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Large-scale Data Processing and Optimisation

Eiko Yoneki

University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out
 Popular solution for massive data processing
 scale and build distribution, combine theoretically unlimited 
number of machines in single distributed storage 
 Parallelisable data distribution and processing is key

 Scale-up: add resources to single node (many cores) in system 
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)
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Technologies supporting Cluster Computing 

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

cf. Many core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System 

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis, 

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)
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Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo, 
Cassandra, Redis, Mongo, 

Spanner…

Logging System/Distributed 
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Tensorflow, Ray, Flumejava…

Streaming 
Processing

Storm, SEEP, Naiad, 
Spark Streaming, Flink, 

Milwheel, Google 
Dataflow...

Graph Processing
Pregel, Giraph, 

GraphLab, PowerGraph, 
(Dato), GraphX,          

X-Stream...

Query Language
Pig, Hive, SparkSQL,  

DryadLINQ…

Machine Learning
Rllib, Caffe, Keras,

Torch, MLlib…
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Data Flow Programming 

 Non-standard programming models
 Powerful abstraction: mapping computation into 

dataflow graphs

Function f(x, y, z) = x* y + z
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MapReduce Programming 

 Target problem needs to be parallelisable
 Split into a set of smaller code (map)
 Next small piece of code executed in parallel 
 Results from map operation get synthesised into a result of 

original problem (reduce)
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Data Flow Programming Examples 

 Data (flow) parallel programming 
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow…

MapReduce: 
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph) 
based: Dryad/Spark…
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Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents Airline Graphs

Social media data

Web 1.4B 
pages(6.6B 
links) 
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Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and 
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular 
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often 
based on exploring graph structure leading to a large access rate to 
computation ratio

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, Pattern)
3. Structure (Community, Centrality)
4. ML & Optimisation (Regression, SGD)
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Data-Parallel vs. Graph-Parallel
 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed MapReduce) 
 Not every graph algorithm is parallelisable (interdependent 

computation) 
 Not much data access locality
 High data access to computation ratio

10

9

10



6

Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model
 Use of iterative Bulk Synchronous Parallel Model  

Pregel (Google), Giraph (Apache), Graphlab, 
GraphChi (CMU - Dato)

 Optimisation over data parallel
GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework  
NAIAD (MSR), TensorFlow..
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Bulk synchronous parallel: Example
 Finding the largest value in a connected graph

Message
Local Computation

Communication

Local Computation

Communication

…
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Are Large Clusters and Many cores Efficient?   
 Brute force approach really efficiently works?
 Increase of number of cores (including use of GPU)
 Increase of nodes in clusters
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Do we really need large clusters?
 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration: 
All vertices active in 
each iteration
(50% computation, 50% 
communication)

Traversal: Search 
proceeds in a frontier
(90% computation, 10% 
communication)
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Data Processing for Neural Networks

 Practicalities of training Neural Networks
 Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification            Reinforcement Learning
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Performance Improvement

 One or more beefy 
GPUs
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 Parameter Architecture: exploit 
both Data Parallelism and Model 
Parallelism (by Google)
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Computer Systems Optimisation
 How do we improve performance:
 Manual tuning
 Auto-tuning 

 What is performance? – objective function of optimisation 
 Resource usage (e.g. time, power)
 Computational properties (e.g. accuracy, fairness, latency)

 What is Optimisation Model? 
 Short-term dynamic control (e.g. stream processing: distinct workload or 

dynamic workload)
 Combinatorial optimisation (e.g. indexing DB, device assignment) 

Many systems problems are combinatorial in nature
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Turing Computer System is Complex Task
 Increasing data volumes and high-dimension parameter space
 Expensive Objective Functions
 Hand-crafted solutions impractical, often left static or configured 

through extensive offline analysis
 Not well-tuned system’s performance 

does not scale
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Auto-tuning Complex Systems

 Grid search θ ∈ [1, 2, 3, …]
 Random search 

 Evolutionary approaches (e.g.                )

