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Abstract

Bayesian optimization has become a successful
tool for hyperparameter optimization of machine
learning algorithms, such as support vector ma-
chines or deep neural networks. Despite its suc-
cess, for large datasets, training and validating a
single configuration often takes hours, days, or
even weeks, which limits the achievable perfor-
mance. To accelerate hyperparameter optimiza-
tion, we propose a generative model for the valida-
tion error as a function of training set size, which
is learned during the optimization process and al-
lows exploration of preliminary configurations on
small subsets, by extrapolating to the full dataset.
We construct a Bayesian optimization procedure,
dubbed FABOLAS, which models loss and train-
ing time as a function of dataset size and auto-
matically trades off high information gain about
the global optimum against computational cost.
Experiments optimizing support vector machines
and deep neural networks show that FABOLAS
often finds high-quality solutions 10 to 100 times
faster than other state-of-the-art Bayesian opti-
mization methods or the recently proposed bandit
strategy Hyperband.

1 Introduction

The performance of many machine learning algorithms
hinges on certain hyperparameters. For example, the pre-
diction error of non-linear support vector machines depends
on regularization and kernel hyperparameters C and γ; and
modern neural networks are sensitive to a wide range of hy-
perparameters, including learning rates, momentum terms,
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number of units per layer, dropout rates, weight decay,
etc. (Montavon et al., 2012). The poor scaling of naïve
methods like grid search with dimensionality has driven
interest in more sophisticated hyperparameter optimization
methods over the past years (Bergstra et al., 2011; Hutter
et al., 2011; Bergstra and Bengio, 2012; Snoek et al., 2012;
Bardenet et al., 2013; Bergstra et al., 2013; Swersky et al.,
2013, 2014; Snoek et al., 2015). Bayesian optimization has
emerged as an efficient framework, achieving impressive
successes. For example, in several studies, it found bet-
ter instantiations of convolutional network hyperparameters
than domain experts, repeatedly improving the top score
on the CIFAR-10 (Krizhevsky, 2009) benchmark without
data augmentation (Snoek et al., 2012; Domhan et al., 2015;
Snoek et al., 2015).

In the traditional setting of Bayesian hyperparameter op-
timization, the loss of a machine learning algorithm with
hyperparameters x ∈ X is treated as the “black-box” prob-
lem of finding arg minx∈X f(x), where the only mode of
interaction with the objective f is to evaluate it for inputs
x ∈ X. If individual evaluations of f on the entire dataset re-
quire days or weeks, only very few evaluations are possible,
limiting the quality of the best found value. Human experts
instead often study performance on subsets of the data first,
to become familiar with its characteristics before gradually
increasing the subset size (Bottou, 2012; Montavon et al.,
2012). This approach can still outperform contemporary
Bayesian optimization methods.

Motivated by the experts’ strategy, here we leverage dataset
size as an additional degree of freedom enriching the repre-
sentation of the optimization problem. We treat the size of a
randomly subsampled dataset Nsub as an additional input to
the blackbox function, and allow the optimizer to actively
choose it at each function evaluation. This allows Bayesian
optimization to mimic and improve upon human experts
when exploring the hyperparameter space. In the end, Nsub
is not a hyperparameter itself, but the goal remains a good
performance on the full dataset, i.e. Nsub = N .

Hyperparameter optimization for large datasets has been
explored by other authors before. Our approach is similar to
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Multi-Task Bayesian optimization by Swersky et al. (2013),
where knowledge is transferred between a finite number of
correlated tasks. If these tasks represent manually-chosen
subset-sizes, this method also tries to find the best config-
uration for the full dataset by evaluating smaller, cheaper
subsets. However, the discrete nature of tasks in that ap-
proach requires evaluations on the entire dataset to learn the
necessary correlations. Instead, our approach exploits the
regularity of performance across dataset size, enabling gen-
eralization to the full dataset without evaluating it directly.

Other approaches for hyperparameter optimization on large
datasets include work by Nickson et al. (2014), who es-
timated a configuration’s performance on a large dataset
by evaluating several training runs on small, random sub-
sets of fixed, manually-chosen sizes. Krueger et al. (2015)
showed that, in practical applications, small subsets can
suffice to estimate a configuration’s quality, and proposed a
cross-validation scheme that sequentially tests a fixed set of
configurations on a growing subset of the data, discarding
poorly-performing configurations early.

