Bao: Learning to Steer Query Optimizers

Paper authors: R Marcus?®?, P Negil, H Mao?, N Tatbul'?, M Alizadeh®, T
Kraska® (*MIT CSAIL, ?Intel Labs)
Presenter: Mihai-lonut Enache

8 November 2021

Query Optimization - Background and Problem

e Domain: relational database management systems (RDMS) + others (NoSQL, Graph DBs etc.)
e Definition: query plan = list of steps followed by the database engine to execute a given query
e Problem: what is the optimal query plan?

o Whatis “optimal”? Time / cost etc.?

o Whatis the context? Static / dynamic schema?

Example

ID YoE Name Employee_id
1 7 London 1
2 3 Bristol 2
[3 12 London 3
4 9 Edinburgh 4
Table: Employee Table: City
SELECT name

FROM city
INNER JOIN employee on employee.id = city.employee_id
WHERE employee.yoe >= 10

Example Continued: Join Before Filter

|

%

Employee City

Example Continued: Join Before Filter

T

Join

>

Employee

City

ID

City_name YoE
London 7

Bristol 3
London 12
Edinburgh 9

Example Continued: Join Before Filter

|

A

Join

Employee

City

ID City_name YoE ID
J
London 7 3
Bristol 3
London 12
Edinburgh 9

City_name

London

12

YoE

Example Continued: Filter Before Join

|

Employee City

Example Continued: Filter Before Join

ID YoE

| \

Employee City

Example Continued: Filter Before Join

Employee

City

12

YoE

City_name

London

12

YoE

Motivation

e Query execution has large impact on the application (e.g. user experience, memory footprint etc.)
e Traditional method: hand-tuned optimizers
e Recent trends: machine learning techniques, but there are limitations:
o Sample efficiency: amount of data required is impractical
o Brittleness: query / data/ schema updates means we need to retrain
m Many proposed schemes assume constant data / schema or need full re-training if
they change
o Tail catastrophe: learning techniques do better than hand-tuned on average, but how about
worst case?
m Tail latency = high-percentile latency = latencies that clients experience rarely
m Butworst case scenario is often critical to an application

New Idea!

e Information from traditional query optimizers is useful - don’t throw it away!
o Has plenty of encoded ideas and algorithms, carefully planned and designed over the
decades
e Instead, steer the query optimizer in the right direction using hints

Multi-Armed Bandit Problem gu

Fixed, finite set of resources
Different choices
Allocate resources for choices to maximize expected gain
Contextual multi-armed bandit problem
o Player has context information at the current iteration
o Combines with rewards in the past
o Triestounderstand relation between context and
rewards at each round to improve predictions
o Rewardis assumed to be independent given the
context information

Introducing Bao

e Builtontop of an optimizer
e Attempts tolearn mappings from queries to subsets of hints

o Givenaquery: predict useful hints to limit the search space of the optimizer

o Hint =flag passed to the optimizer (e.g. “eliminate plans containing loop joins”)
e Treateach subset of hints as an armin CMAB

e Inshort, what Bao does:

Choose
hints +
execute

Observe
reward
and

learn

Paper's Main Contribution

e Bao: system for query optimization that learns how to use hints to improve performance
e Simple predictive model and featurization scheme independent of workload / data / schema
e Shows the query system performs better than open source and commercial DBs

o Cost

o Latency

o Adaptability

Bao Detailed

e Goal: produce set of hints that gives best performance
o Use the underlying query optimizer to produce set of query plans
o Transform each of them into a vector tree (nodes = feature vectors)
o Feed treesinto a Tree Convolutional Neural Network (TCNN) to predict the outcome
of executing each plan
m E.g.:predicts the time it would take to execute a plan
e Challenge: exploration vs exploitation
o Exploration = try new things; Exploitation = do what you already know
o Model as contextual multi-armed bandit problem: hint set = arm; query plans =
contextual information
o Solution: Thompson sampling

Thompson Sampling

e Bao uses predictive model M, to select a hint set (6 = weights)
o Select query plan = execute = observe = add to Bao's experience E (update Me)
e M, istrained differently than standard ML
o Most ML algorithms: use set of parameters that explain data, i.e. maximize P(0 | E)
m Most likely parameters = expectation of the distribution: Exp[P(6 | E)]
o Butto balance exploitation and exploration we need to sample from 6
m Tomaximize exploration: choose 6 randomly
m To maximize exploitation: choose 8 = Exp[P(0 | E)]
m Sampling offers a balance between the two

