REGAL: Transfer Learning For Fast Optimization of Computation Graphs

Paliwal et al.

Review by Ross Tooley

Contents

- 1. Motivation
- 2. Methods
 - 1. Genetic Algorithms
 - 2. Graph Neural Networks
- 3. Results
- 4. Discussion

Motivation

Scheduling data-flow graphs

Aim

• Minimise Peak Memory

Also consider

• Scheduler running time

Model Simplifications

• Discrete, equal time steps

Method

Scheduling pipeline

-

Scheduling pipeline

Genetic Algorithms

Chromosomes

- 1. Topological sort on data-flow graph
- 2. Use affinities to assign machines
- 3. Use priorities to schedule on the machine

Genetic Algorithms

Biased Random Key (BRKGA)

BRKGA has two 'per-node' parameters:

D: per-node beta-distribution

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, O. (2019). Regal: Transfer learning for fast optimization of computation graphs. arXiv preprint arXiv:1905.02494.

ρ: per-feature probability

BRKGA has two 'per-node' parameters:

D: per-node beta-distribution

ρ: per-feature probability

Graph Neural Networks

Graph Neural Networks

Medium: https://medium.com/neuralspace/graphs-neural-networks-in-nlp-dc475eb089de

REGAL

- Accumulates an action vector **y** at each node
- \bullet Action vectors map to D and ρ
- REINFORCE-based learning
- Using Peak Memory as reward function

Summary

Scheduling Pipeline

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, O. (2019). Regal: Transfer learning for fast optimization of computation graphs. arXiv preprint arXiv:1905.02494.

Results

The dataset?

The cluster?

Peak Memory Results

	TensorFlow		XLA dataset	
	dataset (test)			
Algorithm	% Improv.	% Gap	% Improv.	% Gap
	over	from	over	from
	BRKGA5K	best	BRKGA5K	best
CP SAT	-1.77%	13.89%	-47.14%	71.35%
GP + DFS	-6.51%	16.63%	-21.43%	39.86%
Local Search	0.63%	8.65%	-6.69%	21.98%
BRKGA 5K	0%	9.65%	0%	14.04%
Tuned BRKGA	0.8%	8.54%	0.452%	13.52%
GAS	0.16%	9.33%	-1.1%	15.36%
REGAL	3.56%	4.44%	3.74 %	9.40 %

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, O. (2019). Regal: Transfer learning for fast optimization of computation graphs. arXiv preprint arXiv:1905.02494.

Scheduler Running Time Results

Table 2: Average running times for all methods.				
Algorithm	TensorFlow dataset (test)	XLA dataset		
CP SAT	~2 hours	12+ hours		
GP + DFS	144 sec	500 sec		
Local Search	122 sec	1343 sec		
BRKGA 5K	0.89 sec	8.82 sec		
Tuned BRKGA	1.04 sec	10.0 sec		
GAS	1.04 sec	10.1 sec		
REGAL	1.04 sec	10.1 sec		

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, O. (2019). Regal: Transfer learning for fast optimization of computation graphs. arXiv preprint arXiv:1905.02494.

Discussion

Comparison to previous papers' schedulers

- Uses static scheduling, does not affect data-flow graph
- Optimises Peak Memory rather than Computation Time
- Not tailored towards machine type
- Only evaluated over 2 machines

Representation Learning?

Did REGAL learn a representation of the graph?

Avg Job Memory per Action Bias

Can REGAL be generalised to other metrics?

GNN action vectors and BRGKA chromosomes are metric-independent

The scheduling model depends on discrete, equal time steps

? The learned representations would change!

Closing remarks

- Use of GNN significantly improves BRGKA
- With low overhead
- Learning representations is useful for explanations
- Evaluation only considers 2 machines
- REGAL is complicated!

Thank you for listening

Q&A?