In parallel work1, Li et al. (2017) proposed a multi-arm ban-
dit strategy, called Hyperband, which dynamically allocates
more and more resources to randomly sampled configura-
tions based on their performance on subsets of the data.
Hyperband assures that only well-performing configura-
tions are trained on the full dataset while discarding bad
ones early. Despite its simplicity, in their experiments the
method was able to outperform well-established Bayesian
optimization algorithms.

In §2, we review Bayesian optimization, in particular the
Entropy Search algorithm and the related method of Multi-
Task Bayesian optimization. In §3, we introduce our new
Bayesian optimization method FABOLAS for hyperparame-
ter optimization on large datasets. In each iteration, FABO-
LAS chooses the configuration x and dataset size Nsub pre-
dicted to yield most information about the loss-minimizing
configuration on the full dataset per unit time spent. In §4, a
broad range of experiments with support vector machines
and various deep neural networks show FABOLAS often
identifies good hyperparameter settings 10 to 100 times
faster than state-of-the-art Bayesian optimization methods
acting on the full dataset as well as Hyperband.

2 Bayesian optimization

Given a black-box function f : X → R, Bayesian opti-
mization2 aims to find an input x? ∈ arg minx∈X f(x) that
globally minimizes f . It requires a prior p(f) over the func-
tion and an acquisition function ap(f) : X→ R quantifying

1Hyperband was first described in a 2016 arXiv paper (Li et al.,
2016), and FABOLAS was first described in a 2015 NIPS workshop
paper (Klein et al.)

2Comprehensive tutorials are presented by Brochu et al. (2010)
and Shahriari et al. (2016).

the utility of an evaluation at any x. With these ingredi-
ents, the following three steps are iterated (Brochu et al.,
2010): (1) find the most promising xn+1 ∈ arg max ap(x)
by numerical optimization; (2) evaluate the expensive and
often noisy function yn+1 ∼ f(xn+1) +N (0, σ2) and add
the resulting data point (xn+1, yn+1) to the set of obser-
vations Dn = (xj , yj)j=1...n; and (3) update p(f | Dn+1)
and ap(f |Dn+1). Typically, evaluations of the acquisition
function a are cheap compared to evaluations of f such that
the optimization effort is negligible.

2.1 Gaussian Processes

Gaussian processes (GP) are a prominent choice for p(f),
thanks to their descriptive power and analytic tractability
(e.g. Rasmussen and Williams, 2006). Formally, a GP is a
collection of random variables, such that every finite subset
of them follows a multivariate normal distribution. A GP
is identified by a mean function m (often set to m(x) =
0 ∀x ∈ X), and a positive definite covariance function
(kernel) k. Given observations Dn = (xj , yj)j=1...n =
(X,y) with joint Gaussian likelihood p(y | X, f(X)),
the posterior p(f |Dn) follows another GP, with mean and
covariance functions of tractable, analytic form.

The covariance function determines how observations influ-
ence the prediction. For the hyperparameters we wish to
optimize, we adopt the Matérn 5/2 kernel (Matérn, 1960),
in its Automatic Relevance Determination form (MacKay
and Neal, 1994). This stationary, twice-differentiable model
constitutes a relatively standard choice in the Bayesian op-
timization literature. In contrast to the Gaussian kernel
popular elsewhere, it makes less restrictive smoothness as-
sumptions, which can be helpful in the optimization setting
(Snoek et al., 2012):

k5/2(x,x
′) = θ

(
1 +
√

5dλ(x,x′)

+5/3d2λ(x,x′)
)
e−
√
5dλ(x,x′).

(1)

Here, θ and λ are free parameters—hyperparameters
of the GP surrogate model—and dλ(x,x′) = (x −
x′)T diag(λ)(x− x′) is the Mahalanobis distance. For the
dataset size dependent performance and cost, we construct
a custom kernel in 3.1. An additional hyperparameter of the
GP model is a overall noise covariance needed to handle
noisy observations. For clarity: These GP hyperparameters
are internal hyperparameters of the Bayesian optimizer, as
opposed to those of the target machine learning algorithm
to be tuned. Section 3.4 shows how we handle them.

2.2 Acquisition functions

The role of the acquisition function is to trade off exploration
vs. exploitation. Popular choices include Expected Improve-
ment (EI) (Mockus et al., 1978), Upper Confidence Bound
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(UCB) (Srinivas et al., 2010), Entropy Search (ES) (Hen-
nig and Schuler, 2012), and Predictive Entropy Search
(PES) (Hernández-Lobato et al., 2014). In our experiments,
we will use EI and ES.

