N-STREAM:

Edge-centric Graph Processing using Streaming Partitions

Authors: Amitabha Roy, Ivo Mihailovic, Willy
/waenepoel

Why Previous Solutions Do Not Scale

Random Access Sequential Access
23456785
Vertex-Centric Edge-Centric

P

Scatter(v : vertex):
Send(Outgoing[V]) * Most Graphs have significantly more edges

Gather(v : vertex): than vertices
Apply(Incoming[V])

* Harder to partition graph data

Requires edge and vertex data in fast * Random access over both vertices and

memory edges

* Pre-processing dominates the run-time

edge data for faster algorithms

Allows for pre-processing/sorting

Scatter(e: edge): Gather(u :update): * Better mapping to hardware and the
Send_Update(e) Apply(u, u.dest) structure of real graphs
1. Edge Centric Scatter 2. Edge Centric Gather
Edges \sequental read) Updates (sequential read)
[Tl al oo | TaT ol e |
\VAVAV/ \\/‘_/M\/‘ .
|\/\“ ‘I * Allows for streaming the edge data from
P .
Vertices (random readwrite) @ng s sk slow memory sequentially, speed-up:
NN | Figure 3; Streaming Memory Access * Disk: 500x

N A Updates (sequential write)

® SSD: 300x

* RAM: 4.6x/1.8x for 1/16 cores
Requires almost zero pre-processing

Only needs fast random access to * Better initial run-time performance
vertex data * No bottlenecks in maintaining invariants

Basic mapping to hardware:
® Vﬁtex.Set. ‘ Update * Vertex set should fit into fast storage
*“Assume uniform distribution of updates
Edge List * Divide the graph uniformly
[E] [E] [E] [E] * Considering auxiliary data structures
* Algorithms are order-independent
Scatter Phase Shuffle Phase Gather Phase

B - BT~ ey T = TN
= — I — T ~
O~ T = =

=

\

Hierarchical Memory Processing

Two types of relative storage: Slow vs Fast * X-Stream implements streaming engines for
handling transfer from slow to fast storage

* Making heavy use of large static
streaming buffers to carry data

Partitioning the Memory Hierarchy:

In-Memory Streaming Engine

Out-of-Core Streaming Engine

Moves data from disk to memory Modified computation model
®* In order to tran.sfer data .from * All incoming/outgoing data from/to disk
disk to memory it uses a simple passes through in/out buffers(2 of each for
stream buffer prefetching)
* Partition size and buffer are both * Shuffle stages are performed within scatter
statically allocated phases whenever UOut becomes full
* Maximizes buffer usage
Index Array :
Vertex File U_File
Chunk Array oo oo +
Edge File
[E] [E] [E] [E]

Output Buffer
K-Partition Stream Buffer In-Memory

In-Memory Streaming Engine

Must be able to do parallel computation on
streaming buffers:

Thread 1| Thread 2 Thread P

ol ¢ 2

write | fReadlwrite] {Rread write| {Read

Slice 1 Slice 2 Slice P

Figure 7: Slicing a Streaming Buffer

Also parallelizes the scatter -> shuffle ->

gather pipeline along stream buffers

* Required implementing work-stealing as
streaming partitions differ in edge counts

Parallel Multistage Shuffler:
* Arranges partitions into a tree structure
* Uses a power of two for both the
number of partitions and fanout
* Inputs get shuffled by being passed
down the tree and split up at every step

Layered Approach:
* Sits above the disk streaming layer
* Disk layer operates as normal, however
the in-memory processing of a partition
is further fed into the in-memory system

RMAT scale 25 graph

262144

256 5 14 one disk —— s

WCC —+— B 42 mcie'g_i isks REEEEE]
4o Pagerank 3¢ 2 AID-0 s 16384
b=t BFS ¥ a 1 409
- @ a8 2 3

n E ® 5 N8 < oz

L] 2 gt o, oo 5 256

3 e = 04 £ o

g 16 % s 02 & e

£ B) s £
FE D% % . % %, %, %, 1 et 58D
- 2 4 8 6 ° By, 0%, % By, T %, B 025
g H
iters ratio wasted % ok A A 20 22 20 2 28 30 32
Threads ¥ * Scale

memory
amazon0601 19 12.58 63
cit-Patents 21 12.20 50
soc-livejournal| 13 |2.13 57
dimacs-usa | 6263 |1.94 98

This is a direct result
rieas | o |106| @ of a |arge-diamEter
sk-2005 25 |1.04 67

structure

Figure 14: Strong Scaling Figure 15: I/O Parallelism Figure 16: Scaling Across Devices

RMAT graphs, one thread BFS on scale-free graph (32M vertices/256M edges)
80
80
70
60
50
40
30
20
10

Twitter graph, 16 threads

Local Queue C——
Hybrid E7Ezmm
X-Stream SEEmE:

Runtime (s)

Twitter 16 |1.04 55
disk
Friendster 24 11.04 63
sk-2005 25 |1.04 67
Twitter 16 |1.04 55
yahoo-web — | — —

(b)

Wasted computation is an expected
trade-off from large-scale streaming

Recomputation time (s)
8
8

n
o
=]