 Hill-climbing (e.g.               )

 Bayesian optimisation (e.g.           )

1000s of evaluations 
of objective function

Computation more 
expensive

Fewer samples

 Many dimensions 
 Expensive objective function
 Hand-crafted solutions impractical 

(e.g. extensive offline analysis)

Blackbox Optimisation
 can surpass human 

expert-level tuning
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Search Parameter Space

Random Search
Genetic 

algorithm /
Simulated 
annealing

Bayesian 
Optimisation

No overhead Slight overhead High overhead

High #evaluation Medium-high 
#evaluation

Low #evaluation
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Parameter Space of Task Scheduler 
 Tuning distributed SGD scheduler over TensorFlow
 10 heterogeneous machines with ~32 parameters 
 ~1053 possible valid configurations

 Objective function: minimise distributed SGD iteration time
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Bayesian Optimisation
 Iteratively builds probabilistic model of objective function
 Typically Gaussian process as probabilistic model
 Data efficient: converges quickly

① Find promising point (high performance value in the model)

② Evaluate the objective function at that point

③ Update the model to reflect this new measurement
22
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Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

23

24



13

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation
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Bayesian Optimisation
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Domain
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Domain
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Bayesian Optimisation
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Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation 
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Further Bayesian Optimisation…  

37

 BO overview/Tutorial 
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO

_overview_Archambeau.pdf 

 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO
_overview_adams.pdf 

 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO
_overview_gonzalez.pdf 

 Papers 
 Review paper by Shahriari, et al. (2016): Taking the Human Out of the 

Loop: A Review of Bayesian Optimization. Proceedings of the IEEE 
104(1):148-175, 2016.

 Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for 
Machine Learning. CIFAR NCAP Summer School.

 Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and 
Simulation Optimization. INFORMS Annual Meeting.

Bayesian Optimisation
 Iteratively builds probabilistic model of objective function
 Typically Gaussian process as probabilistic model
 Data efficient: converges quickly

Pros:
✓ Data efficient: converges in few iterations
✓ Able to deal with noisy observations

Cons:
✗ In many dimensions, model does not converge to the objective function 38
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Structured Bayesian Optimisation (SBO) 

✓ Better convergence
✓ Use all measurements

BOAT: a framework to build BespOke Auto-Tuners
39

Probabilistic Programming: Probabilistic C++

Pyro     Stheno

Probabilistic C++
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Semi-parametric Model

 Easy to use and 
well suited to SBO

 Understand 
general trend of 
Objective function

 High precision in 
region of optimum 
for finding highest 
performance

Too restrictive

Too generic

Just right

41

Example: JVM Garbage Collection

 Cassandra's garbage collection

 Minimise 99th percentile latency of Cassandra

Cassandra

JVM
Garbage collection flags:

● Young generation size
● Survivor ratio
● Max tenuring threshold
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Performance Improvement from Structure 
User-given probabilistic model structured in semi-parametric 
model using Directed Acyclic Graph 

Tune three JVM parameters of database     
(Cassandra) to minimise latency

2. Sub-Optimisation in numerical optimisation
 Exploit structure to split optimisation problem into smaller 

optimisations (e.g. nested optimisation)
 Provide decomposition mechanisms

99th Percentile 
LatencyGC Flags

GC Rate
Model

GC Average 
Duration Model

Latency 
Model

Average 
GC duration

GC Rate
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DAG model in BOAT
struct CassandraModel : public DAGModel<CassandraModel> {

  void model(int ygs, int sr, int mtt){
    // Calculate the size of the heap regions
    double es = ygs * sr / (sr + 2.0);// Eden space's size
    double ss = ygs / (sr + 2.0);     // Survivor space's size

    // Define the dataflow between semi‐parametric models
    double rate =     output("rate", rate_model, es);
    double duration = output("duration", duration_model,
                             es, ss, mtt);
    double latency =  output("latency", latency_model,
                             rate, duration, es, ss, mtt);
  }

