ProBO: Versatile Bayesian Optimization Using Any Probabilistic Programming Language

W. Neiswanger et al. 2019

Paper review by Sean Parker

Structure

- Background / Motivation
- Overview of ProBO
- Key contributions
- Experiments & Evaluation
- Review

Bayesian Optimization (BO)

- Aim: Optimize the function f(x)
- Restricted to sampling the function at points x
- Surrogate model used to approximate objective function
- Uses acquisition function to sample areas of interest
 - MPI, EI, UCB, TS

Probabilistic Programming Languages (PPLs)

- Often built upon existing languages
 - PyMC3/PyMC4 (Python)
 - Edward (Tensorflow)
 - Pyro (PyTorch)
- Each PPL uses a different inference strategy + posterior representations
 - MCMC, SMC
 - VI, EI



Probabilistic Programming Languages (PPLs)

- Domain-specific languages \bullet
- Inference on probabilistic models
- Assumptions encoded over variables of the model
- Output: Probability Distribution



PPL: Example Coin toss

- Calculate the bias of a coin:
 - Bernoulli distribution with latent variable θ

•
$$P(x_i = 1 | \theta) = \theta$$
 and $P(x_i = 0)$

- Infer θ based on previous results of coin toss $P(\theta | x_1, x_2, \dots, x_N)$
- $0|\theta) = 1 \theta$

Motivation

Models built in PPL is optimised using BO techniques in that PPL

- BOPP BO in specific PPL to estimate latent variables
- BOAT Custom framework, uses exact inference & expected improvement

Key contributions

- General abstraction for PPL programs
- ProBO system implementation*
- Evaluation of ProBO using BO models, implemented in various PPLs

Probabilistic Programs Abstraction

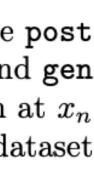
- Three core PPL operations:
 - inf(D) returns post (PPL dependent)
 - post(s) returns a sample from the posterior distribution
 - gen(x, z, s) returns sample from generative distribution

- Goal: Return $x^* = \operatorname{argmin}_{x \in \mathcal{X}} \mathbb{E}_{y \sim s(x)} [f(y)]$
- Algorithm:
 - Invoke the PPLs inference procedure via inf()
 - Get new x by optimising acquisition function
 - Observe system at *x*
 - Add new observation to dataset

Algorithm 1 $ProBO(\mathcal{D}_0, inf, gen)$

- 1: for n = 1, ..., N do
 - $\texttt{post} \leftarrow \texttt{inf}(\mathcal{D}_{n-1})$
- $x_n \leftarrow \operatorname{argmin}_{x \in \mathcal{X}} a(x, \texttt{post}, \texttt{gen})$ 3:
- $y_n \sim s(x_n)$ 4:
- $\mathcal{D}_n \leftarrow \mathcal{D}_{n-1} \cup (x_n, y_n)$ 5:
- 6: Return \mathcal{D}_N .

▷ Run inference algorithm to compute post ▷ Optimize acquisition using post and gen \triangleright Observe system at x_n ▷ Add new observations to dataset



ProBO - Computation Cost

- inf() cost dependent on PPLs inference algorithm
 - e.g. MCMC algorithms O(n) per iteration
- inf() only executed **once per query**
- Acquisition optimisation executed 100s times per query
 - post() & gen() cheaply implemented O(1)

Acquisition function optimisation

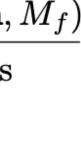
- post() & gen() not analytically differentiable
- Authors explored zeroth-order optimisation of a_{MF}
 - post() & gen() called M_f times
 - Any zeroth-order optimisation algorithm can be used
 - Algorithm 6 $a_{\rm MF}(x, post, gen)$
 - 1: $a_{\min} \leftarrow \text{Min value of } a \text{ seen so far}$ 2: $\ell = -\infty, f = 1$

 - $\ell \leftarrow \text{LCB-bootstrap}(\texttt{post}, \texttt{gen}, M_f)$ $f \leftarrow f + 1$
 - 4: 5:
 - 6: Return a(x, post, gen) using $M = M_f$

3: while $\ell \leq a_{\min} \operatorname{do}$

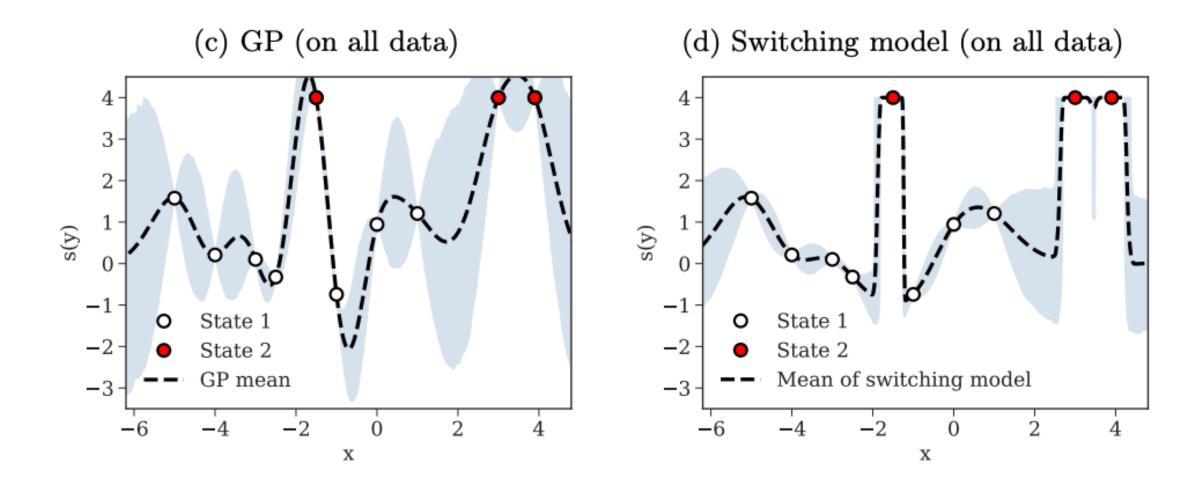
Algorithm 7 LCB-bootstrap(post, gen, M_f)

