
Zak Singh

Naiad: a timely dataflow system
Derek G Murray, Frank McSherry, Rebecca Isaacs, Michael Isard,
Paul Barham, Martín Abadi

Naiad is a distributed system for high-
throughput, low-latency, cyclic dataflow

What do we look for in a dataflow
system?

Stream Processors Graph ProcessorsBatch Processors

System

Low Latency Supports IterationConsistent

Implies

What do we look for in a dataflow
system?

Stream Processors Graph ProcessorsBatch Processors

System

Low Latency Supports IterationConsistent

Implies

Batch Processors (MapReduce)
• Operate on “data at rest”

• “every night, calculate the previous day’s total sales”

• High throughput

• Easy to use and scale (very popular!)

• High latency

• No support for incremental computation

• Have to recalculate from scratch every time

Low Latency

Supports Iteration

Consistent

Batch Processors (MapReduce)
• Operate on “data at rest”

• “every night, calculate the previous day’s total sales”

• High throughput

• Easy to use and scale (very popular!)

• High latency

• No support for incremental computation

• Have to recalculate from scratch every time

Low Latency

Supports Iteration

Consistent

Stateless Stream Processing
• Operate on “data in motion”

• “Running sum of total sales”

• Fed timestamped events as they occur by a

message broker/queue (Kafka, Debezium, etc)

• Out of order arrivals mean aggregations not
guaranteed to be correct

Low Latency

Supports Iteration

Consistent

Stateless Stream Processing
• Operate on “data in motion”

• “Running sum of total sales”

• Fed timestamped events as they occur by a

message broker/queue (Kafka, Debezium, etc)

• Out of order arrivals mean aggregations not
guaranteed to be correct

Low Latency

Supports Iteration

Consistent

Graph Processing
• “Find the degree of connection (shortest path)

between me and another user on LinkedIn”

• GraphX (on top of Spark), Giraph

• No clear victor in the space, open problem

• Why? Graph traversals require iterative

algorithms

Low Latency

Supports Iteration

Consistent

• Most dataflow systems are acyclic

• Hard to parallelize iteration

Graph Processing
• “Find the degree of connection (shortest path)

between me and another user on LinkedIn”

• GraphX (on top of Spark), Giraph

• No clear victor in the space, open problem

• Why? Graph traversals require iterative

algorithms

Low Latency

Supports Iteration

Consistent

• Most dataflow systems are acyclic

• Hard to parallelize iteration

Stream Processing Graph ProcessingBatch Processing

One framework to rule them all?A shared runtime

Low Latency Supports IterationConsistent

Timely Dataflow

Stream Processing Graph ProcessingBatch Processing

One framework to rule them all?A shared runtime

Low Latency Supports IterationConsistent

Timely Dataflow

How does Timely Dataflow
achieve all this?Timestamps!

How does Timely Dataflow
achieve all this?

Timestamps!

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Stateless Stream Consistency
How much revenue are we making from high value item sales, per day?

Input Map Sum OutputFilter

laptop @ yesterday

iphone @ today

ipad @ yesterday

crisps @ today

fruit @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$1 @ today

$3 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

Sum needs to know the minimum timestamp still
upstream so that it can statefully hold onto yesterday’s
records until it’s seen all of them

Timely Data Flow Consistency
How much revenue are we making from high value item sales, per day?

Sum Output
$900 @ yesterday$800 @ today$500 @ yesterday

$1400 @ yesterday

yesterdayyesterdaytoday

Progress tracking plane

Event plane

“Minimum timestamp after me”

yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

today

Sum maintains internal state

Timely Data Flow Consistency
How much revenue are we making from high value item sales, per day?

Sum Output
$900 @ yesterday$800 @ today$500 @ yesterday

$1400 @ yesterday

yesterdayyesterdaytoday

Progress tracking plane

Event plane

“Minimum timestamp after me”

yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

today

Sum maintains internal state

Timely Data Flow Consistency
How much revenue are we making from high value item sales, per day?

Sum Output
$900 @ yesterday$800 @ today$500 @ yesterday

$1400 @ yesterday

yesterdayyesterdaytoday

Progress tracking plane

Event plane

“Minimum timestamp after me”

yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

today

Sum maintains internal state

Timely Data Flow Consistency
How much revenue are we making from high value item sales, per day?

Sum Output
$900 @ yesterday$800 @ today$500 @ yesterday

$1400 @ yesterday

yesterdayyesterdaytoday

Progress tracking plane

Event plane

“Minimum timestamp after me”

yesterday

$900 @ yesterday

$800 @ today

$500 @ yesterday

today

Sum maintains internal state

Coordination: The usual way

Input Map Sum OutputFilter

• Each worker has no awareness of larger graph

• Each operator is stateless (in most systems)

Input Map Sum OutputFilter

Input Map Sum OutputFilter

Map workers Filter workers Sum workers

Parallelization: The Timely Dataflow way

Input Map Sum OutputFilter

• Coordination only occurs where needed (the Sum operator)

• Consistency guaranteed, while maintaining low latency!

