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Overview of PBT

• Algorithm for optimisation of neural network hyperparameters

• Naturally inspired approach based on metal annealing – note PBT is not a 
genetic algorithm!

• Dynamically assigns computational resources to most promising solutions

• Uses exploration + exploitation mechanism

• Hybridisation of parallel and sequential methods
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Problem Context

• E.g. grid search. Allows multiple models to be 
evaluated with little manual intervention

• Can cover the full solution space reasonably 
effectively

• Scope for significant speedup IF we assume 
hyperparameters independent from one 
another – not always wise…

• Assumes uniform prior over hyperparameters

• Often time exploring poor areas
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Problem context
Sequential optimisation
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• Example: hand-tuning after each run

• Example: Bayesian optimisation

• We choose (sample) hyperparameters 
based on a priori assumptions, as well 
as what we learn from running the 
network each time – minimises 
evaluations

random vs tree parzen estimators



Problem context
The “unreasonable success” of random search
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• Random search generally much faster than grid search (more likely to modify 
important parameters – most hyperparameters have little effect on outcome)

• BUT still sampling from a uniform prior

• No ‘honing in’ on optimal solutions

• How to combine computational benefits 
of parallelisation, but still leverage 
knowledge gained from each (expensive) 
solution evaluation?



Solution proposed
Population based training
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• Randomly initialise population of candidate solutions

• Evaluate solutions asynchronously for a while (# evaluations? Threshold?)

• When a solution is ‘ready’, use knowledge from population to decide whether to 
persist, or tack off and try a more promising alternative

• Important: no need for global synchronisation. Just copy more promising 
solution (+ some noise) and start from there



Solution proposed
Proposed algorithm

8 of 14



Solution proposed
Exploit and explore
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• Similar to cloning and mutation genetic operators – but note no recombination 

• Typical exploitation: tournament selection, truncation, elitist. May copy entire 
alternative, or just hyperparameters, omitting model weights

• Explore: can be gradient-based, re-sampling from original prior, or adding 
random noise/perturbations

• Actual implementation simply applies a multiplier of either 1.2 or 0.8 to 
hyperparameters (mild perturbations) or 2.0/0.5 (aggressive)



Solution proposed
Output interpretation
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• Solutions are not 
retrained from scratch 
– model weights are 
copied over

• So output is not a 
fixed set of optimal 
hyperparameters, 
but actually an 
adaptive schedule 



Solution proposed
Annealing analogy
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• PBT more akin to metal annealing than genetic algorithms

• When working metal, grains becomes brittle and needle-like, dislocations 
(abrupt changes in structure) introduced in stressed positions

• Heating to gentle glow breaks atomic bonds, relaxes molecular structure, 
dislocations fall away to stress-free positions 

• Slow cooling results in gradual recrystallisation, atoms set in place but remain 
softer, malleable. Slower cooling = better grain growth

• Simulated annealing: aims to replicate this with hyperparameters (or 
weights…); over time, become less tolerant of poor solutions

changing optical microstructure of steel during deformation (work hardening)



Existing work

12 of 14

• Particle swarm optimisation uses knowledge 
from population, but keeps individuals 
separate, i.e. no branching

• Simulated annealing, is itself its own 
optimisation technique

• Obvious parallels with REGAL, but more 
different than at first glance

• Practical Bayesian optimisation of ML 
algorithms (Snoek, Lerochelle, Adams, 2012) 
approach from other direction, starting with a 
Gaussian Process, then parallelising it

particle swarm optimisation

simulated annealing



Concluding thoughts
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• No constant set of hyperparameters output, so really more ‘model optimisation’ 
than hyperparameter optimisation. Hyperparameters optimised just like 
weights, only with lower frequency updates

• Not wholly convinced by the decision to perturb parameters by 1.2/0.8 multiplier 
rather than adding random noise. (May be to keep better track of annealing 
schedule, though questionable benefit. As likely for sake of simplicity)

• Could be tricky to set ‘cooling rate’, with little way to utilise ineffective runs, due 
to coupling with annealing schedule. Personal preference: genetic approach 
with greater control over exploration/exploitation, convergence and diversity 
trade-offs. More flexible and adaptive, given neural networks have been shown 
to be particularly sensitive to initialisation conditions
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