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Abstract

Developing state-of-the-art image classification models often requires significant
architecture engineering and tuning. In this paper, we attempt to reduce the
amount of architecture engineering by using Neural Architecture Search to learn
an architectural building block on a small dataset that can be transferred to a large
dataset. This approach is similar to learning the structure of a recurrent cell within
a recurrent network. In our experiments, we search for the best convolutional cell
on the CIFAR-10 dataset and then apply this learned cell to the ImageNet dataset
by stacking together more of this cell. Although the cell is not learned directly on
ImageNet, an architecture constructed from the best learned cell achieves state-
of-the-art accuracy of 82.3% top-1 and 96.0% top-5 on ImageNet, which is 0.8%
better in top-1 accuracy than the best human-invented architectures while having 9
billion fewer FLOPS. This cell can also be scaled down two orders of magnitude:
a smaller network constructed from the best cell also achieves 74% top-1 accuracy,
which is 3.1% better than the equivalently-sized, state-of-the-art models for mobile
platforms.

1 Introduction

ImageNet classification [11] is a historically important benchmark in computer vision. The seminal
work of Krizhevsky et al. [30] on using convolutional architectures [16, 31] for ImageNet classification
represents one of the most important breakthroughs in deep learning. Successive advancements on
this benchmark based on convolutional neural networks (CNNs) have achieved impressive results
through significant architecture engineering [19, 44, 49, 50, 51, 58].

In this paper, we consider learning the convolutional architectures directly from data with application
to ImageNet classification. We focus on ImageNet classification because the features derived from
this network are of great importance in computer vision. For example, features from networks that
perform well on ImageNet classification provide state-of-the-art performance when transferred to
other computer vision tasks where labeled data is limited [12].

Our approach derives from the recently proposed Neural Architecture Search (NAS) framework [61],
which uses a policy gradient algorithm to optimize architecture configurations. Running NAS directly
on the ImageNet dataset is computationally expensive given the size of the dataset. We therefore
use NAS to search for a good architecture on the far smaller CIFAR-10 dataset, and transfer the
architecture to ImageNet. We achieve this transferrability by designing the search space so that the
complexity of the architecture is independent of the depth of the network and the size of input images.
More concretely, all convolutional networks in our search space are composed of convolutional cells
with identical structures but different weights. Searching for the best convolutional architectures is
therefore reduced to searching for the best cell structures. Searching for convolutional cells in this
manner is much faster and the architecture itself is more likely to generalize to other problems. In
particular, this approach significantly accelerates the search for the best architectures using CIFAR-10
(e.g., 4 weeks to 4 days) and learns architectures that successfully transfer to ImageNet.
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Our primary result is that the best architecture found on CIFAR-10 achieves state-of-the-art accuracy
on ImageNet classification without much modification. On ImageNet, an architecture constructed
from the best cell achieves state-of-the-art accuracy of 82.3% top-1 and 96.0% top-5, which is
0.8% better in top-1 accuracy than the best human-invented architectures while having 9 billion
fewer FLOPS. On CIFAR-10 itself, the architecture achieves 96.59% accuracy, while having fewer
parameters than models with comparable performance. A small version of the state-of-the-art Shake-
Shake model [17] with 2.9M parameters achieves 96.45% accuracy, while our 3.3M parameters
model achieves a 96.59% accuracy. Not only our model has a better accuracy, it also needs only 600
epochs to train, which is one third of number of epochs for the Shake-Shake model.

Finally, by simply varying the number of the convolutional cells and number of filters in the convo-
lutional cells, we can create convolutional architectures with different computational demands. In
particular, we can generate a family of models that achieve accuracies superior to all human-invented
models at equivalent or smaller computational budgets [27, 51]. Notably, the smallest version of the
learned model achieves 74.0% top-1 accuracy on ImageNet, which is 3.1% better than previously
engineered architectures targeted towards mobile and embedded vision tasks [22, 59].

