
Alexander Frost for R244

Population Based Training of 
Neural Networks (PBT)
Max Jaderberg, Valentin Dalibard, Simon Osindero, Wojciech M. Czarnecki, 
Jeff Donahue, Ali Razavi, Oriol Vinyals, Tim Green, Iain Dunning, 
Karen Simonyan, Chrisantha Fernando and Koray Kavukcuoglu

(DeepMind, London, UK)
2017



Presentation Structure

• Overview of PBT

• Problem context

• Solution proposed

• Comparison with existing work

• Conclusion and discussion

2 of 14



Overview of PBT

• Algorithm for optimisation of neural network hyperparameters

• Naturally inspired approach based on metal annealing – note PBT is not a 
genetic algorithm!

• Dynamically assigns computational resources to most promising solutions

• Uses exploration + exploitation mechanism

• Hybridisation of parallel and sequential methods

3 of 14



Problem Context

• E.g. grid search. Allows multiple models to be 
evaluated with little manual intervention

• Can cover the full solution space reasonably 
effectively

• Scope for significant speedup IF we assume 
hyperparameters independent from one 
another – not always wise…

• Assumes uniform prior over hyperparameters

• Often time exploring poor areas

4 of 14

performance

hyperparameters

model weights training

Parallel optimisation



Problem context
Sequential optimisation

5 of 14

• Example: hand-tuning after each run

• Example: Bayesian optimisation

• We choose (sample) hyperparameters 
based on a priori assumptions, as well 
as what we learn from running the 
network each time – minimises 
evaluations

random vs tree parzen estimators



Problem context
The “unreasonable success” of random search

6 of 14

• Random search generally much faster than grid search (more likely to modify 
important parameters – most hyperparameters have little effect on outcome)

• BUT still sampling from a uniform prior

• No ‘honing in’ on optimal solutions

• How to combine computational benefits 
of parallelisation, but still leverage 
knowledge gained from each (expensive) 
solution evaluation?



Solution proposed
Population based training

7 of 14

• Randomly initialise population of candidate solutions

• Evaluate solutions asynchronously for a while (# evaluations? Threshold?)

• When a solution is ‘ready’, use knowledge from population to decide whether to 
persist, or tack off and try a more promising alternative

• Important: no need for global synchronisation. Just copy more promising 
solution (+ some noise) and start from there



Solution proposed
Proposed algorithm

8 of 14



Solution proposed
Exploit and explore

9 of 14

• Similar to cloning and mutation genetic operators – but note no recombination 

• Typical exploitation: tournament selection, truncation, elitist. May copy entire 
alternative, or just hyperparameters, omitting model weights

• Explore: can be gradient-based, re-sampling from original prior, or adding 
random noise/perturbations

• Actual implementation simply applies a multiplier of either 1.2 or 0.8 to 
hyperparameters (mild perturbations) or 2.0/0.5 (aggressive)



Solution proposed
Output interpretation

10 of 14

• Solutions are not 
retrained from scratch 
– model weights are 
copied over

• So output is not a 
fixed set of optimal 
hyperparameters, 
but actually an 
adaptive schedule 



Solution proposed
Annealing analogy

11 of 14

• PBT more akin to metal annealing than genetic algorithms

• When working metal, grains becomes brittle and needle-like, dislocations 
(abrupt changes in structure) introduced in stressed positions

• Heating to gentle glow breaks atomic bonds, relaxes molecular structure, 
dislocations fall away to stress-free positions 

• Slow cooling results in gradual recrystallisation, atoms set in place but remain 
softer, malleable. Slower cooling = better grain growth

• Simulated annealing: aims to replicate this with hyperparameters (or 
weights…); over time, become less tolerant of poor solutions

changing optical microstructure of steel during deformation (work hardening)



Existing work

12 of 14

• Particle swarm optimisation uses knowledge 
from population, but keeps individuals 
separate, i.e. no branching

• Simulated annealing, is itself its own 
optimisation technique

• Obvious parallels with REGAL, but more 
different than at first glance

• Practical Bayesian optimisation of ML 
algorithms (Snoek, Lerochelle, Adams, 2012) 
approach from other direction, starting with a 
Gaussian Process, then parallelising it

particle swarm optimisation

simulated annealing



Concluding thoughts

13 of 14

• No constant set of hyperparameters output, so really more ‘model optimisation’ 
than hyperparameter optimisation. Hyperparameters optimised just like 
weights, only with lower frequency updates

• Not wholly convinced by the decision to perturb parameters by 1.2/0.8 multiplier 
rather than adding random noise. (May be to keep better track of annealing 
schedule, though questionable benefit. As likely for sake of simplicity)

• Could be tricky to set ‘cooling rate’, with little way to utilise ineffective runs, due 
to coupling with annealing schedule. Personal preference: genetic approach 
with greater control over exploration/exploitation, convergence and diversity 
trade-offs. More flexible and adaptive, given neural networks have been shown 
to be particularly sensitive to initialisation conditions



References

• Jaderberg M, Dalibard V, Osindero S, Czarnecki WM, Donahue J, Razavi A, Vinyals O, Green T, Dunning I, Simonyan K, 
Fernando C. Population based training of neural networks. arXiv preprint arXiv:1711.09846. 2017 Nov 27. 

• DNA icon made from Icon Fonts (http://www.onlinewebfonts.com/icon) is licensed by CC BY 3.0 

• Random search vs Bayesian optimisation comparison: J. Bergstra, D. Yamins, and D. D. Cox. 2013. Making a science of 
model search: hyperparameter optimization in hundreds of dimensions for vision architectures. In Proceedings of the 30th 
International Conference on International Conference on Machine Learning - Volume 28 (ICML’13)

• James Bergstra and Yoshua Bengio. 2012. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13, null 
(3/1/2012), 281–305.

• Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. 2012. Practical Bayesian optimization of machine learning algorithms. In 
Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 2 (NIPS'12). Curran 
Associates Inc., Red Hook, NY, USA, 2951–2959.

• Particle swarm optimisation and simulated annealing gifs obtains under CC0 1.0 
https://en.wikipedia.org/wiki/Simulated_annealing https://en.wikipedia.org/wiki/Particle_swarm_optimization

14 of 14

http://www.onlinewebfonts.com/icon
https://en.wikipedia.org/wiki/Simulated_annealing
https://en.wikipedia.org/wiki/Particle_swarm_optimization

