives best performance

○ Use the underlying query optimizer to produce set of query plans

○ Transform each of them into a vector tree (nodes = feature vectors)

○ Feed trees into a Tree Convolutional Neural Network (TCNN) to predict the outcome

of executing each plan

■ E.g.: predicts the time it would take to execute a plan

● Challenge: exploration vs exploitation
○ Exploration = try new things; Exploitation = do what you already know

○ Model as contextual multi-armed bandit problem: hint set = arm; query plans =

contextual information

○ Solution: Thompson sampling

Thompson Sampling

● Bao uses predictive model Mθ to select a hint set (θ = weights)

○ Select query plan ⇒ execute ⇒ observe ⇒ add to Bao’s experience E (update Mθ)

● Mθ is trained differently than standard ML

○ Most ML algorithms: use set of parameters that explain data, i.e. maximize P(θ | E)

■ Most likely parameters = expectation of the distribution: Exp[P(θ | E)]

○ But to balance exploitation and exploration we need to sample from θ
■ To maximize exploration: choose θ randomly

■ To maximize exploitation: choose θ = Exp[P(θ | E)]

■ Sampling offers a balance between the two

Bao’s Architecture

Bao’s Predictive Model

● Uses a Tree Convolutional Neural Network (TCNN)

● Need to map query plans to trees (input to TCNN)

● Binarization: transform query plan tree into a binary

● Vectorization: encode each query plan operator as

vector

○ Vector = 3 parts:

■ Operator type

■ Cardinality and cost model information

● Cardinality = how many unique

values are in a column

■ Current state of disk (cache info)

Tree Convolutional Neural Networks
● Slide tree-shaped filters over the query plan tree (like image convolution)

○ Produce transformed query plans trees of the same size

○ Can stack TCNN operator ⇒ several layers of convolution

● Thompson sampling for training: use |E| random samples drawn with replacement from E

Training Loop

● 2 problems:

1. Sampling θ requires training the NN ⇒ expensive

2. Experience E can grow unbounded

● Solutions:
○ Don’t retrain after every query; instead, do after every n-th query ⇒ training overhead reduced by factor of n

○ Only store the most recent k queries

○ User can tune n and k to trade-off quality and training overhead

● New optimization introduced:
○ Training NNS requires GPU; query processing requires CPU, RAM and disk ⇒ can overlap them

○ Enable GPU only when need to sample, otherwise detach

○ Useful on modern cloud platforms that charge per second

Experiments
● Focus on performance, but also on dollar cost

● Performed on the Google Cloud platform

● 2 approaches:
○ Compare with other systems: PostgreSQL and a commercial DB

○ Compare against the optimal choice

● 3 datasets:

Experiments: Tail Latency

Experiments: Training Time and Convergence

Experiments: Predictive Model Accuracy

● As we make more decisions ⇒ experience grows ⇒ model is more accurate

● Defined in terms of Q-Error:
○ x = prediction, y = correct value

Experiments: Other ML Techniques
● NNs are costly

○ Sometimes, simpler approaches work better
○ Compare against Random Forests and Linear Regression

● Introduce “best hint set” = the set that performed best on average for all queries

Other Experiments

● Other experiments in the paper include:
○ Required GPU time

○ Resiliency to hint sets that perform poorly

○ Optimization time

○ Regret over time and tails

○ Regression analysis

Related Work

● Cardinality estimation:
○ Supervised learning: recent work uses deep learning to learn cardinality estimators and query costs

○ Unsupervised learning: QuickSel (linear mixture models), Naru (Monte Carlo)

○ These provided better cardinality estimation, but no evidence for better query performance

● RL for query optimizers:
○ Neo: apply deep reinforcement learning to query latency

● Thompson sampling:
○ Been used for a while in statistics and decision making

○ Use custom set-up inspired from previous work: no need to define how to update posterior belief

Personal Opinion

● Pros:

○ Great idea to take advantage of decades of hand-tuned algorithms in traditional optimizers

○ Simple & efficient featurization scheme, agnostic of schema / data changes

○ TCNN: encapsulates information about the structure of the query plans in the features

○ Thompson sampling: great way to balance exploration vs exploitation

○ Convincing experiments: plenty of experiments, different approaches / contexts / baselines /

datasets

○ (Mostly) Self-contained paper, good structure and flow

● Cons:

○ Focuses only on boolean hints (flags)

○ Transforms query plans in binary trees for convenience (they simplify TCNN) - can we do better?

○ Can only use hints to build query plans, i.e. can’t build a new plan using custom strategies

Summary

● Bao - a bandit optimizer that steers query optimizers in the right direction using RL
● Problem as CMAB ⇒ well studied, efficient sampling algorithms
● Underlying optimizer ⇒ cost and cardinality estimation available ⇒ easier to adapt to data /

schema changes
● Can immediately build on top of and improve the optimizer

○ Other systems have to learn those techniques
● Easy to integrate cache information

○ Reading from in-memory much better than disk
● Extensible architecture: easy to add / remove query hints

○ Little re-training time needed for new hints ⇒ can easily test new optimizers
○ Can do exception rules: can specifically exclude query hints if performing bad in practice

