
Ligra: A Lightweight Graph Processing
Framework for Shared Memory

Paper authors: Julian Shun, Guy Blelloch (Carnegie Mellon University)
Presenter: Mihai-Ionut Enache

25 October 2021

Motivation - Why Study Graphs?

● Many applications: social networks,

Web graph, medicine

● Types of problems:

○ Shortest path

○ Clustering (e.g. community

recovery)

○ Recommendation engines

○ Scientific computations

○ others

Shared Memory vs. Distributed Systems

● In the past:
○ Memory scarce, few cores available; hard to handle large graphs

○ Most of the frameworks designed to run on distributed systems

● Today:
○ Single multicore commodity computers can have TBs of memory

○ Can accommodate graphs of billions of edges

● Why shared memory?
○ More efficient (per dollar / core / joule)

○ Low communication costs ⇒better performance

○ Simplicity: easier to write algorithms for shared memory

○ More reliable: shared memories can run months / years without failure

Ligra - Preview

● Lightweight
○ Interface: only a few functions

○ Implementation: simple and fast

● 2 datatypes: one for graph G = (V, E) and one for subsets of V (VertexSubset)

● 2 essential functions:

○ VertexMap (maps over V or subsets of V)

○ EdgeMap
○ Useful in graph traversal algorithms

● Compare-and-swap (CAS): atomic instruction for conditional swapping

Application: Breadth-first Search

1

2

3

5

4

6

7

Application: Breadth-first Search

1

2

3

5

4

6

7

Application: Breadth-first Search

1

2

3

5

4

6

7

Application: Breadth-first Search

1

2

3

5

4

6

7

BFS in Ligra

Edge Processing

● Interface allows processing edges in different orders
○ Ligra is edge-oriented

○ Previous systems mostly vertex-oriented

● 3 ways to process edges:
○ Sparse representation: iterate over the active source vertices and check (target of) out-edges

○ Dense representation: iterate over the destination vertices and check (source of) in-edges

○ Flat map: check all edges

Application: BFS (sparse representation)

1

2

3

5

4

6

7

Application: BFS (dense representation)

1

2

3

5

4

6

7

Sparse or Dense Representation?

● Idea: use a hybrid approach
○ Choose based on the size of the frontier and the number of out-edges

○ If larger than a fixed threshold, use dense, otherwise sparse

● Inspired from previous work of an efficient BFS implementation
○ Ligra generalizes the idea

Interface

● Apply F on all edges (s, t) s.t. s ∈ U and C(t) hold
● F can run in parallel
● User’s responsibility for parallel correctness
● F can have side effects
● For weighted graphs F takes an additional argument
● C is optional - useful for algorithms when data needs

to be updated only once (BFS)

● F can run in parallel

EdgeMap - Implementation

Implementation

Implementation

In parallel

Implementation

In parallel

Sequentially

Implementation

Implementation In parallel

VertexMap - Implementation

Optimizations

● F in EdgeMapDense is applied sequentially ⇒ doesn’t need atomicity
○ Optimized version of EdgeMap: accepts 2 versions of F

○ Authors found this to be slightly faster for some applications

● Users can set a different threshold for EdgeMapSparse vs EdgeMapDense
○ Default is |E| / 20

● Inner-loop of EdgeMapDense can also run in parallel
○ User needs to give up the “break” option to enable this

Applications

1. BFS

2. Betweenness Centrality

3. Graph Radii Estimation and Multiple BFS

4. Connected Components

5. PageRank + PageRank-Delta

6. Bellman-Ford Shortest Paths

Experiments

Experiments (continued)

Comparison to other frameworks

● Related frameworks: Pregel, KDT, Pegasus, PowerGraph

● BFS: 10-28 speedup + almost as efficient as Beam’s highly optimized BFS

● Betweenness centrality: 12-32 speedup
● Graph radii estimation: 23-35 speedup
● Connected components: 20-37 speedup
● PageRank: 29-39 speedup for a single iteration

● Bellman-Ford: 18-28 speedup

Subsequent work

● Ligra+ - framework for processing compressed graphs (half the space of uncompressed graphs)

● Hygra - framework for hypergraphs (hyperedge = edge with arbitrary number of vertices)

(source: https://github.com/jshun/ligra/graphs/contributors)

Summary

● Ligra is a graph processing framework targeting a class of parallel algorithms

● It comes with a lightweight interface and implementation

● Experimental evaluation shows it performs better than existing work and almost as good as highly

optimized code

● Limitation: no support for algorithms that need to modify the input graph