We found EI to perform robustly in most applications, pro-
viding a solid baseline; it is defined as

aEI(x|Dn) = Ep[max(fmin − f(x), 0)] . (2)

where fmin is the best function value known (also called the
incumbent). This expected drop over the best known value
is high for points predicted to have small mean and/or large
variance.

ES is a more recent acquisition function that selects evalua-
tion points based on the predicted information gain about
the optimum, rather than aiming to evaluate near the opti-
mum. At the heart of ES lies the probability distribution
pmin(x | D) := p(x ∈ arg minx′∈X f(x′) | D), the belief
about the function’s minimum given the prior on f and ob-
servationsD. The information gain at x is then measured by
the expected Kullback-Leibler divergence (relative entropy)
between pmin(· | D∪{(x, y)}) and the uniform distribution
u(x), with expectations taken over the measurement y to be
obtained at x:

aES(x) : = Ep(y|x,D)

[∫
pmin(x′ | D ∪ {(x, y)})

· log
pmin(x′ | D ∪ {(x, y)})

u(x′)
dx′
]
.

(3)

The primary numerical challenge in this framework is the
computation of pmin(· | D ∪ {(x, y)}) and the integral
above. Due to the intractability, several approximations
have to be made. We refer to Hennig and Schuler (2012) for
details, as well as to the supplemental material (Section A),
where we also provide pseudocode for our implementation.
Despite the conceptual and computational complexity of ES,
it offers a well-defined concept for information gained from
function evaluations, which can be meaningfully traded off
against other quantities, such as the evaluations’ cost.

PES refers to the same acquisition function, but uses dif-
ferent approximations to compute it. In Section 3.4 we
describe why, for our application, ES was the more direct
choice.

2.3 Multi-Task Bayesian optimization

The Multi-Task Bayesian optimization (MTBO) method of
Swersky et al. (2013) refers to a general framework for
optimizing in the presents of different, but correlated tasks.
Given a set of such tasks T = {1, . . . , T}, the objective
function f : X× T→ R corresponds to evaluating a given
x ∈ X on one of the tasks t ∈ T. The relation between
points in X× T is modeled via a GP using a product kernel:

kMT((x, t), (x′, t′)) = kT (t, t′) · k5/2(x,x
′) . (4)

The kernel kT is represented implicitly by the Cholesky
decomposition of k(T,T) whose entries are sampled via
MCMC together with the other hyperparameters of the
GP. By considering the distribution over the optimum
on the target task t∗ ∈ T, pt∗min(x | D) := p(x ∈
arg minx′∈X f(x′, t = t∗) | D), and computing any in-
formation w.r.t. it, Swersky et al. (2013) use the information
gain per unit cost as their acquisition function3:

aMT(x, t) : =
1

c(x, t)
Ep(y|x,t,D)

[∫
pt∗min(x′ | D′)

· log
pt∗min(x′ | D′)

u(x′)
dx′
]
, (5)

where D′ = D ∪ {(x, t, y)}. The expectation represents
the information gain on the target task averaged over the
possible outcomes of f(x, t) based on the current model. If
the cost c(x, t) of a configuration x on task t is not known
a priori it can be modelled the same way as the objective
function.

This model supports machine learning hyperparameter op-
timization for large datasets by using discrete dataset sizes
as tasks. Swersky et al. (2013) indeed studied this approach
for the special case of T = {0, 1}, representing a small and
a large dataset; this will be a baseline in our experiments.

3 Fast Bayesian optimization for large
datasets

Here, we introduce our new approach for FAst Bayesian
Optimization on LArge data Sets (FABOLAS). While tradi-
tional Bayesian hyperparameter optimizers model the loss
of machine learning algorithms on a given dataset as a black-
box function f to be minimized, FABOLAS models loss and
computational cost across dataset size and uses these mod-
els to carry out Bayesian optimization with an extra degree
of freedom. The blackbox function f : X × R → R now
takes another input representing the data subset size; we
will use relative sizes s = Nsub/N ∈ [0, 1], with s = 1
representing the entire dataset. While the eventual goal
is to minimize the loss f(x, s = 1) for the entire dataset,
evaluating f for smaller s is usually cheaper, and the func-
tion values obtained correlate across s. Unfortunately, this
correlation structure is initially unknown, so the challenge
is to design a strategy that trades off the cost of function
evaluations against the benefit of learning about the scaling
behavior of f and, ultimately, about which configurations
work best on the full dataset. Following the nomenclature of