2 Method

2.1 Neural Architecture Search for Large Scale Image Classification

Our work extends the Neural Architecture Search (NAS) framework proposed by Zoph and Le [61].
To briefly summarize the training procedure of NAS, a controller recurrent neural network (RNN)
samples child networks with different architectures. The child networks are trained to convergence to
obtain some accuracy on a held-out validation set. The resulting accuracies are used to update the
controller so that the controller will generate better architectures over time. The controller weights
are updated using a policy gradient method (Figure 1).

Figure 1: Overview of Neural Architecture Search [61]. A controller RNN predicts architecture A
from search space S with probability p. A child network with architecture A is trained to convergence
achieving accuracy R. Scale the gradients of p by R to update the RNN controller.

A key element of NAS is to design the search space S to generalize across problems of varying
complexity and spatial scales. We observed that applying NAS directly on the ImageNet dataset
would be very expensive and require months to complete an experiment. However, if the search space
is properly constructed, architectural elements can transfer across datasets [61].

The focus of this work is to design a search space, such that the best architecture found on the CIFAR-
10 dataset would scale to larger, higher-resolution image datasets across a range of computational
settings. One inspiration for this search space is the recognition that architecture engineering
with CNNs often identifies repeated motifs consisting of combinations of convolutional filter banks,
nonlinearities and a prudent selection of connections to achieve state-of-the-art results [19, 49, 50, 51].
These observations suggest that it may be possible for the controller RNN to predict a generic
convolutional cell expressed in terms of these motifs. This cell can then be stacked in series to handle
inputs of arbitrary spatial dimensions and filter depth.

To construct a complete model for image classification, we take an architecture for a convolutional
cell and simply repeat it many times. Each convolutional cell would have the same architecture, but
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have different weights. To easily build scalable architectures for images of any size, we need two
types of convolutional cells to serve two main functions when taking in a feature map as input: (1)
convolutional cells that return a feature map of the same dimension, and (2) convolutional cells that
return a feature map where the feature map height and width is reduced by a factor of two. We name
the first type and second type of convolutional cells Normal Cell and Reduction Cell respectively. For
the Reduction Cell, to reduce the height and width by a factor of two, we make the initial operation
applied to cell’s inputs have a stride of two. All of our operations that we consider for building our
convolutional cells have an option of striding.

Figure 2 shows our placement of Normal and Reduction Cells for CIFAR and ImageNet. Note on
ImageNet we have more Reduction Cells, since the incoming image size is 299x299 compared to
32x32 for CIFAR. The Reduction and Normal Cell could be the same architecture, but we empirically
found it was beneficial to learn two separate architectures. We employ a common heuristic to double
the number of filters in the output whenever the spatial activation size is reduced in order to maintain
roughly constant hidden state dimension [30, 44]. Importantly, we consider the number of motif
repetitions N and the number of initial convolutional filters as free parameters that we tailor to the
scale of an image classification problem.

Figure 2: Scalable architecture for image classification consists of two repeated motifs termed Normal
Cell and Reduction Cell. This diagram highlights the model architecture for CIFAR-10 and ImageNet.
The choice for the number of times the Normal Cells that gets stacked between reduction cells, N ,
can vary in our experiments.

2.2 Search Space for Convolutional Cells

Our search space differs from [61] where the controller needs to predict the entire architecture of the
neural networks. In our method, the controller needs to predict the structures of the two convolutional
cells (Normal Cell and Reduction Cell), which can be then stacked many times to create the eventual
architecture shown in Figure 2-Left. The convolutional cell is inspired by the concept of recurrent
cells, where the structure of the cells is independent of the number of time steps in the recurrent
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network. This is an effective way to decouple the complexity of the cells from the depth of the neural
network so that the controller RNN only needs to focus on predicting the structure of the cell.

