Edge-centric Graph Processing using Streaming Partitions

Authors: Amitabha Roy, Ivo Mihailovic, Willy Zwaenepoel

Why Previous Solutions Do Not Scale

1 2 3 4 5 6 7 8 9 ...

Vertex-Centric

Sequential Access

Edge-Centric

Vertex-Centrism

Scatter(v : vertex): Send(Outgoing[V])

> Gather(v : vertex): Apply(Incoming[V])

Requires edge and vertex data in fast memory

Allows for pre-processing/sorting edge data for faster algorithms

Problems

 Most Graphs have significantly more edges than vertices

- Harder to partition graph data
- Random access over both vertices and edges
- Pre-processing dominates the run-time

Edge-Centrism Scatter(e: edge): Gather(u :update): Send Update(e) Apply(u, u.dest) 1. Edge Centric Scatter 2. Edge Centric Gather Edges (sequential read) Updates (sequential read) 000 000 Vertices (random read/write) Vertices (random read/write) Figure 3: Streaming Memory Access 000 Updates (sequential write) Requires almost zero pre-processing

Only needs fast random access to vertex data

Benefits

• Better mapping to hardware and the structure of real graphs

- Allows for streaming the edge data from slow memory sequentially, speed-up:
 - Disk: 500x
 - SSD: 300x
 - RAM: 4.6x/1.8x for 1/16 cores
- Better initial run-time performance
- No bottlenecks in maintaining invariants

Streaming Partitions

Hierarchical Memory

Two types of relative storage: Slow vs Fast

Partitioning the Memory Hierarchy:

Processing

- X-Stream implements streaming engines for handling transfer from slow to fast storage
 - Making heavy use of large static streaming buffers to carry data

Out-of-Core Streaming Engine

Moves data from disk to memory

- In order to transfer data from disk to memory it uses a simple stream buffer
- Partition size and buffer are both statically allocated

Modified computation model

- All incoming/outgoing data from/to disk passes through in/out buffers(2 of each for prefetching)
- Shuffle stages are performed within scatter phases whenever UOut becomes full

In-Memory Streaming Engine

Implementation Details

Must be able to do parallel computation on streaming buffers:

Figure 7: Slicing a Streaming Buffer

Also parallelizes the scatter -> shuffle -> gather pipeline along stream buffers

 Required implementing work-stealing as streaming partitions differ in edge counts Parallel Multistage Shuffler:

- Arranges partitions into a tree structure
- Uses a power of two for both the number of partitions and fanout
- Inputs get shuffled by being passed down the tree and split up at every step

Layered Approach:

- Sits above the disk streaming layer
- Disk layer operates as normal, however the in-memory processing of a partition is further fed into the in-memory system

Performance Evaluation Results

Ligra And Graphchi Comparison

Threads	Ligra (s)	X-Stream (s)	Ligra-pre (s)
	BFS		
1	11.10	168.50	1250.00
2	5.59	86.97	647.00
4	2.83	45.12	352.00
8	1.48	26.68	209.40
16	0.85	18.48	157.20
	Pagerank	5	
1	990.20	455.06	1264.00
2	510.60	241.56	654.00
4	269.60	129.72	355.00
8	145.40	83.42	211.40
16	79.24	50.06	160.20

Figure 20: Ligra [48] on Twitter (99% CI under 5%)

	BFS [33]	X-Stream
IPC	0.47	1.30
Mem refs.	982 million	620 million
	Ligra, BFS [48]	X-Stream
IPC	0.75	1.39
Mem refs.	1.3 billion	1.5 billion

Figure 21: Instructions per Cycle and Total Number of Memory References for BFS

The efficiency of sequential memory access also makes X-Stream dominate in IPC

Overall, Ligra should still massively overperform on speed in most real use-cases

Pre-

processing in Ligra takes longer than the entire X-Stream execution

	Pre-Sort (s)	Runtime (s)	Re-sort (s)
Twitter pagerank	· · · · · · · · · · · · · · · · · · ·		141.00
X-Stream (1)	none	397.57 ± 1.83	
Graphchi (32)	752.32 ± 9.07	1175.12 ± 25.62	969.99
Netflix ALS			
X-Stream (1)	none	76.74 ± 0.16	-
Graphchi (14)	123.73 ± 4.06	138.68 ± 26.13	45.02
RMAT27 WCC	·		
X-Stream (1)	none	867.59 ± 2.35	-
Graphchi (24)	2149.38 ± 41.35	2823.99 ± 704.99	1727.01
Twitter belief prop.			
X-Stream (1)	none	2665.64 ± 6.90	
Graphchi (17)	742.42 ± 13.50	4589.52 ± 322.28	1717.50

Figure 22: Comparison with Graphchi on SSD with 99% Confidence Intervals. Numbers in brackets indicate X-Stream streaming partitions/Graphchi shards (Note: resorting is included in Graphchi runtime.)

Figure 23: Disk Bandwidth

Graphchi serves a similar use case to X-Stream while applying a vertex-centric model. The average speed-up without preprocessing is 2.3 and 3.7 with pre-processing.

Disk bandwidth usage is also more predictable in X-Stream.

Opinion/Motivation

Can Sorting Keep-Up?

- Any vertex-centric computation requires some way of associating edges to source/destination vertices, sorting is the most popular
- Sometimes it is necessary to look at a reversed edge-list for classes of algorithms
 - Requires either re-sorting repeatedly or maintaining two views of the edge list.
- This narrative has been extensively challenged by <u>Frank McSherry</u> using radix sort to process twitter data 10x faster than the X-Stream authors estimation

- Vertex-Centric: Edge Data/RAM Bandwidth
- Edge-Centric: Scatter X E_Data/Seq Band

Real-World Graphs:

- All of the scale-free graphs perform very well with X-Stream, many real-world graphs follow a power-law distribution.
- Work stealing seems sufficient to handle highdegree vertices.
- Real world graphs grow very slowly in diameter O(log(V)/log(log(V)) and can even undergo densification

Context

Creation:

- According to Amitabha Roy in "X-Stream: A Case Study in Building a Graph Processing System"
- The algorithms used within the system were first devised by observing the relation between graph processing and sparse matrixvector multiplication
 - Followed by applying advances in SpMV to graph processing
- The implementation, systems and evaluation were subsequently developed for publishing in "Symposium on Operating Systems Principles"
 - The final paper changes the focus to the systems aspect of X-Stream

Development History:

- The GitHub has not had any commits in years
- Authors from EPFL also developed "Chaos" as the multi-machine successor of X-Stream, utilizing many of the same ideas surrounding streaming partitions with a heavy focus on work stealing and ignoring locality
 - The new system is capable of handling graphs with 1 trillion edges ~ 16 TB of data
 - Later scaled to 8 trillion on only 32 machines
- "Chaos" development, at least publicly, also seems to have ceased soon after creation

Why Has It Not Had a Larger Impact?

- Unusual edge-centric computational model
- Algorithmic origins:
 - Tumultuous implementation
 - Potentially difficult to extend or maintain
- No way of easily changing graph structure, relies on static data structures
- No long-term support
- Lacks comprehensive documentation, high-level means of integration, or a killer-app
- Highly focused towards throughput and cost over speed, niche use-case
 - As shown by Frank McSherry, for some specific tasks, better algorithms implemented with less-restrictive programming models and efficient pre-processing may be superior.
- In my opinion, it was never intended for production
- As an academic work it has a fair number of citations and inspired systems
- Similar critiques apply to "Chaos"