Input Map Sum OutputFilter

Input Map Sum OutputFilter

Worker

Worker

Worker

Efficiency gains at scale

(Clockworks, 2018)

• Paths don’t coordinate
unless they need to!

Recap

Low LatencyConsistent

Timely Dataflow

- Workers coordinate to determine minimum timestamp
upstream at each operator

Supports Iteration?

- But only when needed

Recap

Low LatencyConsistent

Timely Dataflow

- Workers coordinate to determine minimum timestamp
upstream at each operator

Supports Iteration?

- But only when needed

Recap

Low LatencyConsistent

Timely Dataflow

- Workers coordinate to determine minimum timestamp
upstream at each operator

Supports Iteration?

- But only when needed

Recap

Low LatencyConsistent

Timely Dataflow

- Workers coordinate to determine minimum timestamp
upstream at each operator

Supports Iteration?

- But only when needed

Expressive iteration

• Timestamps + stateful vertices
make iteration achievable

• Append a loop counter to each
timestamp on entry to loop

• Increment counter by passing
through feedback node

• Arbitrarily nested loops supported
(just append more loop counters
to the timestamp)

(Materalize.com, 2020)

• Still maintains consistency and low
latency!

Expressive iteration

• Timestamps + stateful vertices
make iteration achievable

• Append a loop counter to each
timestamp on entry to loop

• Increment counter by passing
through feedback node

• Arbitrarily nested loops supported
(just append more loop counters
to the timestamp)

(Materalize.com, 2020)

• Still maintains consistency and low
latency!

Performance (SCC)

Connected Cores Livejournal orkut

GraphX 128 59s 53s

SociaLite 128 54s 78s

Myria 128 37s 57s

BigDatalog 128 27s 33s

Timely
Dataflow 1, 2 20s, 11s 43s, 26s

Differential
update 1, 2 98us, 109us 200us, 216us

(Clockworks, 2019)

Performance (SCC)

Connected Cores Livejournal orkut

GraphX 128 59s 53s

SociaLite 128 54s 78s

Myria 128 37s 57s

BigDatalog 128 27s 33s

Timely
Dataflow 1, 2 20s, 11s 43s, 26s

Differential
update 1, 2 98us, 109us 200us, 216us

(Clockworks, 2019)

So why isn’t everyone using it?
(Opinions are my own)

Low Latency Supports IterationConsistent

Timely Dataflow

So why isn’t everyone using it?
(Opinions are my own)

Low Latency Supports IterationConsistent

Timely Dataflow

Generalized to a fault?
• Timely Dataflow is only the “simplest solution” when you need all of these

properties (consistency, low latency, iteration)

• Hard to come up with use case: real-time graph analytics?

• For most large-scale data processing, batch solutions are sufficient (and much
simpler to use/reason about)

• i.e. LinkedIn only calculates up to 3 degrees of separation, which can be done
via batch processing, albeit inefficiently (but who cares??)

• Timely Dataflow’s fault tolerance unclear compared to other frameworks

• Basic API is elegant, but unintuitive

10 years on: who is using it?
• Has been entirely rewritten in Rust over past 5 years

• Timely dataflow by itself is too low level / too complex for most users

• Ability to build abstractions on top of it has become the killer feature

• Frank McSherry is now a founder of materialize.com, “The Streaming Database
for Real-time Analytics”

• Users write normal SQL queries, which are automatically translated to Timely
Dataflow magic

10 years on: who is using it?
• Has been entirely rewritten in Rust over past 5 years

• Timely dataflow by itself is too low level / too complex for most users

• Ability to build abstractions on top of it has become the killer feature

• Frank McSherry is now a founder of materialize.com, “The Streaming Database
for Real-time Analytics”

• Users write normal SQL queries, which are automatically translated to Timely
Dataflow magic

Materialize

In conclusion
• Timely Dataflow is a “shared

foundation” for dataflow
applications

• Guarantees consistency, low
latency, and supports iteration

• A design and engineering feat
Low Latency

Supports Iteration

Correct

Stream Processing

Graph Processing

Batch Processing

However…

• “Killer usecase” is rare

• API is complex, too low-level

• Materialize, other abstractions
address this for specific
usecases

Questions?

Recommended Watching

• “Timely Dataflow in three easy steps | Frank McSherry” (https://youtu.be/
yOnPmVf4YWo)

• “Naiad: A Timely Dataflow System” (https://youtu.be/yyhMI9r0A9E)

• “It's About Time: An Introduction to Timely Dataflow | Clockworks” (https://
youtu.be/ZN7nOwJTSZ0)

https://youtu.be/yOnPmVf4YWo
https://youtu.be/yOnPmVf4YWo
https://youtu.be/yOnPmVf4YWo
https://youtu.be/yOnPmVf4YWo
https://youtu.be/yyhMI9r0A9E
https://youtu.be/ZN7nOwJTSZ0
https://youtu.be/ZN7nOwJTSZ0
https://youtu.be/ZN7nOwJTSZ0
https://youtu.be/ZN7nOwJTSZ0