Bao's Architecture

|l SQL

-+

v

;A»—

E o
§ e m | [et |
E ol
—

v
| - =
[Hmss | om

OO E [] Query plan

["] User provided

............................. [External component
M Bao

Figure 2: Bao system model

Bao's Predictive Model

Uses a Tree Convolutional Neural Network (TCNN)
Need to map query plans to trees (input to TCNN)
Binarization: transform query plan tree into a binary
Vectorization: encode each query plan operator as
vector
o Vector = 3 parts:
m Operator type
m Cardinality and cost model information
e Cardinality = how many unique
values are in a column
m Current state of disk (cache info)

| Merge Join ” null |
[Coopgon][_mt]

Original Query Plan Binarized Query Plan

Figure 3: Binarizing a query plan tree

&
& & o Sl
S Fre S & P
o , 0,0, 10, 0.98]

-
=3
@ <,
©

& R O &
A > A o
PES LS S &

S &
W\ e
[0, 0, 0,0, 0,0, 1,0, 0.0]

& L&
O & K RS & & K ' S
PSS FP S & SES TP & & &
lo. 0. 1,0 0 0 0 250 0.621 [Sort | {6, ©, 0, 6, 1, 8, 8, 100, 0.32]
S & sy L & S & O &
S FP S & S SES T S &

[nul Je. 0. 0 6 0 0 1. 6 6.0

«&oo&eo S L &
S T S & ¢

& "
S S & & &
fe. 0, 0, 0, 0, 1, 0, 25, 0.08]

[e, e, 0, 6, 1, 6, 0, 9000, ©.12]

Figure 4: Vectorized query plan tree (vector tree)

Tree Convolutional Neural Networks

e Slide tree-shaped filters over the query plan tree (like image convolution)
o Produce transformed query plans trees of the same size
o Canstack TCNN operator = several layers of convolution

e Thompson sampling for training: use |E| random samples drawn with replacement from E

!

Vectorized Tree

1x128 1x64
’A’
s

Tree Convolution

uonoipald 1s00

1x256
— —
S

~

yaxT
2EXT
TXT

D Input . Layer |:] Output

Figure 5: Bao prediction model architecture

Training Loop

e 2problems:
1. Sampling 6 requires training the NN = expensive
2. Experience E can grow unbounded
e Solutions:
o Don't retrain after every query; instead, do after every n-th query = training overhead reduced by factor of n
o Onlystore the most recent k queries
o Usercantune nand k to trade-off quality and training overhead
e New optimization introduced:
o Training NNS requires GPU; query processing requires CPU, RAM and disk = can overlap them
o Enable GPU only when need to sample, otherwise detach
o Useful on modern cloud platforms that charge per second

Experiments

Focus on performance, but also on dollar cost
Performed on the Google Cloud platform

2 approaches:

o Compare with other systems: PostgreSQL and a commercial DB

o Compare against the optimal choice

3 datasets:
Size Queries WL Data Schema
IMDb 7.2GB 5000 Dynamic Static Static
Stack 100 GB 5000 Dynamic Dynamic Static
Corp 1TB 2000 Dynamic Static® Dynamic

Experiments: Tail Latency

N1-2 N1-4 N1-8 N1-16
150 EEE Bao 150 EEN Bao 150 EEE Bao 150 N Bao
PostgreSQL PostgreSQL PostgreSQL PostgreSQL
=z g g)
< £ 100 2100 2100 £ 100
A E 3 E £
[) = = = =
== = = =
o) © o @ o
£ = 50 = 50 S 50 = 50
]
[a W)
B 50% 95% 99% 99.5% 0 50% 95% 99% 99.5% 0 50% 95% 99% 99.5% 03 50% 95% 99% 99.5%
Percentile Percentile Percentile Percentile
150 EEm Bao 150 EEm Bao 150 Em Bao 150 N Bao
BN ComSys N ComSys Em ComSys E ComSys
) 0} g i)
2, 2100 2100 2100 ¢ 100
»n = = b~ =
g 3 3 3 5
O =2 50 = 50 = 50 2 50
O
0 0° 0 0-
50% 95% 99% 99.5% 50% 95% 99% 99.5% 50% 95% 99% 99.5% 50% 95% 99% 99.5%
Percentile Percentile Percentile Percentile

Figure 8: Percentile latency for queries, IMDb workload. Each column represents a VM type, from smallest to largest. The
top row compares Bao against the PostgreSQL optimizer on the PostgreSQL engine. The bottom row compares Bao against
a commercial database system on the commercial system’s engine. Measured across the entire (dynamic) IMDb workload.

