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Predecessors to TensorFlow

• MapReduce: Early batch data processing system, TensorFlow extends to more
complex algorithms.

• MapReduce used reactive backup workers, TensorFlow uses backup workers proactively.

• Naiad: Single optimized static data flow graph and some control flow (looping,
branching) in TensorFlow are similar to Naiad.

• DistBelief: Google’s earlier machine learning system.
• Parameter server architecture from DistBelief is largely used again in TensorFlow.
• TensorFlow is more flexible and faster on a variety of problems.
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Major Accomplishments

• Scalability across heterogeneous devices
• Separating workload distribution from the implementation of computations allows the same

node of data flow graph to be executed on a variety of different kernels/devices.

• Performance on a single device and distributed systems
• Compared to DistBelief, TensorFlow scales down much better, while maintaining and

improving large system performance

• Flexibility for new NN layers and optimization algorithms
• Abstraction of computations allows new algorithms to be swapped in easily.
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Data Flow Graph

• Nodes represent an operation
• Edges represent a tensor of data that will flow between nodes
• Variables can be used to store global data, e.g. current model parameters
• Queues also implement state, and help synchronize operations such as data fetching

and computations
• Any subgraph can be executed by itself since data flow is separated
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Data Flow Graph Generation
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Distributed Workload

• Client: programmer interface that allows the graph, or a subgraph to be run.

• Master: main organizational process. Does not handle scheduling, this is
implemented by blocking queues.

• Worker Processes: processes responsible for handling node computations on any
of the hardware devices available.
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Basic Data Flow

• With a single device, nodes are put in a ready queue when the number of
unexecuted dependencies reaches 0.

• Using heuristics and a greedy algorithm, the algorithm simulates the graph
execution and assigns nodes to different devices when multiple are available.

• On a single machine, TensorFlow has adequate training speed. One of the main
challenges the authors faced was the ability to scale up and down.
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Distributed Data Flow

• Greedy algorithm incorporates time to send data between machines. Tensors are
sent between machines only once even if multiple nodes use the same data.

• User-level checkpointing achieves fault tolerance which is necessary when training
for a long time period on a cluster.

• Asynchronous training uses stale parameters, so TensorFlow begins to use
synchronous training as well using blocking queues. Backup workers are required to
mitigate the effect of lagging processes.

• Backup workers train on different data to take advantage of SGD batching.
Reduces the effect of a lagging node, number of workers is optimized.
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Major Benefits

• Much easier to experiment than previous systems.

• Abstracted computation kernels is a clever way to solve the heterogeneous device
problem.

• Ability to scale up and scale down by balancing overhead computations is impressive.

• Backup processes are well optimized to minimize resource consumption and the
effect of lagging workers.
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Major Criticisms

• Static data flow graph makes reinforcement learning and recurrent neural networks
difficult to implement.

• Authors stated the goal of making their ML platform more accessible, but
TensorFlow still requires a lot of manual tuning.

• Too generic? TensorFlow works with a lot of languages and libraries, but doesn’t fit
in with any. Depending where a piece was implemented, the performance can be
hard to predict. (C++ vs Python)

• Minimal comparison to other systems for large scale distributed machine learning.

• Is the balance between large and small scale abilities at the cost of being really
good at either one?
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