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Naiad is a distributed system for high-
throughput, low-latency, cyclic dataflow 
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Batch Processors (MapReduce)
• Operate on “data at rest”

• “every night, calculate the previous day’s total sales”

• High throughput

• Easy to use and scale (very popular!)

• High latency

• No support for incremental computation

• Have to recalculate from scratch every time

Low Latency

Supports Iteration

Consistent
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Stateless Stream Processing
• Operate on “data in motion”

• “Running sum of total sales”

• Fed timestamped events as they occur by a 

message broker/queue (Kafka, Debezium, etc)

• Out of order arrivals mean aggregations not 
guaranteed to be correct
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Graph Processing
• “Find the degree of connection (shortest path) 

between me and another user on LinkedIn”

• GraphX (on top of Spark), Giraph

• No clear victor in the space, open problem

• Why? Graph traversals require iterative 

algorithms

Low Latency

Supports Iteration

Consistent

• Most dataflow systems are acyclic

• Hard to parallelize iteration
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Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still 
upstream so that it can statefully hold onto yesterday’s 
records until it’s seen all of them
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Timely Data Flow Consistency
How much revenue are we making from high value item sales, per day?

Sum Output
$900 @ yesterday$800 @ today$500 @ yesterday

$1400 @ yesterday

yesterdayyesterdaytoday

Progress tracking plane

Event plane

“Minimum timestamp after me”

yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

today

Sum maintains internal state
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Coordination: The usual way

Input Map Sum OutputFilter

• Each worker has no awareness of larger graph

• Each operator is stateless (in most systems) 

Input Map Sum OutputFilter

Input Map Sum OutputFilter

Map workers Filter workers Sum workers



Parallelization: The Timely Dataflow way

Input Map Sum OutputFilter

• Coordination only occurs where needed (the Sum operator)

• Consistency guaranteed, while maintaining low latency!

Input Map Sum OutputFilter

Input Map Sum OutputFilter

Worker

Worker

Worker



Efficiency gains at scale

(Clockworks, 2018)

• Paths don’t coordinate 
unless they need to!



Recap

Low LatencyConsistent

Timely Dataflow

- Workers coordinate to determine minimum timestamp 
upstream at each operator

Supports Iteration?

- But only when needed
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Expressive iteration

• Timestamps + stateful vertices 
make iteration achievable


• Append a loop counter to each 
timestamp on entry to loop


• Increment counter by passing 
through feedback node 

• Arbitrarily nested loops supported 
(just append more loop counters 
to the timestamp)

(Materalize.com, 2020)

• Still maintains consistency and low 
latency!
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Performance (SCC)

Connected Cores Livejournal orkut

GraphX 128 59s 53s

SociaLite 128 54s 78s

Myria 128 37s 57s

BigDatalog 128 27s 33s

Timely 
Dataflow 1, 2 20s, 11s 43s, 26s

Differential 
update 1, 2 98us, 109us 200us, 216us

(Clockworks, 2019)
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(Opinions are my own)

Low Latency Supports IterationConsistent
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Generalized to a fault?
• Timely Dataflow is only the “simplest solution” when you need all of these 

properties (consistency, low latency, iteration)


• Hard to come up with use case:  real-time graph analytics?


• For most large-scale data processing, batch solutions are sufficient (and much 
simpler to use/reason about)


• i.e. LinkedIn only calculates up to 3 degrees of separation, which can be done 
via batch processing, albeit inefficiently (but who cares??)


• Timely Dataflow’s fault tolerance unclear compared to other frameworks


• Basic API is elegant, but unintuitive



10 years on: who is using it?
• Has been entirely rewritten in Rust over past 5 years


• Timely dataflow by itself is too low level / too complex for most users


• Ability to build abstractions on top of it has become the killer feature


• Frank McSherry is now a founder of materialize.com, “The Streaming Database 
for Real-time Analytics”


• Users write normal SQL queries, which are automatically translated to Timely 
Dataflow magic
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Materialize



In conclusion
• Timely Dataflow is a “shared 

foundation” for dataflow 
applications


• Guarantees consistency, low 
latency, and supports iteration


• A design and engineering feat
Low Latency

Supports Iteration

Correct

Stream Processing

Graph Processing

Batch Processing

However… 

• “Killer usecase” is rare


• API is complex, too low-level


• Materialize, other abstractions 
address this for specific 
usecases



Questions?



Recommended Watching

• “Timely Dataflow in three easy steps | Frank McSherry” (https://youtu.be/
yOnPmVf4YWo)


• “Naiad: A Timely Dataflow System” (https://youtu.be/yyhMI9r0A9E)


• “It's About Time: An Introduction to Timely Dataflow | Clockworks” (https://
youtu.be/ZN7nOwJTSZ0)

https://youtu.be/yOnPmVf4YWo
https://youtu.be/yOnPmVf4YWo
https://youtu.be/yOnPmVf4YWo
https://youtu.be/yOnPmVf4YWo
https://youtu.be/yyhMI9r0A9E
https://youtu.be/ZN7nOwJTSZ0
https://youtu.be/ZN7nOwJTSZ0
https://youtu.be/ZN7nOwJTSZ0
https://youtu.be/ZN7nOwJTSZ0

