PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Structure

- Background/motivation
- Key contributions
- Results/analysis
- Review
- Developments

Background

- Graph-parallel computation
- Pregel (Google)
- Bulk synchronous parallel (BSP) model
- GraphLab
- Asynchronous distributed shared-memory abstraction
- Power-law graphs

Motivation

- Natural graphs have a structure limiting performance
- Communication asymmetry in some graphs
- Difficulty partitioning natural graphs
- High storage costs

Natural graphs
 Graphs derived from natural phenomena

- Pregel \& GraphLab not suited for natural graphs
- Challenges of high degree vertices
- Low quality partitioning

Partitioning Natural Graphs

- Minimise communication
- Balance communication and storage

$$
\begin{aligned}
& \text { (a) Edge-Cut }
\end{aligned}
$$

Pregel Edge cut

GraphLab Edge cut

$$
\mathbb{E}\left[\frac{\mid \text { Edges Cut } \mid}{|E|}\right]=1-\frac{1}{p} .
$$

Key contributions

- GAS program abstraction
- Delta caching
- Efficient vertex cuts
- PowerGraph implementation
- Performance evaluation

GAS Abstraction

- Three stages:
- Gather
- Apply
- Scatter

```
interface GASVertexProgram(u) {
    // Run on gather_nbrs(u)
    gather ( }\mp@subsup{D}{u}{},\mp@subsup{D}{(u,v)}{},\mp@subsup{D}{v}{})->\mathrm{ Accum
    sum(Accum left, Accum right) }->\mathrm{ Accum
    apply(Du,Accum) }->\mp@subsup{D}{u}{\mathrm{ new}
    // Run on scatter_nbrs(u)
    scatter ( }\mp@subsup{D}{u}{\mathrm{ new }},\mp@subsup{D}{(u,v)}{},\mp@subsup{D}{v}{})->(\mp@subsup{D}{(u,v)}{\mathrm{ new }}, Accum
}
```


Efficient vertex cuts

- PowerGraph investigated three methods for vertex cuts:
- Random
- Greedy (Oblivious)
- Greedy (Coordinated)

More features!

- Delta caching
- Fault tolerance (checkpointing)
- Synchronous, asynchronous, async+serialisable execution

Review \& discussion

- Natural graphs are difficult to process efficiently
- GAS abstraction makes it simple to write graph-parallel algorithms
- Vertex-cut algorithm major contribution
- Is PowerGraph only useful for natural graphs?
- Been used for MLDM applications (Collaborative Filtering, Computer Vision etc)

Since publication

- PowerGraph project became part of GraphLab v2.1
- GraphLab was renamed to Turi (Turi Create)
- Turi purchased by Apple in 2016
- Became a Python framework for ML applications (classifiers, detection, clustering etc)

