
Improve the progress tracking of 
Naiad (Timely Dataflow)

Victor

Nov 2020



Timely Dataflow

• Timely dataflow is a powerful dataflow framework (and under-
appreciated IMO) 

• Supports both high-throughput batch processing and low-latency 
stream processing

• Supports static cyclic graph

• Uses stateful workers with less fault tolerance capabilities

• Use timestamps for progress tracking and batch synchronization

• Still under active development and usage (by Differential Dataflow 
and Materialize)



Personal interests

• Timely dataflow (and differential dataflow) is interesting and powerful

• Dissertation project involves combining Timely Dataflow and enclaves

• Shift some operators to enclaves to make them confidential on 
untrusted cloud

• Additional opportunity to learn about the implementation

• (And also learn Rust)



What’s the problem here?



What’s the problem here?

Process 1 Process 2

Worker (thread) 1
Receiver

Worker (thread) 2

Pusher

Pusher

Channel (either data or control plane)

Worker (thread) 3



What’s the problem here?

Process 1 Process 2

Worker (thread) 1
Receiver

Worker (thread) 2
Pusher Receiver

Pusher

Channel 1 Channel 2



What’s the problem here?

Process 1 Process 2

Worker (thread) 1

Receiver

Worker (thread) 3
Pusher

Receiver

Pusher

Channel 1 Channel 2

Worker (thread) 2

Pusher

Pusher

Worker (thread) 4
Pusher

Pusher

Channel 3 Channel 4

Pusher

Pusher

Receiver

Pusher

Pusher

Pusher

Pusher

Receiver

One Timely Dataflow logical channel



What’s the problem here?

Process 1 Process 2

Worker (thread) 1

Receiver

Worker (thread) 3
Pusher

Receiver

Pusher

Worker (thread) 2

Pusher

Pusher

Worker (thread) 4
Pusher

Pusher

Pusher

Pusher

Receiver

Pusher

Pusher

Pusher

Pusher

Receiver

Pointstamp

Channel 1 Channel 2 Channel 3 Channel 4

One Timely Dataflow logical channel



What’s the problem here?

Process 1 Process 2

Worker (thread) 1

Receiver

Worker (thread) 3
Pusher

Receiver

Pusher

Worker (thread) 2

Pusher

Pusher

Worker (thread) 4
Pusher

Pusher

Pusher

Pusher

Receiver

Pusher

Pusher

Pusher

Pusher

Receiver

Pointstamp

Pointstamp

Pointstamp

Channel 1 Channel 2 Channel 3 Channel 4

One Timely Dataflow logical channel



What’s the problem here?

Process 1 Process 2

Worker (thread) 1

Receiver

Worker (thread) 3
Pusher

Receiver

Pusher

Worker (thread) 2

Pusher

Pusher

Worker (thread) 4
Pusher

Pusher

Pusher

Pusher

Receiver

Pusher

Pusher

Pusher

Pusher

Receiver

Pointstamp

Pointstamp

Pointstamp

Channel 1 Channel 2 Channel 3 Channel 4

One Timely Dataflow logical channel



What’s the problem here?

• If we have 4 processes and 8 workers….

• Channel 26 here is the channel for progress update

• Other channels are for sending data

• Progress data is much larger than data actually used in dataflow 
operators



What are the possible solutions?

• Timely Dataflow is slightly different from the original Naiad in C#

• Naiad has optimizations for reducing progress update traffic

• Hierarchically accumulate the updates at process or central 
broadcaster level
• Worker level: Only send update when the updates are needed by other 

workers to yield notifications (and results)

• Process level: Each process accumulate all updates from local threads and 
process accumulators communicate progress updates with one another

• Cluster level: All worker updates are dispatched to a central accumulator, and 
the central accumulator dispatch updates to all workers



Accumulate progress updates at each worker

• This solution has been implemented by Frank McSherry

• https://github.com/TimelyDataflow/timely-dataflow/pull/228

• This optimization is not (well) evaluated and disabled by default

• Need some computations to evaluate this optimization

https://github.com/TimelyDataflow/timely-dataflow/pull/228


Accumulate progress updates at each process

Process 1 Process 2

Worker (thread) 1

Receiver

Worker (thread) 3
Pusher

Receiver

Pusher

Worker (thread) 2

Pusher

Pusher

Worker (thread) 4
Pusher

Pusher

Pusher

Pusher

Receiver

Pusher

Pusher

Pusher

Pusher

Receiver

Accumulator Accumulator

Channel 1 Channel 2 Channel 3 Channel 4

One Timely Dataflow logical channel



Accumulate progress updates at each process

• No implementation yet

• Every group of workers now have shared progress updates

• Distributed append-only log

• Concurrency and correctness issue

• Performance issue due to message delay and inter-thread 
synchronization



(My own) progress updates

• Read the Rust implementation (and learn Rust)

• Communication, scheduling, progress tracking and updates

• Find programs to evaluate the changes

• Implement the evaluation programs

• Implement my own changes

• Evaluate both changes on progress traffic volume and effect on 
latency and throughput

• Wrap my change as an optional feature and submit a PR



Contingencies/add-ons



Discussion/Q&A


