
Rlgraph: Modular Computation 
Graphs For Deep Reinforcement 

Learning
Paper by Michael Schaarschmidt, Sven Mika, Kai Fricke, Eiko Yoneki

Presentation by Matthew Guest



Reinforcement Learning

• Has its origins with Markovian Decision Processes (Bellman, 1957)
• Q – value vs Q - learning
• Deep Q-Network Deepmind (Volodymyr Mnih et al, 2013)
• DNQ Issues: Forgetfulness / Volitility; Enormous state-space
• Algorithmic Progress: Dueling DNS (Ziyu Wang, 2015), IMPALA
• Environment Standardisation: OpenAI gym
• Reinforcement Learning Frameworks…



Challenges of Reinforcement Learning

• No Supervision, Feedback is Delayed (Credit Assignment Problem) 
• Data observed is causally effected by agents' actions.

• Therefore, Actor / Environment feedback loop is sequential
• Parallelisation (Especially if environment not simulated)

• Non-determinism of environment and stochastic nature of many 
approximations cause issues with testing and reproducibility.

• Large Search Space -> Computational Power:
• Seeking to benefit from distributed approach



RL Frameworks

• OpenAI gym – Baselines for testing, Environments (Atari, 3D, …)
• Tool for environments, libraries favour conciseness over extensibility 

• TensorForce – TensorFlow library for Deep RL
• Declarative API
• Modular Components (not decomposable)
• Algorithm and Application Separation

• Ray RLib – RL Library for Ray Distributed Execution Engine
• Distributed RL Library. Native to Ray with Central Command Framework 



Rlgraph Overview

• This paper outlines a new, unifying Framework with the aim to 
improve:

• Incremental Building Testing
• To improve the speed of prototyping and robustness of production models.

• Distributed Execution
• By focusing on modularisation, RLgraph aims to separate the concerns of 

design and execution. 

• Extensibility 
• By separating “logical component composition, backend graph definition and 

distributed execution,” components are interchangeable and well defined.



Rlgraph Components 

• The Rlgraph framework is primarily a Component graph.
• A Component class can encapsulate arbitrary computations.
• A Component contains internal methods, API methods, variables, and 

associated sub-components.
• This graph structure is an abstraction 

that can be executed across platforms. 



Framework Design

• Separating algorithms and execution 
• RL algorithms require complex control flow to coordinate distributed system 

and sample collection. 
• Agents’ policies require internal training logic.
• Components separate concerns.

• Reusable components with strict interfaces. 
• Interchangeable components, not dissimilar to NN layers in Keras for example. 
• Components interact only via strict, declared APIs. Static analysis

• Incremental sub-graph testing. 
• Components in Rlgraph may be individually built and tested.



Identified Failings of Existing Frameworks

• TensorForce – TensorFlow library for Deep RL
• Modular, but lack Modular, Separated Build Process for Testing
• Unnecessary context switching between TF runtime and Python interpreter

• Ray RLib – RL Library for Ray Distributed Execution Engine
• Lacks portability due to Ray nativity
• Restricted Control Flow inherited from Ray 



Results

• Build overhead: Sub 1 second for both TF and PT
• Worker Performance Baseline: No overhead on TF, Slight overhead PT
• Distributed execution on Ray:

• Outperformed Rlib in Ray environment



Follow on

• This paper was 2019
• RL Algorithms: Multi Agent & Semi Supervised
• Frameworks: Acme (Deepmind June 2020)



Q&A


	Rlgraph: Modular Computation Graphs For Deep Reinforcement Learning
	Reinforcement Learning
	Challenges of Reinforcement Learning
	RL Frameworks
	Rlgraph Overview
	Rlgraph Components 
	Framework Design
	Identified Failings of Existing Frameworks
	Results
	Follow on
	Q&A