3In fact, Swersky et al. (2013) deviated slightly from this for-
mula (which follows the ES approach of Hennig and Schuler
(2012)) by considering the difference in information gains in
pt∗min(x | D) and pt∗min(x | D ∪ {(x, y)}). They stated this to
work better in practice, but we did not find evidence for this in our
experiments and thus, for consistency, use the variant presented
here throughout.
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Williams et al. (2000), we call s ∈ [0, 1] an environmental
variable that can be changed freely during optimization, but
that is set to s = 1 (i.e., the entire dataset size), at evaluation
time.

We propose a principled rule for the automatic selection of
the next (x, s) pair to evaluate. In a nutshell, where standard
Bayesian optimization would always run configurations on
the full dataset, we use ES to reason about, how much can
be learned about performance on the full dataset from an
evaluation at any s. In doing so, FABOLAS automatically
determines the amount of data necessary to (usefully) ex-
trapolate to the full dataset.

For an initial intuition on how performance changes with
dataset size, we evaluated a grid of 400 configurations of a
support vector machine (SVM) on subsets of the MNIST
dataset (LeCun et al., 2001) ; MNIST has N = 50 000
data points and we evaluated relative subset sizes s ∈
{1/512, 1/256, 1/128, . . . , 1/4, 1/2, 1}. Figure 1 visualizes the
validation error of these configurations on s = 1/128, 1/16,
1/4, and 1. Evidently, just 1/128 of the dataset is quite repre-
sentative and sufficient to locate a reasonable configuration.
Additionally, there are no deceiving local optima on smaller
subsets. Based on these observations, we expect that rel-
atively small fractions of the dataset yield representative
performances and therefore vary our relative size parameter
s on a logarithmic scale.

3.1 Kernels for loss and computational cost

To transfer the insights from this illustrative example into
a formal model for the loss and cost across subset sizes,
we extend the GP model by an additional input dimension,
namely s ∈ [0, 1]. This allows the surrogate to extrapolate to
the full data set at s = 1 without necessarily evaluating there.
We chose a factorized kernel, consisting of the standard
stationary kernel over hyperparameters, multiplied with a
finite-rank (“degenerate”) covariance function in s:

k ((x, s), (x′, s′)) = k5/2 (x,x′) ·
(
φT (s) · Σφ · φ(s′)

)
.

(6)
Since any choice of the basis function φ yields a positive
semi-definite covariance function, this provides a flexible
language for prior knowledge relating to s. We use the same
form of kernel to model the loss f and cost c, respectively,
but with different basis functions φf and φc.

The loss of a machine learning algorithms usually decreases
with more training data. We incorporate this behavior by
choosing φf (s) = (1, (1 − s)2)T to enforce monotonic
predictions with an extremum at s = 1. This kernel choice
is equivalent to Bayesian linear regression with these basis
functions and Gaussian priors on the weights.

To model computational cost c, we note that the complexity
usually grows with relative dataset size s. To fit polynomial
complexity O(sα) for arbitrary α and simultaneously en-

force positive predictions, we model the log-cost and use
φc(s) = (1, s)T . As above, this amounts to Bayesian linear
regression with shown basis functions.

In the supplemental material (Section B), we visualize scal-
ing of loss and cost with s for the SVM example above and
show that our kernels indeed fit them well. We also evaluate
the possibility of modelling the heteroscedastic noise in-
troduced by subsampling the data (supplementary material,
Section C).

3.2 Formal algorithm description

FABOLAS starts with an initial design, described in more
detail in Section 3.3. Afterwards, at the beginning of each
iteration it fits GPs for loss and computational cost across
dataset sizes s using the kernel from Eq. 6. Then, capturing
the distribution of the optimum for s = 1 using ps=1

min(x |
D) := p(x ∈ arg minx′∈X f(x′, s = 1) | D), it selects the
maximizer of the following acquisition function to trade off
information gain versus cost:

aF(x, s) : =
1

c(x, s) + coverhead

Ep(y|x,s,D)

[∫
ps=1
min(x′ | D ∪ {(x, s, y)})· (7)

log
ps=1
min(x′ | D ∪ {(x, s, y)})

u(x′)
dx′
]
.