Each cell receives as input two initial hidden states hi and hi−1 which are the outputs of two cells in
previous two lower layers or the input image. The job of the controller RNN is to recursively predict
the rest of the structure of the convolutional cell (Figure 3). The predictions of the controller for each
cell are grouped into B blocks, where each block has 5 prediction steps made by 5 distinct softmax
classifiers corresponding to discrete choices of the elements of a block:
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Figure 3: Controller model architecture for recursively constructing one block of a convolutional cell.
Each block requires selecting 5 discrete parameters, each of which corresponds to the output of a
softmax layer. Example constructed block shown on right. A convolutional cell contains B blocks,
hence the controller contains 5B softmax layers for predicting the architecture of a convolutional cell.
In our experiments, the number of blocks B is 5.

Step 1. Select a hidden state from h or from the set of hidden states created in previous blocks.

Step 2. Select a second hidden state from the same options as in Step 1.

Step 3. Select an operation to apply to the hidden state selected in Step 1.

Step 4. Select an operation to apply to the hidden state selected in Step 2.

Step 5. Select a method to combine the outputs of Step 3 and 4 to create a new hidden state.

The algorithm appends the newly-created hidden state to the set of existing hidden states as a potential
input in subsequent blocks. The controller RNN repeats the above 5 prediction steps B times
corresponding to the B blocks in a convolutional cell. In our experiments, selecting B = 5 provides
good results, although we have not exhaustively searched this space due to computational limitations.

In steps 3 and 4, the controller RNN selects an operation to apply to the hidden states. We collected
the following set of operations based on their prevalence in the CNN literature:

• identity • 1x3 then 3x1 convolution
• 1x7 then 7x1 convolution • 3x3 dilated convolution
• 3x3 average pooling • 3x3 max pooling
• 5x5 max pooling • 7x7 max pooling
• 1x1 convolution • 3x3 convolution
• 3x3 separable convolution • 5x5 separable convolution
• 7x7 separable convolution

In our experiments, we apply each separable operation twice during the execution of the child model,
once that operation is selected by the controller.

In step 5 the controller RNN selects a method to combine the two hidden states, either (1) elementwise
addition between two hidden states and (2) concatenation between two hidden states along the filter
dimension. Finally, all of the unused hidden states generated in the convolutional cell are concatenated
together in depth to provide the final cell output.

To have the controller RNN predict both the Normal and Reduction cell we simply make the controller
have 2 × 5B predictions in total, where the first 5B predictions are for the Normal Cell and the
second 5B predictions are for the Reduction Cell.
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3 Experiments and Results

In this section, we describe our experiments with Neural Architecture Search using the search space
described above to learn a convolutional cell. In summary, all architecture searches are performed
using the CIFAR-10 classification task [29]. The controller RNN was trained using Proximal Policy
Optimization (PPO) [43] by employing a global workqueue system for generating a pool of child
networks controlled by the RNN. In our experiments, the pool of workers in the workqueue consisted
of 450 GPUs. Please see Appendix A for complete details of the architecture learning and controller
system.

The result of this search process yields several candidate convolutional cells. Figure 4 shows a
diagram of the top performing cell. Note the prevalence of separable convolutions and the number of
branches as compared with competing architectures [19, 44, 49, 50, 51]. Subsequent experiments
focus on this convolutional cell architecture, although we examine the efficacy of other, top-ranked
convolutional cells in ImageNet experiments (described in Appendix B) and report their results as
well. We call the three networks constructed from the best three cells NASNet-A, NASNet-B and
NASNet-C.

Figure 4: Architecture of the best convolutional cells (NASNet-A) with B = 5 blocks identified
with CIFAR-10 . The input (white) is the hidden state from previous activations (or input image).
The output (pink) is the result of a concatenation operation across all resulting branches. Each
convolutional cell is the result of B blocks. A single block is corresponds to two primitive operations
(yellow) and a combination operation (green). Note that colors correspond to operations in Figure 3.