  ProbEngine<GCRateModel> rate_model;
  ProbEngine<GCDurationModel> duration_model;
  ProbEngine<LatencyModel> latency_model;
};
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GC Rate Semi-parametric model
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Evaluation: Garbage collection
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Evaluation: Garbage collection
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Distributed Scheduling of Neural Networks (SGD)
 Tune scheduling over 10 machines, setting ~30 parameters 

(e.g. ~1053 possible valid configurations) 
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Evaluation: Neural network scheduling

Default configuration: 9.82s
OpenTuner: 8.71s
BOAT: 4.31s

Existing systems don’t converge!
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Bayesian Optimisation not for Combinatorial Model

LLVM Compiler pass list optimisation
(BaysOpt vs Random Search)
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Reinforcement Learning for Optimisation 
Many problems in systems are ssequential Decision Making 
and/or Combinatorial Problems on graph data

 Compiler Optimisation
 Input: XLA/HLO graph
 Objective: Scheduling fusion of ops

 Chip placement
 Input: Chip netlist graph
 Objective: placement on 2D of ND grids

 Datacentre resource allocation
 Input: job - workload graph
 Objective: Placement on datacentre cells and racks

 Packet Classification
 Input: network packets
 Objective: minimise the classification time and memory footprint

 Network congestion control with multiple connections
 Wide range of signals to make decisions (e.g., VM allocation)
 Database: Query optimiser, Dynamic indexing…
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Reinforcement Learning
 Agent interacts with Dynamic

environment
 Goal: Maximise expectations over 

rewards over agent’s lifetime
 Notion of Planning/Control, not 

single static configuration

What makes RL different from other ML paradigms?
 There is no supervisor, only a reward signal
 Feedback is delayed, not instantaneous
 Time really matters (sequential)
 Agent’s actions affect the subsequent data it receives

Model-free and Model-based RL
52
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A brief history of Deep Reinforcement Learning Tools
Gen (2014-16): Loose research scripts (e.g. DQN), high expertise 
required, only specific simulators

Gen (2016-17): OpenAI gym gives unified task interface, reference 
implementations
 Good results on some environments (e.g. game), difficult to retool to new 

domains and execution modes
 Abstractions/Libraries: not fully reusable, customised towards game 

simulators
 High implementation risk: lack of systematic testing, performance 

strongly impacted by noisy heuristics

Gen (2017-18): Generic declarative APIs, distributed abstractions 
(Ray Rllib, RLGraph), some standard flavours emerge

Still Problems… Tightly coupled execution/logic, testing, reuse...
53

RLlib (UC Berkeley) Architecture
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RLgraph: Modular Dataflow Composition

 ... is a programming model to design 
and execute RL algorithms across 
execution paradigms

 ... generates incrementally testable, 
transparently configurable code 
through a staged build process
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RL in Computer Systems: Practical Considerations
 Action spaces do not scale well:
 Systems problems often combinatorial

 Exploration in production system not a good idea
 Unstable, unpredictable

 Simulations can oversimplify problem
 Expensive to build, not justified versus gain

 Unlike supervised learning: Not single dominant execution pattern
 Algorithms highly sensitive to hyper-parameters

 Online steps take too long
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Optimising DNN Computation with Graph Substitutions

 TASO (SOSP, 2019): Performance improvement by 
transformation of computation graphs  

 In progress: use of Reinforcement Learning
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Chip Placement with Reinforcement Learning
 A. Mirhoseini and A. Goldie: Chip Placement with Deep 

Reinforcement Learning, ISPD, 2020. 
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Summary: Massive Data Processing and Optimisation

Dataflow is key to improve performance 

Parameter space is complex, large and dynamic/combinatorial

 Systems are nonlinear and difficult to model manually  Exploit ML
 Reinforcement Learning to optimise dynamic combinatorial problem
 Key concept behind is Dataflow (~=Graph) structural 

transformation/Decomposition  

Exploit structural information for model decomposition to accelerate 
optimisation process

Bayesian Optimisation and Reinforcement Learning are key 
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Gap between Research and Practice
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