Algorithm 1 shows pseudocode for FABOLAS. We
also provide an open-source implementation at
https://github.com/automl/RoBO.

Algorithm 1 Fast BO for Large Datasets (FABOLAS)

1: Initialize data D0 using an initial design.
2: for t = 1, 2, . . . do
3: Fit GP models for f(x, s) and c(x, s) on data Dt−1
4: Choose (xt, st) by maximizing the acquisition func-

tion in Equation 7.
5: Evaluate yt ∼ f(xt, st) +N (0, σ2), also measuring

cost zt ∼ c(xt, st) + N (0, σ2
c ), and augment the

data: Dt = Dt−1 ∪ {(xt, st, yt, zt)}
6: Choose incumbent x̂t based on the predicted loss at

s = 1 of all {x1,x2, . . . ,xt}.
7: end for

Our proposed acquisition function resembles the one used
by MTBO (Eq. 5), with two differences: First, MTBO’s
discrete tasks t are replaced by a continuous dataset size s
(allowing to learn correlations without evaluations at s = 1,
and to choose the appropriate subset size automatically).
Second, the prediction of computational cost is augmented
by the overhead of the Bayesian optimization method. This
inclusion of the reasoning overhead is important to appropri-
ately reflect the information gain per unit time spent: it does

https://github.com/automl/RoBO
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(a) s = 1/128 (b) s = 1/16 (c) s = 1/4 (d) s = 1

Figure 1: Validation error of a grid of 400 SVM configurations (20 settings of each of the regularization parameter C and
kernel parameter γ, both on a log-scale in [−10, 10]) for subsets of the MNIST dataset (LeCun et al., 2001) of various sizes
Nsub. Small subsets are quite representative: The validation error of bad configuration (yellow) remains constant at around
0.9, whereas the region of good configurations (blue) does not change drastically with s.

not matter whether the time is spent with a function evalua-
tion or with reasoning about which evaluation to perform.
In practice, due to cubic scaling in the number of data points
of GPs and the computational complexity of approximating
ps=1
min , the additional overhead of FABOLAS is within the or-

der of minutes, such that differences in computational cost
in the order of seconds become negligible in comparison.4

Being an anytime algorithm, FABOLAS keeps track of its
incumbent at each time step. To select a configuration that
performs well on the full dataset, it predicts the loss of all
evaluated configurations at s = 1 using the GP model and
picks the minimizer. We found this to work more robustly
than globally minimizing the posterior mean, or similar
approaches.

3.3 Initial design

It is common in Bayesian optimization to start with an initial
design of points chosen at random or from a Latin hyper-
cube design to allow for reasonable GP models as starting
points. To fully leverage the speedups we can obtain from
evaluating small datasets, we bias this selection towards
points with small (cheap) datasets in order to improve the
prediction for dependencies on s: We draw k random points
in X (k = 10 in our experiments) and evaluate them on
different subsets of the data (for instance on the support vec-
tor machine experiments we used s ∈ {1/64, 1/32, 1/16, 1/8}).
This provides information on scaling behavior, and, assum-
ing that costs increase linearly or superlinearly with s, these
k function evaluations cost less than k

8 function evaluations
on the full dataset. This is important as the cost of the initial
design, of course, counts towards FABOLAS’ runtime.

4The same is true for standard ES and MTBO, but was never
exploited as no emphasis was put on the total wall clock time
spent for the hyperparameter optimization. We want to emphasize
that we express budgets in terms of wall clock time (not function
evaluations) since this is natural in most practical applications.

3.4 Implementation details

The presentation of FABOLAS above omits some details
that impact the performance of our method. As it has be-
come standard in Bayesian optimization (Snoek et al., 2012),
we use Markov-Chain Monte Carlo (MCMC) integration
to marginalize over the GPs hyperparameters (we use the
emcee package (Foreman-Mackey et al., 2013)). To accel-
erate the optimization, we use hyper-priors to emphasize
meaningful values for the parameters, chiefly adopting the
choices of the SPEARMINT toolbox (Snoek et al., 2012): a
uniform prior between [−10, 2] for all length scales λ in log
space, a lognormal prior (µa = 0, σ2

a = 1) for the covari-
ance amplitude θ, and a horseshoe prior with length scale
of 0.1 for the noise variance σ2.

