PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs

Paper review by Sean Parker

Structure

- Background/motivation
- Key contributions
- Results/analysis
- Review
- Developments

Background

- Graph-parallel computation
- Pregel (Google)
 - Bulk synchronous parallel (BSP) model
- GraphLab
 - Asynchronous distributed shared-memory abstraction
- Power-law graphs

Motivation

- Natural graphs have a structure limiting performance
- Communication asymmetry in some graphs
- Difficulty partitioning natural graphs
- High storage costs

Natural graphs Graphs derived from natural phenomena

- Pregel & GraphLab not suited for natural graphs
 - Challenges of high degree vertices
 - Low quality partitioning

Partitioning Natural Graphs

- Minimise communication
- Balance communication and storage \bullet

Pregel & GraphLab partition on edges

$$\mathbb{E}\left[\frac{|Edges Cut|}{|E|}\right] = 1 - \frac{1}{p}$$

Pregel Edge cut

GraphLab Edge cut

Key contributions

- GAS program abstraction
- Delta caching
- Efficient vertex cuts
- PowerGraph implementation
- Performance evaluation

GAS Abstraction

- Three stages:
 - Gather
 - Apply
 - Scatter

interface GASVertexProgram(u) { // Run on gather_nbrs(u) gather $(D_u, D_{(u,v)}, D_v) \rightarrow Accum$ **sum**(Accum left, Accum right) \rightarrow Accum **apply** $(D_u, Accum) \rightarrow D_u^{\text{new}}$ // Run on scatter_nbrs(u) scatter $(D_u^{\text{new}}, D_{(u,v)}, D_v) \rightarrow (D_{(u,v)}^{\text{new}}, Accum)$

Efficient vertex cuts

- PowerGraph investigated three methods for vertex cuts:
 - Random
 - Greedy (Oblivious)
 - Greedy (Coordinated)

More features!

- Delta caching
- Fault tolerance (checkpointing)
- Synchronous, asynchronous, async+serialisable execution

Review & discussion

- Natural graphs are difficult to process efficiently
- GAS abstraction makes it simple to write graph-parallel algorithms
- Vertex-cut algorithm major contribution
- Is PowerGraph only useful for natural graphs?
 - Been used for MLDM applications (Collaborative Filtering, Computer Vision etc)

Since publication

- PowerGraph project became part of GraphLab v2.1
- GraphLab was renamed to Turi (Turi Create)
- Turi purchased by Apple in 2016

• Became a Python framework for ML applications (classifiers, detection, clustering etc)