Runtime (s) - truncated at 500

0 500 1000 1500 2000 2500 3000
Accumulated Graph size (millions of edges)

RMAT scale Threads

Figure 17: Re-computing WCC Figure 18: Sorting vs. Streaming Figure 19: In-memory BFS

Sorting dominates the run-time of
most systems we will see

System scales very well on most tasks,
linearly until a new storage medium is
needed

Pre-

Ligra And Graphchi Gomparison

Threads || Ligra (s) X-Stream (s) | Ligra-pre (s)
BEFS . . Pre-Sort (s) Runtime (s) Re-sort (s)

1 .10 16850 1250.00 prOCESSI ng N Twitter pagerank _

2 5.59 86.97 647.00 X-Stream (1) none 397.57+1.83 - X-Stream Graphehi

4 2.83 45.12 352.00 Li g ra ta kes GNfﬂEgjihj;Eé) 752.3249.07 1175.12+25.62 969.99 % 800 aggregate;416.15 | aggregate: 141.04

8 1.48 26.68 209.40 o S g

16 0.85 18.48 157.20 I h X-Stream (1) none 76.74+0.16 - cé 600 [

T T Graphchi (14) 123.73+£4.06 138.68 £ 26.13 45.02 g 400 | | I

B AN onger than 2= N LA

2 i e B . X-Stream (1) none 867504235 - 1] ‘ L1 P 0

2 260.60 12972 15500 the entire X- Graphchi (24) 2149.38 £41.35 || 2823.99.4704.99 1727.01 g 800 aggregate: 177.42 agaregate: 48.28

A Twitter belief prop. @
186 ';;;2 2332 ?;]';g S X-Stream (1) none 2665.64-6.90 = s igg
- ; ; tream Graphchi (17) 742.42+413.50 || 4589.52+322.28 1717.50 - 'Ill] HH m “[H [J
. = |I R PR 1T AT
Figure 20: Ligra [48] on Twitter (99 % CI under 5%) execution Figure 22: Comparison with Graphchi on SSD with 99% o
Confidence Intervals. Numbers in brackets indicate X-
- SIE 1331 >l€-3501mam Stream streaming partitions/Graphchi shards (Note: re- Figure 23: Disk Bandwidth
N s 982 million prei sorting is included in Graphchi runtime.)
Ligra,BFS [48] X-Stream

PC 0.75 139
Mem refs 13 bilion LS billion Graphchi serves a similar use case to X-Stream while applying

Figure 21: Instructions per Cycle and Total Number
of Memory References for BFS

The efficiency of sequential
memory access also makes X-
Stream dominate in IPC

Overall, Ligra should still
massively overperform on speed
in most real use-cases

a vertex-centric model. The average speed-up without pre-
processing is 2.3 and 3.7 with pre-processing.

Disk bandwidth usage is also more predictable in X-Stream.

Opinion/Motivation

Can Sorting Keep-Up?

Any vertex-centric computation requires
some way of associating edges to
source/destination vertices, sorting is
the most popular
Sometimes it is necessary to look at a
reversed edge-list for classes of
algorithms
* Requires either re-sorting
repeatedly or maintaining two
views of the edge list.
This narrative has been extensively
challenged by Frank McSherry using
radix sort to process twitter data 10x
faster than the X-Stream authors
estimation

* Vertex-Centric: Edge Data/RAM Bandwidth
* Edge-Centric: Scatter X E_Data/Seq Band

Real-World Graphs:

All of the scale-free graphs perform very well with X-
Stream, many real-world graphs follow a power-law
distribution.

Work stealing seems sufficient to handle high-
degree vertices.

Real world graphs grow very slowly in diameter
O(log(V)/log(log(V)) and can even undergo
densification

Creation:

According to Amitabha Roy in “X-Stream: A
Case Study in Building a Graph Processing
System”
The algorithms used within the system were
first devised by observing the relation
between graph processing and sparse matrix-
vector multiplication
* Followed by applying advances in SpMV
to graph processing
The implementation, systems and evaluation
were subsequently developed for publishing
in “Symposium on Operating Systems
Principles”
* The final paper changes the focus to the
systems aspect of X-Stream

Development History:

The GitHub has not had any commits in years

Authors from EPFL also developed “Chaos” as

the multi-machine successor of X-Stream,

utilizing many of the same ideas surrounding

streaming partitions with a heavy focus on

work stealing and ignoring locality

* The new system is capable of handling
graphs with 1 trillion edges ~ 16 TB of
data

* Later scaled to 8 trillion on only 32
machines

“Chaos” development, at least publicly, also

seems to have ceased soon after creation

Why Has It Not Had a Larger Impact?

Unusual edge-centric computational model
Algorithmic origins:
®* Tumultuous implementation
* Potentially difficult to extend or maintain
No way of easily changing graph structure, relies on static data structures
No long-term support
Lacks comprehensive documentation, high-level means of integration, or a killer-app
Highly focused towards throughput and cost over speed, niche use-case
* As shown by Frank McSherry, for some specific tasks, better algorithms implemented with
less-restrictive programming models and efficient pre-processing may be superior.
In my opinion, it was never intended for production
As an academic work it has a fair number of citations and inspired systems
Similar critiques apply to “Chaos”

Quest sns.

