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Why Previous Solutions Do Not Scale

Random Access Sequential Access
23456785
Vertex-Centric Edge-Centric

P




Scatter(v : vertex):
Send(Outgoing[V]) * Most Graphs have significantly more edges

Gather(v : vertex): than vertices
Apply( Incoming[V])

* Harder to partition graph data

Requires edge and vertex data in fast * Random access over both vertices and

memory edges

* Pre-processing dominates the run-time

edge data for faster algorithms

Allows for pre-processing/sorting




Scatter(e: edge): Gather(u :update): * Better mapping to hardware and the
Send_Update(e) Apply(u, u.dest) structure of real graphs
1. Edge Centric Scatter 2. Edge Centric Gather
Edges \sequental read) Updates (sequential read)
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N A Updates (sequential write)

® SSD: 300x

* RAM: 4.6x/1.8x for 1/16 cores
Requires almost zero pre-processing

Only needs fast random access to * Better initial run-time performance
vertex data * No bottlenecks in maintaining invariants




Basic mapping to hardware:
® Vﬁtex.Set. ‘ Update * Vertex set should fit into fast storage
*“Assume uniform distribution of updates
Edge List * Divide the graph uniformly
[E] [E] [E] [E] * Considering auxiliary data structures
* Algorithms are order-independent
Scatter Phase Shuffle Phase Gather Phase
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Hierarchical Memory Processing

Two types of relative storage: Slow vs Fast * X-Stream implements streaming engines for
handling transfer from slow to fast storage

* Making heavy use of large static
streaming buffers to carry data

Partitioning the Memory Hierarchy:

In-Memory Streaming Engine

Out-of-Core Streaming Engine




Moves data from disk to memory Modified computation model
®* In order to tran.sfer data .from * All incoming/outgoing data from/to disk
disk to memory it uses a simple passes through in/out buffers(2 of each for
stream buffer prefetching)
* Partition size and buffer are both * Shuffle stages are performed within scatter
statically allocated phases whenever UOut becomes full
* Maximizes buffer usage
Index Array :
Vertex File U_File
Chunk Array oo oo +
Edge File
[E] [E] [E] [E]

Output Buffer
K-Partition Stream Buffer In-Memory




In-Memory Streaming Engine

Must be able to do parallel computation on
streaming buffers:

Thread 1| Thread 2 Thread P

ol ¢ 2

write | fReadlwrite] {Rread write| {Read

Slice 1 Slice 2 Slice P

Figure 7: Slicing a Streaming Buffer

Also parallelizes the scatter -> shuffle ->

gather pipeline along stream buffers

* Required implementing work-stealing as
streaming partitions differ in edge counts

Parallel Multistage Shuffler:
* Arranges partitions into a tree structure
* Uses a power of two for both the
number of partitions and fanout
* Inputs get shuffled by being passed
down the tree and split up at every step

Layered Approach:
* Sits above the disk streaming layer
* Disk layer operates as normal, however
the in-memory processing of a partition
is further fed into the in-memory system



RMAT scale 25 graph
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RMAT graphs, one thread BFS on scale-free graph (32M vertices/256M edges)
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Twitter graph, 16 threads
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Wasted computation is an expected
trade-off from large-scale streaming
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Figure 17: Re-computing WCC Figure 18: Sorting vs. Streaming Figure 19: In-memory BFS

Sorting dominates the run-time of
most systems we will see

System scales very well on most tasks,
linearly until a new storage medium is
needed



Pre-

Ligra And Graphchi Gomparison
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Figure 21: Instructions per Cycle and Total Number
of Memory References for BFS

The efficiency of sequential
memory access also makes X-
Stream dominate in IPC

Overall, Ligra should still
massively overperform on speed
in most real use-cases

a vertex-centric model. The average speed-up without pre-
processing is 2.3 and 3.7 with pre-processing.

Disk bandwidth usage is also more predictable in X-Stream.



Opinion/Motivation

Can Sorting Keep-Up?

Any vertex-centric computation requires
some way of associating edges to
source/destination vertices, sorting is
the most popular
Sometimes it is necessary to look at a
reversed edge-list for classes of
algorithms
* Requires either re-sorting
repeatedly or maintaining two
views of the edge list.
This narrative has been extensively
challenged by Frank McSherry using
radix sort to process twitter data 10x
faster than the X-Stream authors
estimation

* Vertex-Centric: Edge Data/RAM Bandwidth
* Edge-Centric: Scatter X E_Data/Seq Band

Real-World Graphs:

All of the scale-free graphs perform very well with X-
Stream, many real-world graphs follow a power-law
distribution.

Work stealing seems sufficient to handle high-
degree vertices.

Real world graphs grow very slowly in diameter
O(log(V)/log(log(V)) and can even undergo
densification



Creation:

According to Amitabha Roy in “X-Stream: A
Case Study in Building a Graph Processing
System”
The algorithms used within the system were
first devised by observing the relation
between graph processing and sparse matrix-
vector multiplication
* Followed by applying advances in SpMV
to graph processing
The implementation, systems and evaluation
were subsequently developed for publishing
in “Symposium on Operating Systems
Principles”
* The final paper changes the focus to the
systems aspect of X-Stream

Development History:

The GitHub has not had any commits in years

Authors from EPFL also developed “Chaos” as

the multi-machine successor of X-Stream,

utilizing many of the same ideas surrounding

streaming partitions with a heavy focus on

work stealing and ignoring locality

* The new system is capable of handling
graphs with 1 trillion edges ~ 16 TB of
data

* Later scaled to 8 trillion on only 32
machines

“Chaos” development, at least publicly, also

seems to have ceased soon after creation



Why Has It Not Had a Larger Impact?

Unusual edge-centric computational model
Algorithmic origins:
®* Tumultuous implementation
* Potentially difficult to extend or maintain
No way of easily changing graph structure, relies on static data structures
No long-term support
Lacks comprehensive documentation, high-level means of integration, or a killer-app
Highly focused towards throughput and cost over speed, niche use-case
* As shown by Frank McSherry, for some specific tasks, better algorithms implemented with
less-restrictive programming models and efficient pre-processing may be superior.
In my opinion, it was never intended for production
As an academic work it has a fair number of citations and inspired systems
Similar critiques apply to “Chaos”
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