Noria

Dynamic, partially-stateful data-flow for
high-performance web applications

Paper authors: J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araujo, M. Ek, E. Kohler, M. F. Kaashoek and R. Morris
Venue: OSDI 2018

Presentation by Andreea Zaharia (az396) | R244 | 18/10/2021

1

Background and motivation

The problem addressed

stories votes users

* Web applications — long lived, low
latency and often with changing queries.

* Pre-computation - difficult for both
writes and reads.

Read-side work Wtrite work
) .
ﬂ
J
]
J

 Eventual consistency — often sufficient.

* Downtime at change — needed in most

stories votes users

data-flow systems, undesirable for web.

4
>
Invalidate

h
@cac e »
/4 Query on
@ read miss
cache
~— Read

Read-side work Write work

Noria’s novelty

Contributions of the paper

1. A partially-stateful data-flow model.

2. Techniques to automatically merge and reuse data-flow
subgraphs.

3. Quick, dynamic response to a change of schema without
downtime.

4. Prototype implementation and evaluation.

 SQL interface, data-flow underneath.

Noria data-flow design

* Directed acyclic graph of operators with:

* Root — persistent store; on disk.

e Leaves — derived external views; on server.

(1) Write ——
stories votes users Add new query
/ @ Stream
I’|=H 5 through
/ data-flow E
o > 2 >
\@ Update view ¢
StoryWithVC <+ > Karma
Read

Noria: stateful data-flow operators pre-compute data for
reads incrementally; data-flow change supports new queries.

4

Partial statefulness

Definition and properties

* Partially-stateful model: operators maintain only a subset of
their state.

* Missing records: derived when needed via upqueries.

 New operator: initially empty, but starts processing immediately
due to upqueries.

 Descendants: partial-state operators cannot have full-state
descendants.

 Rarely-used states: evicted to reduce size and write load.

Eviction and upqueries

Mechanisms to ensure invariants hold

* Eviction notices — state entries that will no longer be updated.
 Updates for evicted entries are dropped by operators.

* |ssued at random when approaching the memory ceiling.

 Recursive upqueries
 Requests for records from stateful ancestors.

* Eventually-consistent results.

Implementation

Noria’s development and usage

 Rust-based + RocksDB

Server setup — runs on 1+ multicore servers.

Sharded data-flow — across operators; no global coordination.

Easy integration — MySQL adapter.

Noria-native applications — best performance.

150

100

50

2017

2018

2019 2020 2021

Source: https://github.com/mit-pdos/noria/graphs/contributors
7

Evaluation on Lobsters

Lobsters and the uniform distribution

e Lobsters is a news
aggregator, where users
vote for stories.

* Noria outperforms other
(realistic) systems.

e Uniform is not realistic...

[—
-
)

|

MariaDB (hand-opt.)
~—+— System Z
MariaDB+memcached

memcached-only
—&— Noria (4 shards)

0"! —1— T T T T T T

0 2M 4M 6M 8M 10M 12M 14M
Offered load [requests/sec]

N
o
1

95%-ile latency [ms]

Figure 8: For a uniformly-distributed, read-heavy
(95%/5%) workload on Figure 2, Noria performs simi-
larly to the (unrealistic) memcached-only setup.

Evaluation on Lobsters

Zipf-distributed story ID

[S—
-
o

1

MariaDB (hand-opt.)
~+— System Z
MariaDB+memcached |

memcached-only
—t— Noria (4 shards)

— -

0 -ﬁﬁ‘? D 7‘;“ o ‘;r T 1 | |
0 2M 4M 6M 8M 10M 12M 14M
Offered load [requests/sec]

95%-ile latency [ms]
N
S
1
|
|

(a) Read-heavy workload (95%/5%): Noria outperforms all
other systems (all but memcached at 100-200k requests/sec).

~—#— MariaDB (hand-opt.)

. ——+— System Z

| MariaDB+memcached
- —%— memcached-only

‘Faé/-] .~ Noria (4 shards)
0 ——— T T T T T

0 2M 4M 6M 8M 10M 12M 14M
Offered load [requests/sec]

95%-ile latency [ms]
n
S
1

(b) Mixed read-write workload (50%/50%): Noria outperforms
all systems but memcached (others are at 20k requests/sec).

* 95/5% representative for many web applications.

* Up to 70x higher throughput compared to realistic systems.

Limitations

Design and prototype problems

Requires a centralised timestamp signer.

Lacks support for parameterised range queries.

Lacks support for multi-column joins.

Only suits apps compatible with eventual consistency.

Is inefficient for sharded queries that require shuffles.

10