We demonstrate the utility of the convolutional cell by employing this learned architecture on CIFAR-
10 and a family of ImageNet classification tasks. The latter family of tasks is explored across a few
orders of magnitude in computational budget. After having learned the convolutional cell, several
hyper-parameters may be explored to build a final network for a given task: (1) the number of cell
repeats N and (2) the number of filters in the initial convolutional cell. We employ a common
heuristic to double the number of filters whenever the stride is 2.

3.1 General Training Strategies

We found that adding Batch Normalization and/or a ReLU between the depthwise and pointwise
operations in the separable convolution operations to not help performance. L1 regularization was
tried with the NASNet models, but this was found to hurt performance. We also tried ELU [10]
instead of ReLUs and found that performance was about the same. Dropout [47] was also tried on
the convolutional filters, but this was found to degrade performance.
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Operation Ordering: All convolution operations that could be predicted are applied within the
convolutional cells in the following order: ReLU, convolution operation, Batch Normalization. We
found this order to improve performance over a different ordering: convolution operation, Batch
Normalization and ReLU. This result is inline with findings from other papers where using the
pre-ReLU activation works better. In order to be sure shapes always match in the convolutional cells,
1x1 convolutions are inserted as necessary.

Cell Path Dropout: When training our NASNet models, we found stochastically dropping out
each path (edge with a yellow box) in the cell with some fixed probability to be an extremely good
regularizer. This is similar to [25] and [60] where they dropout full parts of their model during
training and then at test time scale the path by the probability of keeping that path during training.
Interestingly we found that linearly increasing the probability of dropping out a path over the course
of training to significantly improve the final performance for both CIFAR and ImageNet experiments.

3.2 Results on CIFAR-10 Image Classification

For the task of image classification with CIFAR-10, we set N=4 or 6 (Figure 2). The networks
are trained on CIFAR-10 for 600 epochs. The test accuracies of the best architectures are reported
in Table 1 along with other state-of-the-art models; the best architectures found by the controller
RNN are better than the previous state-of-the-art Shake-Shake model when comparing with the same
number of parameters. Additionally, we only train for a third of the time where Shake-Shake trains
for 1800 epochs. See appendix A for more details on CIFAR training.

Model Depth # parameters Error rate (%)

DenseNet (L = 40, k = 12) [23] 40 1.0M 5.24
DenseNet(L = 100, k = 12) [23] 100 7.0M 4.10
DenseNet (L = 100, k = 24) [23] 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) [24] 190 25.6M 3.46

Shake-Shake 26 2x32d [17] 26 2.9M 3.55
Shake-Shake 26 2x96d [17] 26 26.2M 2.86

NAS v1 no stride or pooling [61] 15 4.2M 5.50
NAS v2 predicting strides [61] 20 2.5M 6.01
NAS v3 max pooling [61] 39 7.1M 4.47
NAS v3 max pooling + more filters [61] 39 37.4M 3.65

NASNet-A N=6 3.3M 3.41
NASNet-B N=4 2.6M 3.73
NASNet-C N=4 3.1M 3.59

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

3.3 Results on ImageNet Image Classification

We performed several sets of experiments on ImageNet with the best convolutional cells learned from
CIFAR-10. Results are summarized in Table 2 and 3 and Figure 5. In the first set of experiments, we
train several image classification systems operating on 299x299 or 331x331 resolution images scaled
in computational demand on par with Inception-v2 [27], Inception-v3 [51] and PolyNet [60]. We
demonstrate that this family of models achieve state-of-the-art performance with fewer floating point
operations and parameters than comparable architectures. Second, we demonstrate that by adjusting
the scale of the model we can achieve state-of-the-art performance at smaller computational budgets,
exceeding streamlined CNNs hand-designed for this operating regime [22, 59].

Note we do not have residual connections around convolutional cells as the models learn skip
connections on their own. We empirically found manually inserting residual connections between
cells to not help performance. Our training setup on ImageNet is similar to [51], but please see
Appendix A for details.

