
Presentation by Andreea Zaharia (az396) | R244 | 18/10/2021

Noria
Dynamic, partially-stateful data-flow for
high-performance web applications
Paper authors: J. Gjengset, M. Schwarzkopf, J. Behrens, L. T. Araujo, M. Ek, E. Kohler, M. F. Kaashoek and R. Morris

Venue: OSDI 2018

1

• Web applications – long lived, low
latency and often with changing queries.

• Pre-computation – difficult for both
writes and reads.

• Eventual consistency – often sufficient.

• Downtime at change – needed in most
data-flow systems, undesirable for web.

The problem addressed
Background and motivation

2

Contributions of the paper
Noria’s novelty

1. A partially-stateful data-flow model.

2. Techniques to automatically merge and reuse data-flow
subgraphs.

3. Quick, dynamic response to a change of schema without
downtime.

4. Prototype implementation and evaluation.

3

• SQL interface, data-flow underneath.

• Directed acyclic graph of operators with:

• Root — persistent store; on disk.

• Leaves — derived external views; on server.

Noria data-flow design

4

• Partially-stateful model: operators maintain only a subset of
their state.

• Missing records: derived when needed via upqueries.

• New operator: initially empty, but starts processing immediately
due to upqueries.

• Descendants: partial-state operators cannot have full-state
descendants.

• Rarely-used states: evicted to reduce size and write load.

Definition and properties
Partial statefulness

5

• Eviction notices — state entries that will no longer be updated.

• Updates for evicted entries are dropped by operators.

• Issued at random when approaching the memory ceiling.

• Recursive upqueries

• Requests for records from stateful ancestors.

• Eventually-consistent results.

Mechanisms to ensure invariants hold
Eviction and upqueries

6

• Rust-based + RocksDB

• Server setup — runs on 1+ multicore servers.

• Sharded data-flow — across operators; no global coordination.

• Easy integration — MySQL adapter.

• Noria-native applications — best performance.

Noria’s development and usage
Implementation

Source: https://github.com/mit-pdos/noria/graphs/contributors
7

• Lobsters is a news
aggregator, where users
vote for stories.

• Noria outperforms other
(realistic) systems.

• Uniform is not realistic…

Lobsters and the uniform distribution
Evaluation on Lobsters

8

Evaluation on Lobsters
Zipf-distributed story ID

• 95/5% representative for many web applications.

• Up to 70x higher throughput compared to realistic systems.

9

• Requires a centralised timestamp signer.

• Lacks support for parameterised range queries.

• Lacks support for multi-column joins.

• Only suits apps compatible with eventual consistency.

• Is inefficient for sharded queries that require shuffles.

Design and prototype problems
Limitations

10

