
Wanru, 2021.10.25

Lux
A Distributed Multi-GPU System for
Fast Graph Processing
Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, A. Aiken
VLDB 2018

Background
Prior work

• Distributed CPU-based systems: Pregel, PowerGraph, GraphX…

• Single-node CPU-based systems: Ligra, Galois, and Polymer…

• Single-node GPU-based systems:

• Single GPU: CuSha, MapGraph…

• Single machine: Groute, Medusa, GTS…

• Lux: Distributed multi-GPU system that achieves fast graph processing

Background
Motivation

• GPU vs CPU

• GPUs provide much higher memory bandwidth than today’s CPU architectures.

• Prior work cannot be easily adapted to multi-GPU clusters:

• graph placement and data transfers

• Optimisation interference

• load balancing

• Lux: Distributed multi-GPU system that achieves fast graph processing

Graph Tasks

• PageRank (PR)

• connected components (CC)

• single-source shortest path (SSSP)

• betweenness centrality (BC)

• collaborative filtering (CF)

Introduction

• Up to 20× speedup over Ligra,
Galois, and Polymer

• Two orders of magnitude speedup
over PowerGraph and GraphX

Lux Details
Programming Model

• Gather-Apply-Scatter concepts, Vertex-centric algorithms

• Vertex contain mutable states

• Edges do not contain states AND topology cannot change

Lux Details
Two Execution models

• Push execution model

• optimize algorithmic efficiency

• Pull execution model

• enable important GPU optimizations

• applications with a large proportion of active
vertices over iterations benefit substantially

(e.g., PageRank, collaborative filtering)

Lux Details
Distributed Graph Placement and Data Transfers

• vertex-cut partitioning: PowerGraph, GraphX

• takes too long

• not a good estimate of data transfers

• edge partitioning

• each partition holds contiguously numbered
vertices and the edges pointing to them

• GPU can coalesce reads and writes to
consecutive memory

• very efficient

Lux Details
Load Balancing

• Static load balancing: Pregel, Giraph, GraphLab, PGX.D

• Dynamic load balancing: Giraph, Presto

A Dynamic graph repartitioning strategy

• global: multiple nodes

• local: multiple GPUs on a node

Lux Details
Performance Model

• To preselect an execution model and
runtime configuration

• Models performance for a single iteration

Opinions
key takeaway

• Lux, a distributed multi-GPU system that achieves fast graph
processing by:

• a distributed graph placement to minimize data transfers
within the memory hierarchy.

• two execution models optimizing algorithmic efficiency and
enabling GPU optimizations.

• a dynamic graph repartitioning strategy that achieves good
load balance across GPUs.

• a performance model that chooses the number of nodes
and GPUs for the best possible performance.

Opinions
Criticism

• The paper is hard to follow

• Absence of fault tolerance

• Abstract claims up to 20x speedup over shared-memory systems
(more like 5-10)

• For evaluation all parameters were highly tuned. Can’t guarantee
others were as tuned as Lux

• The prediction for the push-based execution is not as accurate as
the pull-based execution

Thanks for listening!

Q&A

