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Motivation



Scheduling data-flow graphs
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Aim
• Minimise Peak Memory

Model Simplifications
• Discrete, equal time steps

Also consider
• Scheduler running time



Method



Scheduling pipeline
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Scheduling pipeline
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This is 
Representation Learning

This is the
Optimizer



Genetic Algorithms



Chromosomes

Job affinities

Job priorities

Tensor priorities
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1. Topological sort on data-flow graph
2. Use affinities to assign machines
3. Use priorities to schedule on the machine



Genetic Algorithms
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Biased Random Key (BRKGA)
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BRKGA has two ‘per-node’ parameters:

D: per-node beta-distribution

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, 

O. (2019). Regal: Transfer learning for fast optimization of 

computation graphs. arXiv preprint arXiv:1905.02494.

ρ: per-feature probability
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BRKGA has two ‘per-node’ parameters:
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D: per-node beta-distribution ρ: per-feature probability



Graph Neural Networks



Graph Neural Networks

Medium: https://medium.com/neuralspace/graphs-neural-networks-in-nlp-dc475eb089de



REGAL

• Accumulates an action vector y at each node

• Action vectors map to D and ρ

• REINFORCE-based learning

• Using Peak Memory as reward function



Summary



Scheduling Pipeline

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, 

O. (2019). Regal: Transfer learning for fast optimization of 

computation graphs. arXiv preprint arXiv:1905.02494.



Results



The dataset?

Mine 372 medium-
size graphs from 

shared cluster

Split into 
{test, validate, train}

Multiply set by 100 
by applying noise to 

input tensors

Get 32 large-size 
graphs from existing 

benchmarks

TensorFlow dataset XLA dataset

The cluster?



Peak Memory Results

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, 

O. (2019). Regal: Transfer learning for fast optimization of 

computation graphs. arXiv preprint arXiv:1905.02494.



Scheduler Running Time Results

Paliwal, A., Gimeno, F., Nair, V., Li, Y., Lubin, M., Kohli, P., & Vinyals, 

O. (2019). Regal: Transfer learning for fast optimization of 

computation graphs. arXiv preprint arXiv:1905.02494.



Discussion



Comparison to previous papers’ schedulers

• Uses static scheduling, does not affect data-flow graph

• Optimises Peak Memory rather than Computation Time

• Not tailored towards machine type

• Only evaluated over 2 machines



Representation Learning?

Did REGAL utilise graph structure? Did REGAL learn a representation of the graph?

Avg Job Memory per Action Bias



Can REGAL be generalised to other metrics?

GNN action vectors and BRGKA chromosomes are metric-independent

The scheduling model depends on discrete, equal time steps

The learned representations would change!



Closing remarks

• Use of GNN significantly improves BRGKA

• With low overhead

• Learning representations is useful for explanations

• Evaluation only considers 2 machines

• REGAL is complicated!



Thank you for listening
Q&A?