Table 2 shows that the convolutional cells discovered with CIFAR-10 generalize well to ImageNet
problems. In particular, each model based on the convolutional cell exceeds the predictive perfor-
mance of the corresponding hand-designed model. Importantly, the largest model achieves a new
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Figure 5: Accuracy versus computational demand (left) and number of parameters (right) across
top performing CNN architectures on ImageNet 2012 ILSVRC challenge prediction task (compiled
as of July 2017). Computational demand is measured in the number of floating-point multiply-
add operations to process a single image. Black circles indicate previously published work and
red squares highlight our proposed models. Vertical dashed line indicates 1 billion multiply-add
operations. Horizontal dashed line indicates 80% precision@1 prediction accuracy.

Model image size # parameters Mult-Adds Top 1 Acc. (%) Top 5 Acc. (%)

Inception V2 [27] 224×224 11.2 M 1.94 B 74.8 92.2
NASNet-A (N = 5) 299×299 10.9 M 2.35 B 78.6 94.2

Inception V3 [51] 299×299 23.8 M 5.72 B 78.0 93.9
Xception [9] 299×299 22.8 M 8.38 B 79.0 94.5
Inception ResNet V2 [50] 299×299 55.8 M 13.2 B 80.4 95.3
NASNet-A (N = 7) 299×299 22.6 M 4.93 B 80.8 95.3

ResNeXt-101 (64 x 4d) [58] 320×320 83.6 M 31.5 B 80.9 95.6
PolyNet [60] 331×331 92 M 34.7 B 81.3 95.8
DPN-131 [8] 320×320 79.5 M 32.0 B 81.5 95.8
NASNet-A (N = 7) 331×331 84.9 M 23.2 B 82.3 96.0

Table 2: Performance of architecture search and other state-of-the-art models on ImageNet classifi-
cation. Mult-Adds indicate the number of composite multiply-accumulate operations for a single
image.

Model # parameters Mult-Adds Top 1 Acc. (%) Top 5 Acc. (%)

Inception V1 [49] 6.6M 1,448 M 69.8 89.9
MobileNet-224 [22] 4.2 M 569 M 70.6 89.5
ShuffleNet (2x) [59] ∼ 5M 524 M 70.9 89.8

NASNet-A (N=4) 5.3 M 564 M 74.0 91.6
NASNet-B (N=4) 5.3M 488 M 72.8 91.3
NASNet-C (N=3) 4.9M 558 M 72.5 91.0

Table 3: Performance on ImageNet classification on a subset of models operating in a constrained
computational setting, i.e., < 1.5B multiply-accumulate operations per image. All models employ
224x224 images.

state-of-the-art performance for ImageNet (82.3%) based on single, non-ensembled predictions,
surpassing previous state-of-the-art by 0.8% [8]. Figure 5 shows a complete summary of these results.
Note the family of models based on convolutional cells provides an envelope over a broad class of
human-invented architectures.

Finally, we test how well the best convolutional cells may perform in a resource-constrained setting,
e.g., mobile devices (Table 3). In these settings, the number of floating point operations is severely
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constrained and predictive performance must be weighed against latency requirements on a device
with limited computational resources. MobileNet [22] and ShuffleNet [59] provide state-of-the-
art results predicting 70.6% and 70.9% accuracy, respectively on 224x224 images using ∼ 550M
multliply-add operations. An architecture constructed from the best convolutional cells achieves
superior predictive performance (74.0% accuracy) surpassing previous models but with compara-
ble computational demand. In summary, we find that the learned convolutional cells are flexible
across model scales achieving state-of-the-art performance across almost 2 orders of magnitude in
computational budget.

4 Related Work

The proposed method is related to previous work in hyperparameter optimization [4, 5, 6, 33,
37, 45, 46] – especially recent approaches in designing architectures such as Neural Fabrics [40],
DiffRNN [34], MetaQNN [3] and DeepArchitect [36]. A more flexible class of methods for designing
architecture is evolutionary algorithms [15, 28, 35, 39, 48, 55, 57], yet they have not had as much
success at large scale. Xie and Yuille [57] also transferred learned architectures from CIFAR-10
to ImageNet but performance of these models (top-1 accuracy 72.1%) are notably below previous
state-of-the-art (Table 2).

