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Background and motivation

The problem addressed

stories votes users

* Web applications — long lived, low
latency and often with changing queries.

* Pre-computation - difficult for both
writes and reads.
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 Eventual consistency — often sufficient.

* Downtime at change — needed in most

stories votes users

data-flow systems, undesirable for web.
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Noria’s novelty

Contributions of the paper

1. A partially-stateful data-flow model.

2. Techniques to automatically merge and reuse data-flow
subgraphs.

3. Quick, dynamic response to a change of schema without
downtime.

4. Prototype implementation and evaluation.



 SQL interface, data-flow underneath.

Noria data-flow design

* Directed acyclic graph of operators with:

* Root — persistent store; on disk.

e Leaves — derived external views; on server.
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Noria: stateful data-flow operators pre-compute data for
reads incrementally; data-flow change supports new queries.
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Partial statefulness

Definition and properties

* Partially-stateful model: operators maintain only a subset of
their state.

* Missing records: derived when needed via upqueries.

 New operator: initially empty, but starts processing immediately
due to upqueries.

 Descendants: partial-state operators cannot have full-state
descendants.

 Rarely-used states: evicted to reduce size and write load.



Eviction and upqueries

Mechanisms to ensure invariants hold

* Eviction notices — state entries that will no longer be updated.
 Updates for evicted entries are dropped by operators.

* |ssued at random when approaching the memory ceiling.

 Recursive upqueries
 Requests for records from stateful ancestors.

* Eventually-consistent results.



Implementation

Noria’s development and usage

 Rust-based + RocksDB

Server setup — runs on 1+ multicore servers.

Sharded data-flow — across operators; no global coordination.

Easy integration — MySQL adapter.

Noria-native applications — best performance.
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Source: https://github.com/mit-pdos/noria/graphs/contributors
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Evaluation on Lobsters

Lobsters and the uniform distribution

e Lobsters is a news
aggregator, where users
vote for stories.

* Noria outperforms other
(realistic) systems.

e Uniform is not realistic...
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Figure 8: For a uniformly-distributed, read-heavy
(95%/5%) workload on Figure 2, Noria performs simi-
larly to the (unrealistic) memcached-only setup.



Evaluation on Lobsters

Zipf-distributed story ID
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(a) Read-heavy workload (95%/5%): Noria outperforms all
other systems (all but memcached at 100-200k requests/sec).
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(b) Mixed read-write workload (50%/50%): Noria outperforms
all systems but memcached (others are at 20k requests/sec).

* 95/5% representative for many web applications.

* Up to 70x higher throughput compared to realistic systems.



Limitations

Design and prototype problems

Requires a centralised timestamp signer.

Lacks support for parameterised range queries.

Lacks support for multi-column joins.

Only suits apps compatible with eventual consistency.

Is inefficient for sharded queries that require shuffles.
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