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Query Optimization - Background and Problem

e Domain: relational database management systems (RDMS) + others (NoSQL, Graph DBs etc.)
e Definition: query plan = list of steps followed by the database engine to execute a given query
e Problem: what is the optimal query plan?

o  Whatis “optimal”? Time / cost etc.?

o Whatis the context? Static / dynamic schema?



Example

ID YoE Name Employee_id
1 7 London 1
2 3 Bristol 2
[ 3 12 London 3
4 9 Edinburgh 4
Table: Employee Table: City
SELECT name

FROM city
INNER JOIN employee on employee.id = city.employee_id
WHERE employee.yoe >= 10



Example Continued: Join Before Filter
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Motivation

e Query execution has large impact on the application (e.g. user experience, memory footprint etc.)
e Traditional method: hand-tuned optimizers
e Recent trends: machine learning techniques, but there are limitations:
o Sample efficiency: amount of data required is impractical
o Brittleness: query / data/ schema updates means we need to retrain
m  Many proposed schemes assume constant data / schema or need full re-training if
they change
o Tail catastrophe: learning techniques do better than hand-tuned on average, but how about
worst case?
m Tail latency = high-percentile latency = latencies that clients experience rarely
m Butworst case scenario is often critical to an application



New Idea!

e Information from traditional query optimizers is useful - don’t throw it away!
o Has plenty of encoded ideas and algorithms, carefully planned and designed over the
decades
e Instead, steer the query optimizer in the right direction using hints



Multi-Armed Bandit Problem gu

Fixed, finite set of resources
Different choices
Allocate resources for choices to maximize expected gain
Contextual multi-armed bandit problem
o Player has context information at the current iteration
o Combines with rewards in the past
o Triestounderstand relation between context and
rewards at each round to improve predictions
o Rewardis assumed to be independent given the
context information




Introducing Bao

e Builtontop of an optimizer
e Attempts tolearn mappings from queries to subsets of hints

o  Givenaquery: predict useful hints to limit the search space of the optimizer

o  Hint =flag passed to the optimizer (e.g. “eliminate plans containing loop joins”)
e Treateach subset of hints as an armin CMAB

e Inshort, what Bao does:

Choose
hints +
execute

Observe
reward
and

learn




Paper's Main Contribution

e Bao: system for query optimization that learns how to use hints to improve performance
e Simple predictive model and featurization scheme independent of workload / data / schema
e Shows the query system performs better than open source and commercial DBs

o Cost

o Latency

o Adaptability



Bao Detailed

e Goal: produce set of hints that gives best performance
o Use the underlying query optimizer to produce set of query plans
o Transform each of them into a vector tree (nodes = feature vectors)
o Feed treesinto a Tree Convolutional Neural Network (TCNN) to predict the outcome
of executing each plan
m E.g.:predicts the time it would take to execute a plan
e Challenge: exploration vs exploitation
o Exploration = try new things; Exploitation = do what you already know
o  Model as contextual multi-armed bandit problem: hint set = arm; query plans =
contextual information
o  Solution: Thompson sampling



Thompson Sampling

e Bao uses predictive model M, to select a hint set (6 = weights)
o Select query plan = execute = observe = add to Bao's experience E (update Me)
e M, istrained differently than standard ML
o  Most ML algorithms: use set of parameters that explain data, i.e. maximize P(0 | E)
m  Most likely parameters = expectation of the distribution: Exp[P(6 | E)]
o Butto balance exploitation and exploration we need to sample from 6
m Tomaximize exploration: choose 6 randomly
m To maximize exploitation: choose 8 = Exp[P(0 | E)]
m Sampling offers a balance between the two



Bao's Architecture
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Figure 2: Bao system model



Bao's Predictive Model

Uses a Tree Convolutional Neural Network (TCNN)
Need to map query plans to trees (input to TCNN)
Binarization: transform query plan tree into a binary
Vectorization: encode each query plan operator as
vector
o  Vector = 3 parts:
m  Operator type
m Cardinality and cost model information
e Cardinality = how many unique
values are in a column
m  Current state of disk (cache info)
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Figure 3: Binarizing a query plan tree
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Figure 4: Vectorized query plan tree (vector tree)



Tree Convolutional Neural Networks

e Slide tree-shaped filters over the query plan tree (like image convolution)
o Produce transformed query plans trees of the same size
o  Canstack TCNN operator = several layers of convolution

e Thompson sampling for training: use |E| random samples drawn with replacement from E
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Figure 5: Bao prediction model architecture



