
1

Large-scale Data Processing and Optimisation

Eiko Yoneki

University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out
 Popular solution for massive data processing
 scale and build distribution, combine theoretically unlimited
number of machines in single distributed storage
 Parallelisable data distribution and processing is key

 Scale-up: add resources to single node (many cores) in system
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)

2

1

2

2

Technologies supporting Cluster Computing

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, GCP, Azure)

cf. Many core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis,

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)

3

Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo,
Cassandra, Redis, Mongo,

Spanner…

Logging System/Distributed
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Tensorflow, Ray, Flumejava…

Streaming
Processing

Storm, SEEP, Naiad,
Spark Streaming, Flink,

Milwheel, Google
Dataflow...

Graph Processing
Pregel, Giraph,

GraphLab, PowerGraph,
(Dato), GraphX,

X-Stream...

Query Language
Pig, Hive, SparkSQL,

DryadLINQ…

Machine Learning
Rllib, Caffe, Keras,

Torch, MLlib…

4

3

4

3

Data Flow Programming

 Non-standard programming models
 Powerful abstraction: mapping computation into

dataflow graphs

Function f(x, y, z) = x* y + z

5

x
y

z

out

+

*

MapReduce Programming

 Target problem needs to be parallelisable
 Split into a set of smaller code (map)
 Next small piece of code executed in parallel
 Results from map operation get synthesised into a result of

original problem (reduce)

6

5

6

4

Data Flow Programming Examples

 Data (flow) parallel programming
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow…

MapReduce:
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph)
based: Dryad/Spark…

7

Brain Networks:
100B neurons(700T
links) requires 100s
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions
[genomebiology.com]

Gene expression
data

Bipartite graph of
phrases in
documents Airline Graphs

Social media data

Web 1.4B
pages(6.6B
links)

8

7

8

5

Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often
based on exploring graph structure leading to a large access rate to
computation ratio

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, Pattern)
3. Structure (Community, Centrality)
4. ML & Optimisation (Regression, SGD)

9

Data-Parallel vs. Graph-Parallel
 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed MapReduce)
 Not every graph algorithm is parallelisable (interdependent

computation)
 Not much data access locality
 High data access to computation ratio

10

9

10

6

Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model
 Use of iterative Bulk Synchronous Parallel Model

Pregel (Google), Giraph (Apache), Graphlab,
GraphChi (CMU - Dato)

 Optimisation over data parallel
GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework
NAIAD (MSR), TensorFlow..

11

Bulk synchronous parallel: Example
 Finding the largest value in a connected graph

Message
Local Computation

Communication

Local Computation

Communication

…

12

11

12

7

Are Large Clusters and Many cores Efficient?
 Brute force approach really efficiently works?
 Increase of number of cores (including use of GPU)
 Increase of nodes in clusters

13

Do we really need large clusters?
 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration:
All vertices active in
each iteration
(50% computation, 50%
communication)

Traversal: Search
proceeds in a frontier
(90% computation, 10%
communication)

14

13

14

8

Data Processing for Neural Networks

 Practicalities of training Neural Networks
 Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification Reinforcement Learning

15

Performance Improvement

 One or more beefy
GPUs

16

 Parameter Architecture: exploit
both Data Parallelism and Model
Parallelism (by Google)

15

16

9

Computer Systems Optimisation
 How do we improve performance:
 Manual tuning
 Auto-tuning

 What is performance? – objective function of optimisation
 Resource usage (e.g. time, power)
 Computational properties (e.g. accuracy, fairness, latency)

 What is Optimisation Model?
 Short-term dynamic control (e.g. stream processing: distinct workload or

dynamic workload)
 Combinatorial optimisation (e.g. indexing DB, device assignment)

Many systems problems are combinatorial in nature

17

Turing Computer System is Complex Task
 Increasing data volumes and high-dimension parameter space
 Expensive Objective Functions
 Hand-crafted solutions impractical, often left static or configured

through extensive offline analysis
 Not well-tuned system’s performance

does not scale

18

17

18

10

Auto-tuning Complex Systems

 Grid search θ ∈ [1, 2, 3, …]
 Random search

 Evolutionary approaches (e.g.)

 Hill-climbing (e.g.)