The concept of having one neural network interact with a second neural network to aid the learning
process, or learning to learn or meta-learning [21, 41] has attracted much attention in recent years [1,
13, 14, 18, 32, 38, 52]. Most of these approaches have not been scaled to large problems like
ImageNet. A notable exception is recent work focused on learning an optimizer for ImageNet
classification that achieved notable improvements [54].

The design of our search space took much inspiration from LSTMs [20], and NASCell [61]. The
modular structure of the convolutional cell is also related to previous methods on ImageNet such as
VGG [44], Inception [49, 50, 51], ResNet/ResNext [19, 58], and Xception/MobileNet [9, 22].

5 Conclusion

In this work, we demonstrate how to learn scalable, convolutional cells from data that transfer to
multiple image classification tasks. The key insight to this approach is to design a search space that
decouples the complexity of an architecture from the depth of a network. This resulting search space
permits identifying good architectures on a small dataset (i.e., CIFAR-10) and transferring the learned
architecture to image classifications across a range of data and computational scales.

The resulting architectures approach or exceed state-of-the-art performance in terms of CIFAR-
10, ImageNet classification with less computational demand than human-designed architectures
[27, 51, 60]. The ImageNet results are particularly important because many state-of-the-art computer
vision problems (e.g., object detection [26], face detection [42], image localization [53]) derive
image features or architectures from ImageNet classification models. Finally, we demonstrate that
we can employ the resulting learned architecture to perform ImageNet classification with reduced
computational budgets that outperform streamlined architectures targeted to mobile and embedded
platforms [22, 59].

Our results have strong implications for transfer learning and meta-learning as this is the first work
to demonstrate state-of-the-art results using meta-learning on a large scale problem. This work also
highlights that learned elements of network architectures, beyond model weights, can transfer across
datasets.
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Appendix

A Experimental Details

A.1 Dataset for Architecture Search

The CIFAR-10 dataset [29] consists of 60,000 32x32 RGB images across 10 classes (50,000 train
and 10,000 test images). We partition a random subset of 5,000 images from the training set to use as
a validation set for the controller RNN. All images are whitened and then undergone several data
augmentation steps: we randomly crop 32x32 patches from upsampled images of size 40x40 and
apply random horizontal flips. This data augmentation procedure is common among related work.

A.2 Controller architecture

The controller RNN is a one-layer LSTM [20] with 100 hidden units at each layer and 2×5B softmax
predictions for the two convolutional cells (where B is typically 5) associated with each architecture
decision. Each of the 10B predictions of the controller RNN is associated with a probability. The
joint probability of a child network is the product of all probabilities at these 10B softmaxes. This
joint probability is used to compute the gradient for the controller RNN. The gradient is scaled by the
validation accuracy of the child network to update the controller RNN such that the controller assigns
low probabilities for bad child networks and high probabilities for good child networks.

Unlike Zoph and Le [61], who used the REINFORCE rule [56] to update the controller, we employ
Proximal Policy Optimization (PPO) [43] with learning rate 0.00035 because it made training more
robust and increased convergence speed. To encourage exploration we also use an entropy penalty
with a weight of 0.00001. We also use a baseline function, which we set to be an exponential moving
average of previous rewards, with a weight of 0.95. The weights of the controller are initialized
uniformly between -0.1 and 0.1.

A.3 Training of the Controller

For distributed training, we use a work queue system where all the samples generated from the
controller RNN are added to a global workqueue. A free "child" worker in a distributed worker
pool asks the controller for new work from the global workqueue. Once the training of the child
network is complete, the accuracy on a held-out validation set is computed and reported to the
controller RNN. In our experiments we use a child worker pool size of 450, which means there are
450 networks being trained on 450 GPUs concurrently at any time. Upon receiving enough child
model training results, the Controller RNN will perform a gradient update on its weights using TRPO
and then sample another batch of architectures that go into the global work queue. This process
continues until a predetermined number of architectures have been sampled. In our experiments, this
predetermined number of architectures is 20,000 which means the search process is terminated after
20,000 child models have been trained. Additionally, we update the controller RNN with minibatches
of 20 architectures. Once the search is over, the top 250 architectures are then chosen to train until
convergence on CIFAR-10 to determine the very best architecture.