Training Loop

e 2problems:
1. Sampling 6 requires training the NN = expensive
2. Experience E can grow unbounded
e Solutions:
o  Don't retrain after every query; instead, do after every n-th query = training overhead reduced by factor of n
o  Onlystore the most recent k queries
o  Usercantune nand k to trade-off quality and training overhead
e New optimization introduced:
o  Training NNS requires GPU; query processing requires CPU, RAM and disk = can overlap them
o  Enable GPU only when need to sample, otherwise detach
o  Useful on modern cloud platforms that charge per second



Experiments

Focus on performance, but also on dollar cost
Performed on the Google Cloud platform

2 approaches:

o  Compare with other systems: PostgreSQL and a commercial DB

o  Compare against the optimal choice

3 datasets:
Size Queries WL Data Schema
IMDb 7.2GB 5000 Dynamic Static Static
Stack 100 GB 5000 Dynamic Dynamic Static
Corp 1TB 2000 Dynamic Static® Dynamic




Experiments: Tail Latency
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Figure 8: Percentile latency for queries, IMDb workload. Each column represents a VM type, from smallest to largest. The
top row compares Bao against the PostgreSQL optimizer on the PostgreSQL engine. The bottom row compares Bao against
a commercial database system on the commercial system’s engine. Measured across the entire (dynamic) IMDb workload.



Experiments: Training Time and Convergence
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Figure 9: Number of IMDb queries processed over time for Bao and the PostgreSQL optimizer on the PostgreSQL engine.
The IMDb workload contains 5000 unique queries which vary over time.



Experiments: Predictive Model Accuracy

e Aswe make more decisions = experience grows = model is more accurate
: ) . T 9
[ J
Defined |nterjm.s of Q-Error: QError(z,y) =max =, 2 ) — 1
o  x=prediction,y = correct value Yy x

—— Bao prediction error
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(a) Median Q-Error (0 is a perfect predic-
tion) of Bao’s predictive model vs. the num-
ber of queries processed. IMDb workload on
N1-16 VM using PostgreSQL engine.



Experiments: Other ML Techniques

e NNsare costly
o Sometimes, simpler approaches work better
o Compare against Random Forests and Linear Regression

e Introduce “best hint set” = the set that performed best on average for all queries
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(¢) Random forest (RF) and linear models
(Linear) used as Bao’s model. “Best hint
set” is the single best hint set. IMDb, N1-
16 VM, on PostgreSQL.



Other Experiments

e Other experiments in the paper include:

O

o O O O

Required GPU time

Resiliency to hint sets that perform poorly
Optimization time

Regret over time and tails

Regression analysis



Related Work

e Cardinality estimation:
o  Supervised learning: recent work uses deep learning to learn cardinality estimators and query costs
o  Unsupervised learning: QuickSel (linear mixture models), Naru (Monte Carlo)
o  These provided better cardinality estimation, but no evidence for better query performance
e RLfor queryoptimizers:
o  Neo: apply deep reinforcement learning to query latency
e Thompson sampling:
o  Beenused for awhile in statistics and decision making
o Use custom set-up inspired from previous work: no need to define how to update posterior belief



Personal Opinion

Pros:

o O O O

Cons:

Great idea to take advantage of decades of hand-tuned algorithms in traditional optimizers
Simple & efficient featurization scheme, agnostic of schema / data changes

TCNN: encapsulates information about the structure of the query plans in the features
Thompson sampling: great way to balance exploration vs exploitation

Convincing experiments: plenty of experiments, different approaches / contexts / baselines /
datasets

(Mostly) Self-contained paper, good structure and flow

Focuses only on boolean hints (flags)
Transforms query plans in binary trees for convenience (they simplify TCNN) - can we do better?
Can only use hints to build query plans, i.e. can’t build a new plan using custom strategies



Summary

e Bao-abandit optimizer that steers query optimizers in the right direction using RL
Problem as CMAB = well studied, efficient sampling algorithms
e Underlying optimizer = cost and cardinality estimation available = easier to adapt to data/
schema changes
e Canimmediately build on top of and improve the optimizer
o  Other systems have to learn those techniques
e Easytointegrate cache information
o  Reading from in-memory much better than disk
e Extensible architecture: easy to add / remove query hints
o Little re-training time needed for new hints = can easily test new optimizers
o  Cando exception rules: can specifically exclude query hints if performing bad in practice