 Bayesian optimisation (e.g.)

1000s of evaluations
of objective function

Computation more
expensive

Fewer samples

 Many dimensions
 Expensive objective function
 Hand-crafted solutions impractical

(e.g. extensive offline analysis)

Blackbox Optimisation
 can surpass human

expert-level tuning

19

Search Parameter Space

Random Search
Genetic

algorithm /
Simulated
annealing

Bayesian
Optimisation

No overhead Slight overhead High overhead

High #evaluation Medium-high
#evaluation

Low #evaluation

20

19

20

11

Parameter Space of Task Scheduler
 Tuning distributed SGD scheduler over TensorFlow
 10 heterogeneous machines with ~32 parameters
 ~1053 possible valid configurations

 Objective function: minimise distributed SGD iteration time

21

Bayesian Optimisation
 Iteratively builds probabilistic model of objective function
 Typically Gaussian process as probabilistic model
 Data efficient: converges quickly

① Find promising point (high performance value in the model)

② Evaluate the objective function at that point

③ Update the model to reflect this new measurement
22

21

22

12

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

23

24

13

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

25

26

14

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

27

28

15

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

29

30

16

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

31

32

17

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

33

34

18

Domain

Objective

Bayesian Optimisation

Domain

Objective

Bayesian Optimisation

35

36

19

Further Bayesian Optimisation…

37

 BO overview/Tutorial
 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO

_overview_Archambeau.pdf

 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO
_overview_adams.pdf

 https://www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2020_2021/aid/BO
_overview_gonzalez.pdf

 Papers
 Review paper by Shahriari, et al. (2016): Taking the Human Out of the

Loop: A Review of Bayesian Optimization. Proceedings of the IEEE
104(1):148-175, 2016.

 Slides by Ryan Adams (2014): A Tutorial on Bayesian Optimization for
Machine Learning. CIFAR NCAP Summer School.

 Slides by Peter Frazier (2010): Tutorial: Bayesian Methods for Global and
Simulation Optimization. INFORMS Annual Meeting.

Bayesian Optimisation
 Iteratively builds probabilistic model of objective function
 Typically Gaussian process as probabilistic model
 Data efficient: converges quickly

Pros:
✓ Data efficient: converges in few iterations
✓ Able to deal with noisy observations

Cons:
✗ In many dimensions, model does not converge to the objective function 38

37

38

20

Structured Bayesian Optimisation (SBO)

✓ Better convergence
✓ Use all measurements

BOAT: a framework to build BespOke Auto-Tuners
39

Probabilistic Programming: Probabilistic C++

Pyro Stheno

Probabilistic C++

40

39

40

21

Semi-parametric Model

 Easy to use and
well suited to SBO

 Understand
general trend of
Objective function

 High precision in
region of optimum
for finding highest
performance

Too restrictive

Too generic

Just right

41

Example: JVM Garbage Collection

 Cassandra's garbage collection

 Minimise 99th percentile latency of Cassandra

Cassandra

JVM
Garbage collection flags:

● Young generation size
● Survivor ratio
● Max tenuring threshold

42

41

42

22

Performance Improvement from Structure
User-given probabilistic model structured in semi-parametric
model using Directed Acyclic Graph

Tune three JVM parameters of database
(Cassandra) to minimise latency

2. Sub-Optimisation in numerical optimisation
 Exploit structure to split optimisation problem into smaller

optimisations (e.g. nested optimisation)
 Provide decomposition mechanisms

99th Percentile
LatencyGC Flags

GC Rate
Model

GC Average
Duration Model

Latency
Model

Average
GC duration

GC Rate

43

DAG model in BOAT
struct CassandraModel : public DAGModel<CassandraModel> {

 void model(int ygs, int sr, int mtt){
 // Calculate the size of the heap regions
 double es = ygs * sr / (sr + 2.0);// Eden space's size
 double ss = ygs / (sr + 2.0); // Survivor space's size

 // Define the dataflow between semi‐parametric models
 double rate = output("rate", rate_model, es);
 double duration = output("duration", duration_model,
 es, ss, mtt);
 double latency = output("latency", latency_model,
 rate, duration, es, ss, mtt);
 }