A.4 Training of CIFAR models

All of our CIFAR models use a single period cosine decay as in [17]. All models use the momentum
optimizer with momentum rate set to 0.9. All models also use L2 weight decay. Each architecture is
trained for a fixed 20 epochs on CIFAR-10 during the architecture search process. Additionally, we
found it beneficial to use the cosine learning rate decay during the 20 epochs the CIFAR models were
trained for as this helped to further differentiate good architectures. We also found that having the
CIFAR models use a small N=2 during the architecture search process allowed for models to train
quite quickly, while still finding cells that work well once more were stacked.

A.5 Training of ImageNet models

We use ImageNet 2012 ILSVRC challenge data for large scale image classification. The dataset
consists of ∼ 1.2M images labeled across 1000 classes [11]. Overall our training and testing
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procedures are almost identical to [51]. ImageNet models are trained and evaluated on 299x299 or
331x331 images using the same data augmentation procedures as described previously [51]. We use
distributed synchronous SGD to train the ImageNet model with 50 workers (and 3 backup workers)
each with a Tesla K40 GPU [7]. We use RMSProp with a decay of 0.9 and epsilon of 1.0. Evaluations
are calculated using with a running average of parameters over time with a decay rate of 0.9999. We
use label smoothing with a value of 0.1 for all ImageNet models as done in [51]. Additionally, all
models use an auxiliary classifier located at 2/3 of the way up the network. The loss of the auxiliary
classifier is weighted by 0.4 as done in [51]. We empirically found our network to be insensitive to the
number of parameters associated with this auxiliary classifier along with the weight associated with
the loss. All models also use L2 regularization. The learning rate decay scheme is the exponential
decay scheme used in [51]. Dropout is applied to the final softmax matrix with probability 0.5.

B Additional Experiments

We now present two additional cells that performed well on CIFAR and ImageNet. The search spaces
used for these cells are slightly different than what was used for NASNet-A. For the NASNet-B model
in Figure 6 we do not concatenate all of the unused hidden states generated in the convolutional cell.
Instead all of the hiddenstates created within the convolutional cell, even if they are currently used,
are fed into the next layer. Note that B = 4 and there are 4 hiddenstates as input to the cell as these
numbers must match for this cell to be valid. We also allow addition followed by layer normalization
[2] or instance normalization to be predicted as two of the combination operations within the cell,
along with addition or concatenation.

Figure 6: Architecture of NASNet-B convolutional cell with B = 4 blocks identified with CIFAR-10.
The input (white) is the hidden state from previous activations (or input image). Each convolutional
cell is the result of B blocks. A single block is corresponds to two primitive operations (yellow) and
a combination operation (green). As do we not concatenate the output hidden states, each output
hidden state is used as a hidden state in the future layers. Each cell takes in 4 hidden states and thus
needs to also create 4 output hidden states. Each output hidden state is therefore labeled with 0, 1, 2,
3 to represent the next four layers in that order.

For NASNet-C (Figure 7), we concatenate all of the unused hidden states generated in the con-
volutional cell like in NASNet-A, but now we allow the prediction of addition followed by layer
normalization or instance normalization like in NASNet-B.
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Figure 7: Architecture of NASNet-C convolutional cell with B = 4 blocks identified with CIFAR-10.
The input (white) is the hidden state from previous activations (or input image). The output (pink)
is the result of a concatenation operation across all resulting branches. Each convolutional cell
is the result of B blocks. A single block corresponds to two primitive operations (yellow) and a
combination operation (green).
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