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Background

• Graph-Parallel Computation

– Run a vertex-program on all vertices on graph

– Vertex-program communicates with adjacent vertices

– Each vertex ends up with a value (eg. rank in PageRank, distance in SSSP)

– Many data dependencies => MapReduce isn’t suitable[Low+10]

• In 2012, main system is Google’s Pregel[Mal+10] + similar implementations

– Piccolo[PL10], Giraph[21b]

• GraphLab[Low+10] also released in 2010

– Prequel to PowerGraph, shares most authors
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Problems...

Pregel, GraphLab did not split vertices between nodes.
Gonzalez et al. observe challenges for asymmetric graphs...
• Work Imbalance
• Scalability Issues
• Partitioning Difficulties eg. [Lan04]
• Communication Bottlenecks
• Storage Requirements

Natural graphs have a skewed power-law degree
distribution, so we need to deal with asymmetry...

Can we split vertices between nodes?
We need to parallelize vertex programs!

Figure 1: Example partitioning
for symmetric node distribution
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Problems...

Pregel, GraphLab did not split vertices between nodes.
Gonzalez et al. observe challenges for asymmetric graphs...
• Work Imbalance
• Scalability Issues
• Partitioning Difficulties eg. [Lan04]
• Communication Bottlenecks
• Storage Requirements

Natural graphs have a skewed power-law degree
distribution, so we need to deal with asymmetry...

Can we split vertices between nodes?
We need to parallelize vertex programs!

𝑃(𝑑) ∝ 𝑑−𝛼

Figure 3: In-degree distributions
for Twitter follower
network[Gon+12]

2



Problems...

Pregel, GraphLab did not split vertices between nodes.
Gonzalez et al. observe challenges for asymmetric graphs...
• Work Imbalance
• Scalability Issues
• Partitioning Difficulties eg. [Lan04]
• Communication Bottlenecks
• Storage Requirements

Natural graphs have a skewed power-law degree
distribution, so we need to deal with asymmetry...

Can we split vertices between nodes?
We need to parallelize vertex programs!

Figure 4: Example split-vertex
partitioning for asymmetric
node distribution
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PowerGraph Parallelization



Gather-Apply-Scatter

Gonzalez et al. observe that (most) vertex programs have three distinct phases:

1. Gather
2. Apply
3. Scatter

Message combiner(m1, m2) :
return Message(m1.value() +

m2.value());

void PregelPageRank(msg) :
float total = msg.value();
vertex.val = 0.15 + 0.85*total;
foreach(nbr in out_neighbors) :

SendMsg(nbr, vertex.val);
Figure 5: PageRank in Pregel[Gon+12]

void GraphLabPageRank(Scope scope) :
float accum = 0;
foreach (nbr in scope.in_nbrs) :

accum += nbr.val;

vertex.val = 0.15 + 0.85*accum;

// No explicit message passing

Figure 6: PageRank in GraphLab[Gon+12]
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Gather-Sum-Apply-Scatter

PowerGraph adds an extra stage:
1. Gather
2. Sum
3. Apply
4. Scatter

Gather + Sum parallelized across nodes,
eventually get a single sum-of-gathers

Apply on one node

Scatter parallelized across nodes

gather(𝐷𝑢, 𝐷(𝑢, 𝑣), 𝐷𝑣):
return Dv.rank

sum(a, b): return a + b

apply(𝐷𝑢, acc):
rnew = 0.15 + 0.85*acc
𝐷𝑢.delta = (rnew - 𝐷𝑢.rank)
𝐷𝑢.rank = rnew

scatter(𝐷𝑢, 𝐷(𝑢, 𝑣), 𝐷𝑣):
if(|𝐷𝑢.delta| > ε) Activate(v)
return delta
Figure 7: PageRank in PowerGraph[Gon+12]
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Delta Caching

PowerGraph also allows for delta-caching.

It remembers the last sum value, and if your
neighbours have changed, they’ll apply a delta to it.

If a vertex’s value hasn’t changed, you don’t need to
talk to it.
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Figure 8: Comparison of no delta
caching vs delta caching
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Parallelization

Great, now we can split vertex computation across multiple nodes!