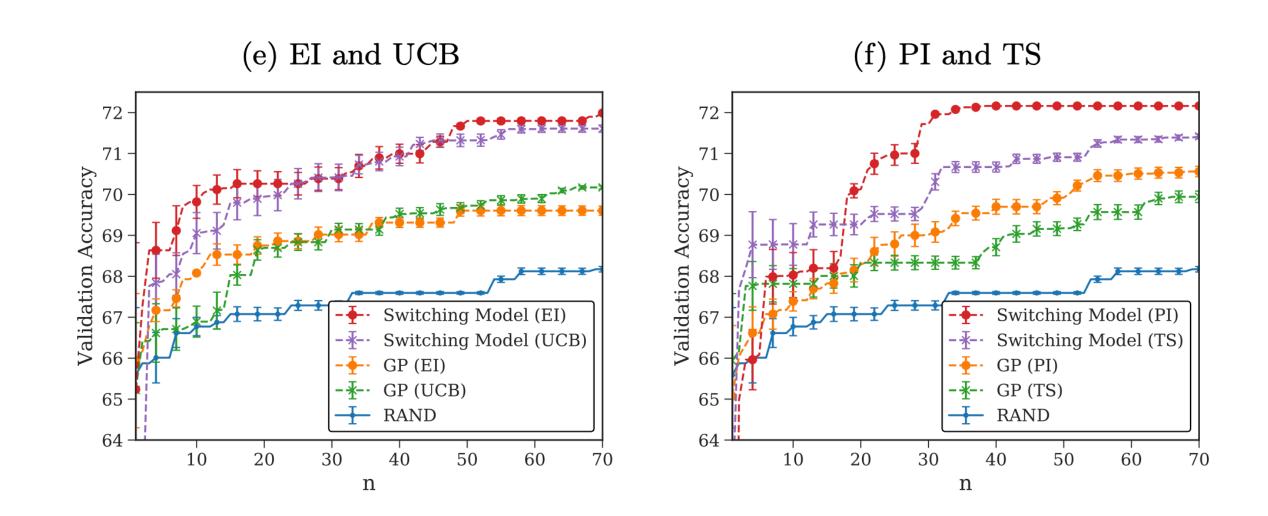
- 1: $y_{1:M_f} \leftarrow \text{Call post and gen } M_f \text{ times}$
- 2: for j = 1, ..., B do
- $\tilde{y}_{1:M_f} \leftarrow \text{Resample}(y_{1:M_f})$ 3:
- \triangleright See text for details $a_j \leftarrow \lambda(\tilde{y}_{1:M_f})$ 4:
- 5: Return LCB $(a_{1:B})$



Evaluation

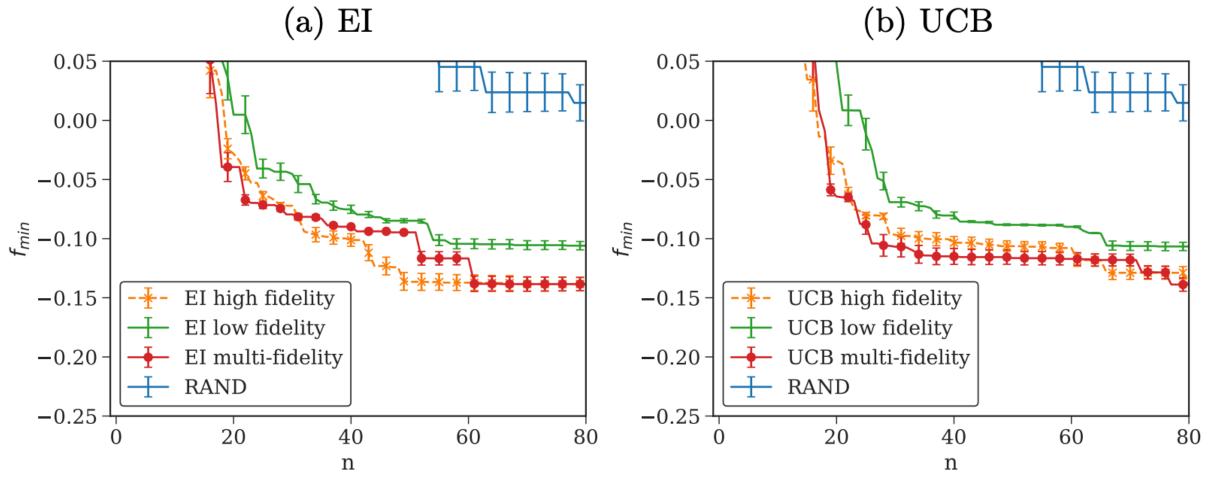
- Optimisation of MLP hyperparameters \bullet
 - "Switching model" is ProBO using a dynamic value of M_f





Evaluation

- 3x better performance than high-fidelity in terms of calls to gen()
- High and multi fidelity have comparable performance
 - Converges to very similar value



(c) Calls to gen

PPL acquisition method $a(x)$	Avg. number $gen/a(x)$
~ /	
EI high-fidelity	1000
EI multi-fidelity	347.89
EI low-fidelity	10
UCB high-fidelity	1000
UCB multi-fidelity	324.65
UCB low-fidelity	10

Review

- Difficult paper to understand lacksquare
- Implementation of ProBO not provided \bullet
 - Questions remain of how ProBO is integrated into existing PPLs
- Good idea for providing uniform way of performing BO across PPLs