Experiments: Training Time and Convergence

5k 5k 5k 5k
T 4k T 4k T 4k T 4k
= o z L -
wn w w w
€ 3 € 3k < 3k < 3k
' s 7 b
< 2k 22k 2 2k 2 2k
S / g S g
O 1k 7 -— Bao O 1k - Bao O 1k — Bao o 1k -— Bao

PostgreSQL PostgreSQL PostgreSQL PostgreSQL
0k / = ok = 0k = 0k =
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Time (hours) Time (hours) Time (hours) Time (hours)
(a) VM type N1-2 (b) VM type N1-4 (c) VM type N1-8 (d) VM type N1-16

Figure 9: Number of IMDb queries processed over time for Bao and the PostgreSQL optimizer on the PostgreSQL engine.
The IMDb workload contains 5000 unique queries which vary over time.

Experiments: Predictive Model Accuracy

e Aswe make more decisions = experience grows = model is more accurate
:) . T 9
[J
Defined |nterjm.s of Q-Error: QError(z,y) =max =, 2) — 1
o x=prediction,y = correct value Yy x

—— Bao prediction error

0 1000 2000 3000 4000 5000
Queries processed

(a) Median Q-Error (0 is a perfect predic-
tion) of Bao’s predictive model vs. the num-
ber of queries processed. IMDb workload on
N1-16 VM using PostgreSQL engine.

Experiments: Other ML Techniques

e NNsare costly
o Sometimes, simpler approaches work better
o Compare against Random Forests and Linear Regression

e Introduce “best hint set” = the set that performed best on average for all queries

2k
) — Ba0
Q
B 1k PostgreSQL
= — RF
< 141 .
R} Linear
E Ok - = Best hint set
o

0 2 4
Time (hours)

(¢) Random forest (RF) and linear models
(Linear) used as Bao’s model. “Best hint
set” is the single best hint set. IMDb, N1-
16 VM, on PostgreSQL.

Other Experiments

e Other experiments in the paper include:

O

o O O O

Required GPU time

Resiliency to hint sets that perform poorly
Optimization time

Regret over time and tails

Regression analysis

Related Work

e Cardinality estimation:
o Supervised learning: recent work uses deep learning to learn cardinality estimators and query costs
o Unsupervised learning: QuickSel (linear mixture models), Naru (Monte Carlo)
o These provided better cardinality estimation, but no evidence for better query performance
e RLfor queryoptimizers:
o Neo: apply deep reinforcement learning to query latency
e Thompson sampling:
o Beenused for awhile in statistics and decision making
o Use custom set-up inspired from previous work: no need to define how to update posterior belief

Personal Opinion

Pros:

o O O O

Cons:

Great idea to take advantage of decades of hand-tuned algorithms in traditional optimizers
Simple & efficient featurization scheme, agnostic of schema / data changes

TCNN: encapsulates information about the structure of the query plans in the features
Thompson sampling: great way to balance exploration vs exploitation

Convincing experiments: plenty of experiments, different approaches / contexts / baselines /
datasets

(Mostly) Self-contained paper, good structure and flow

Focuses only on boolean hints (flags)
Transforms query plans in binary trees for convenience (they simplify TCNN) - can we do better?
Can only use hints to build query plans, i.e. can’t build a new plan using custom strategies

Summary

e Bao-abandit optimizer that steers query optimizers in the right direction using RL
Problem as CMAB = well studied, efficient sampling algorithms
e Underlying optimizer = cost and cardinality estimation available = easier to adapt to data/
schema changes
e Canimmediately build on top of and improve the optimizer
o Other systems have to learn those techniques
e Easytointegrate cache information
o Reading from in-memory much better than disk
e Extensible architecture: easy to add / remove query hints
o Little re-training time needed for new hints = can easily test new optimizers
o Cando exception rules: can specifically exclude query hints if performing bad in practice