But how do we partition vertices effectively?

Figure 9: How PowerGraph splits computation across nodes[Gon+12]
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PowerGraph Partitioning



Improving Edge Cut

Balanced 𝑝-way Edge Cut

Assign vertices to nodes, balance the
number of cut edges

Overhead ∝ 𝑛𝑒𝑑𝑔𝑒𝑐𝑢𝑡𝑠
Used by Pregel, GraphLab

Bad for power-law graphs

Falls back to random vertex placement,
which is bad[Gon+12]

Balanced 𝑝-way Vertex Cut

Randomly assign edges to nodes, should
balance cut vertices

Overhead ∝ 𝑛𝑣𝑒𝑟𝑡𝑒𝑥𝑐𝑢𝑡𝑠
Good for regular and power-law
graphs[Gon+12]

Balanced edges bring balanced
communication and storage

Proven to be strictly better than edge cuts
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Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Track the assignment of each vertex, use a ruleset to determine where to place the next
edge.

Guaranteed to be no worse (and usually better) than random placement...

but it’s not embarrassingly parallel!

8



Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Track the assignment of each vertex, use a ruleset to determine where to place the next
edge.

Guaranteed to be no worse (and usually better) than random placement...

but it’s not embarrassingly parallel!

8



Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Oblivious

Cheat!

Just track your own assignments, don’t
check anyone else’s.

Coordinated

Maintain a distributed database of
assignments

Local caching reduces communication, but
decreases accuracy
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Improving Vertex Cut

Greedy Vertex Cut

Instead of randomly assigning edges...

assign the next edge to the least bad node!

Figure 10: Impact of Greedy Vertex Cuts on vertex cuts and runtime
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Implementations

Synchronous
Run every v-program once,
waits for others to finish,
starts again.

Cannot execute some
programs

eg. Graph Coloring

Asynchronous
Run v-programs in parallel,
don’t wait for other
programs

Allow arbitrary interleaving.

Non-deterministic,
can lead to divergence

Async+Serialized
Run v-programs in parallel,
except for vertices on the
same edge.

All parallel executions have
an equivalent serial
execution.

Deterministic

Pregel is Synchronous, GraphLab is Async+Serialized
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Evaluations

Figure 11: Work Imbalance on power-law
graphs[Gon+12] Figure 12: Runtime on power-law graphs[Gon+12]
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Evaluations

PageRank Runtime |𝑉| |𝐸| System
Hadoop 198 s − 1.1 B 50x8
Spark 97.4 s 40M 1.5 B 50 × 2
Twister 36 s 50M 1.4 B 64x4
PowerGraph (Sync) 3.6 s 40M 1.5 B 64x8

Table 1: Relative performance of PageRank vs other systems[Gon+12]
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Where are they now?

• GraphLab[Low+10] -> PowerGraph[Gon+12], GraphChi[KBG12]
– PowerGraph basically deprecated since 2015
– GraphX implemented PowerGraph on Spark[Xin+13], now merged into Spark[21a]

• Prof. Carlos Guestrin started GraphLab, Inc -> Dato, Inc -> Turi
– Turi was bought by Apple in 2016[Sop16], Prof. Guestrin now Head of ML at
Apple

– Main product is (GraphLab|Turi) Create, built for generic ML.
• PowerGraph was still influential!

– 400+ citations
– eg. Liu et al. observes the partitioning methods were used in
GraphBuilder[JLW13] and then built upon in PowerLyra[Che+15],
LightGraph[Zha+14]
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Summary

Pros

• Splitting vertex computation across
nodes is cool

• Parallelizing GAS is very cool
• Paper seems very foundational
• Paper has had lasting impact

Cons

• Limited to single vertex computations,
less well suited to multi-stage or global
computations (GPS is a Pregel-based
system that attacked this[SW13])

• Gather-Apply-Scatter isn’t always
intuitive, as observed by [SW14]

• Combined Implementation+Evaluation
section leads to lack of clarity.
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Questions/Comments?
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