
X-STREAM:
Edge-centric Graph Processing using Streaming Partitions

Authors: Amitabha Roy, Ivo Mihailovic, Willy
Zwaenepoel

Why Previous Solutions Do Not Scale

1 2 3 4 5 6 7 8 9 … 1 2 3 4 5 6 7 8 9 …

Random Access Sequential Access

Vertex-Centric Edge-Centric

Vertex-Centrism

Requires edge and vertex data in fast
memory

Problems

• Harder to partition graph data
• Random access over both vertices and

edges

Allows for pre-processing/sorting
edge data for faster algorithms • Pre-processing dominates the run-time

Scatter(v : vertex):
Send(Outgoing[V])

Gather(v : vertex):
Apply(Incoming[V])

• Most Graphs have significantly more edges
than vertices

Edge-Centrism

Only needs fast random access to
vertex data

Benefits

• Allows for streaming the edge data from
slow memory sequentially, speed-up:
• Disk: 500x
• SSD: 300x
• RAM: 4.6x/1.8x for 1/16 cores

Requires almost zero pre-processing

• Better initial run-time performance
• No bottlenecks in maintaining invariants

Scatter(e: edge):
Send_Update(e)

Gather(u :update):
Apply(u, u.dest)

• Better mapping to hardware and the
structure of real graphs

Streaming Partitions
Basic mapping to hardware:

• Vertex set should fit into fast storage
• Assume uniform distribution of updates
• Divide the graph uniformly

• Considering auxiliary data structures
• Algorithms are order-independent

Vertex Set

[E] [E] [E] [E]
Edge List

Update

P

P

P

Scatter(e)

Scatter(e)

Scatter(e)

UOut

Scatter Phase

UIn

UIn

UIn

Shuffle Phase

Gather(u)

Gather(u)

Gather(u)

UIn

UIn

UIn

Gather Phase

Hierarchical Memory Processing

Two types of relative storage: Slow vs Fast • X-Stream implements streaming engines for
handling transfer from slow to fast storage
• Making heavy use of large static

streaming buffers to carry data

Partitioning the Memory Hierarchy:

Disk

Ram

Cache
Fast:

Slow:

:Fast

:Slow

Out-of-Core Streaming Engine

In-Memory Streaming Engine

Out-of-Core Streaming Engine

Moves data from disk to memory
• In order to transfer data from

disk to memory it uses a simple
stream buffer

• Partition size and buffer are both
statically allocated

1 … K

Chunk
1

… … … … Chunk
K

Index Array

Chunk Array

K-Partition Stream Buffer

Modified computation model
• All incoming/outgoing data from/to disk

passes through in/out buffers(2 of each for
prefetching)

• Shuffle stages are performed within scatter
phases whenever UOut becomes full
• Maximizes buffer usage

Vertex File

[E] [E] [E] [E]
Edge File

U_File

Shuffle Buffer

Input Buffer

Output Buffer

Input Buffer

Output Buffer
In-Memory

In-Memory Streaming Engine Implementation Details

Parallel Multistage Shuffler:
• Arranges partitions into a tree structure
• Uses a power of two for both the

number of partitions and fanout
• Inputs get shuffled by being passed

down the tree and split up at every step

Must be able to do parallel computation on
streaming buffers:

Also parallelizes the scatter -> shuffle ->
gather pipeline along stream buffers
• Required implementing work-stealing as

streaming partitions differ in edge counts

Layered Approach:
• Sits above the disk streaming layer
• Disk layer operates as normal, however

the in-memory processing of a partition
is further fed into the in-memory system

Performance Evaluation Results

Wasted Computation:

Wasted computation is an expected
trade-off from large-scale streaming

This is a direct result
of a large-diameter
structure

System scales very well on most tasks,
linearly until a new storage medium is
needed

Sorting dominates the run-time of
most systems we will see

Ligra And Graphchi Comparison

Pre-
processing in
Ligra takes
longer than
the entire X-
Stream
execution

The efficiency of sequential
memory access also makes X-
Stream dominate in IPC

Overall, Ligra should still
massively overperform on speed
in most real use-cases

Graphchi serves a similar use case to X-Stream while applying
a vertex-centric model. The average speed-up without pre-
processing is 2.3 and 3.7 with pre-processing.

Disk bandwidth usage is also more predictable in X-Stream.

Opinion/Motivation

Can Sorting Keep-Up?
• Any vertex-centric computation requires

some way of associating edges to
source/destination vertices, sorting is
the most popular

• Sometimes it is necessary to look at a
reversed edge-list for classes of
algorithms
• Requires either re-sorting

repeatedly or maintaining two
views of the edge list.

• This narrative has been extensively
challenged by Frank McSherry using
radix sort to process twitter data 10x
faster than the X-Stream authors
estimation

Real-World Graphs:
• All of the scale-free graphs perform very well with X-

Stream, many real-world graphs follow a power-law
distribution.

• Work stealing seems sufficient to handle high-
degree vertices.

• Real world graphs grow very slowly in diameter
O(log(V)/log(log(V)) and can even undergo
densification

• Vertex-Centric: Edge Data/RAM Bandwidth
• Edge-Centric: Scatter X E_Data/Seq Band

Context

Creation:
• According to Amitabha Roy in “X-Stream: A

Case Study in Building a Graph Processing
System”

• The algorithms used within the system were
first devised by observing the relation
between graph processing and sparse matrix-
vector multiplication
• Followed by applying advances in SpMV

to graph processing
• The implementation, systems and evaluation

were subsequently developed for publishing
in “Symposium on Operating Systems
Principles”
• The final paper changes the focus to the

systems aspect of X-Stream

Development History:
• The GitHub has not had any commits in years
• Authors from EPFL also developed “Chaos” as

the multi-machine successor of X-Stream,
utilizing many of the same ideas surrounding
streaming partitions with a heavy focus on
work stealing and ignoring locality
• The new system is capable of handling

graphs with 1 trillion edges ~ 16 TB of
data

• Later scaled to 8 trillion on only 32
machines

• “Chaos” development, at least publicly, also
seems to have ceased soon after creation

Why Has It Not Had a Larger Impact?

• Unusual edge-centric computational model
• Algorithmic origins:

• Tumultuous implementation
• Potentially difficult to extend or maintain

• No way of easily changing graph structure, relies on static data structures
• No long-term support
• Lacks comprehensive documentation, high-level means of integration, or a killer-app
• Highly focused towards throughput and cost over speed, niche use-case

• As shown by Frank McSherry, for some specific tasks, better algorithms implemented with
less-restrictive programming models and efficient pre-processing may be superior.

• In my opinion, it was never intended for production
• As an academic work it has a fair number of citations and inspired systems
• Similar critiques apply to “Chaos”

Questions?