 ProbEngine<GCRateModel> rate_model;
 ProbEngine<GCDurationModel> duration_model;
 ProbEngine<LatencyModel> latency_model;
};

44

43

44

23

GC Rate Semi-parametric model

45

Evaluation: Garbage collection

46

45

46

24

Evaluation: Garbage collection

47

Distributed Scheduling of Neural Networks (SGD)
 Tune scheduling over 10 machines, setting ~30 parameters

(e.g. ~1053 possible valid configurations)

48

47

48

25

Evaluation: Neural network scheduling

Default configuration: 9.82s
OpenTuner: 8.71s
BOAT: 4.31s

Existing systems don’t converge!

49

Bayesian Optimisation not for Combinatorial Model

LLVM Compiler pass list optimisation
(BaysOpt vs Random Search)

R
u

n
 T

im
e

(s
)

Iteration

50

49

50

26

Reinforcement Learning for Optimisation
Many problems in systems are ssequential Decision Making
and/or Combinatorial Problems on graph data

 Compiler Optimisation
 Input: XLA/HLO graph
 Objective: Scheduling fusion of ops

 Chip placement
 Input: Chip netlist graph
 Objective: placement on 2D of ND grids

 Datacentre resource allocation
 Input: job - workload graph
 Objective: Placement on datacentre cells and racks

 Packet Classification
 Input: network packets
 Objective: minimise the classification time and memory footprint

 Network congestion control with multiple connections
 Wide range of signals to make decisions (e.g., VM allocation)
 Database: Query optimiser, Dynamic indexing…

51

Reinforcement Learning
 Agent interacts with Dynamic

environment
 Goal: Maximise expectations over

rewards over agent’s lifetime
 Notion of Planning/Control, not

single static configuration

What makes RL different from other ML paradigms?
 There is no supervisor, only a reward signal
 Feedback is delayed, not instantaneous
 Time really matters (sequential)
 Agent’s actions affect the subsequent data it receives

Model-free and Model-based RL
52

51

52

27

A brief history of Deep Reinforcement Learning Tools
Gen (2014-16): Loose research scripts (e.g. DQN), high expertise
required, only specific simulators

Gen (2016-17): OpenAI gym gives unified task interface, reference
implementations
 Good results on some environments (e.g. game), difficult to retool to new

domains and execution modes
 Abstractions/Libraries: not fully reusable, customised towards game

simulators
 High implementation risk: lack of systematic testing, performance

strongly impacted by noisy heuristics

Gen (2017-18): Generic declarative APIs, distributed abstractions
(Ray Rllib, RLGraph), some standard flavours emerge

Still Problems… Tightly coupled execution/logic, testing, reuse...
53

RLlib (UC Berkeley) Architecture

54

53

54

28

RLgraph: Modular Dataflow Composition

 ... is a programming model to design
and execute RL algorithms across
execution paradigms

 ... generates incrementally testable,
transparently configurable code
through a staged build process

55

RL in Computer Systems: Practical Considerations
 Action spaces do not scale well:
 Systems problems often combinatorial

 Exploration in production system not a good idea
 Unstable, unpredictable

 Simulations can oversimplify problem
 Expensive to build, not justified versus gain

 Unlike supervised learning: Not single dominant execution pattern
 Algorithms highly sensitive to hyper-parameters

 Online steps take too long

56

55

56

29

Optimising DNN Computation with Graph Substitutions

 TASO (SOSP, 2019): Performance improvement by
transformation of computation graphs

 In progress: use of Reinforcement Learning

57

Chip Placement with Reinforcement Learning
 A. Mirhoseini and A. Goldie: Chip Placement with Deep

Reinforcement Learning, ISPD, 2020.

58

57

58

30

Summary: Massive Data Processing and Optimisation

Dataflow is key to improve performance

Parameter space is complex, large and dynamic/combinatorial

 Systems are nonlinear and difficult to model manually Exploit ML
 Reinforcement Learning to optimise dynamic combinatorial problem
 Key concept behind is Dataflow (~=Graph) structural

transformation/Decomposition

Exploit structural information for model decomposition to accelerate
optimisation process

Bayesian Optimisation and Reinforcement Learning are key

59

Gap between Research and Practice

60

59

60