We used the original formulation of ES by Hennig and
Schuler (2012) rather than the recent reformulation of PES
by Hernández-Lobato et al. (2014). The main reason for this
is that the latter prohibits non-stationary kernels due to its
use of Bochner’s theorem for a spectral approximation. PES
could in principle be extended to work for our particular
choice of kernels (using an Eigen-expansion, from which we
could sample features); since this would complicate making
modifications to our kernel, we leave it as an avenue for
future work, but note that in any case it may only further
improve our method. To maximize the acquisition function
we used the blackbox optimizer DIRECT (Jones, 2001) and
CMAES (Hansen, 2006).

4 Experiments

For our empirical evaluation of FABOLAS, we compared
it to standard Bayesian optimization (using EI and ES as
acquisition functions), MTBO, and Hyperband. For each
method, we tracked wall clock time (counting both optimiza-
tion overhead and the cost of function evaluations, including
the initial design), storing the incumbent returned after ev-
ery iteration. In an offline validation step, we then trained
models with all incumbents on the full dataset and measured
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Figure 2: Evaluation on SVM grid on MNIST. (Left) Baseline comparison of test performance of the methods’ selected
incumbents over time. (Middle) Test performance over time for variants of MTBO with different dataset sizes for the
auxiliary task. (Right) Dataset size FABOLAS and MTBO pick in each iteration to trade off small cost and high information
gain; unlike elsewhere in the paper, this right plot shows mean ±1/4 stddev of 30 runs (medians would only take two values
for MTBO).

their test error. We plot these test errors throughout.5 To
obtain error bars, we performed 10 independent runs of
each method with different seeds (except on the grid ex-
periment, where we could afford 30 runs per method) and
plot medians, along with 25th and 75th percentiles for all
experiments. Details on the hyperparameter ranges used
in every experiment are given in the supplemental material
(Section D).

We implemented Hyperband following Li et al. (2017) using
the recommended setting for the parameter η = 3 that con-
trols the intermediate subset sizes. For each experiment, we
adjusted the budget allocated to each Hyperband iteration to
allow the same minimum dataset size as for FABOLAS: 10
times the number of classes for the support vector machine
benchmarks and the maximum batch size for the neural
network benchmarks. We also followed the prescribed in-
cumbent estimation after each iteration as the configuration
with the best performance on the full dataset size.

4.1 Support vector machine grid on MNIST

First, we considered a benchmark allowing the comparison
of the various Bayesian optimization methods on ground
truth: our SVM grid on MNIST (described in Section 3),
for which we had performed all function evaluations be-
forehand, measuring loss and cost 10 times for each con-
figuration x and subset size s to account for performance
variations. (In this case, we computed each method’s wall
clock time in each iteration as its summed optimization over-
heads so far, plus the summed costs for the function values
it queried so far.)

MTBO requires choosing the number of data points in its
auxiliary task. Figure 2 (middle) evaluates MTBO vari-

5The residual network in Section 4.4 is an exception: here,
we trained networks with the incumbents on the full training set
(50000 data points, augmented to 100000 as in the original code)
and then measured and plotted performance on the validation set.

ants with a single auxiliary task with a relative size of 1/4,
1/32, and 1/512, respectively. With auxiliary tasks at either
s = 1/512 or 1/32, MTBO improved quickly, but converged
more slowly to the optimum; we believe small correlations
between the tasks cause this. Figure 2 (right) shows the
dataset sizes chosen by the different algorithms during the
optimization; all methods slowly increased the average sub-
set size used over time. An auxiliary task with s = 1/4
worked best and we used this for MTBO in the remaining
experiments.

At first glance, one might expect many tasks (e.g., with a
task for each s ∈ {1/512, 1/256, . . . , 1/2, 1}) to work best,
but quite the opposite is true. In preliminary experiments,
we evaluated MTBO with up to 3 auxiliary tasks (s = 1/4,
1/32, and 1/512), but found performance to strongly degrade
with a growing number of tasks. We suspect that the

(|T |
2

)
kernel parameters that have to be learned for the discrete
task kernel for |T | tasks are the main reason. If the MCMC
sampling is too short, the correlations are not appropriately
reflected, especially in early iterations, and an adjusted sam-
pling creates a large computational overhead that dominates
wall-clock time. We therefore obtained best performance
with only one auxiliary task.

Figure 2 (left) shows results using EI, ES, random search,
MTBO and FABOLAS on this SVM benchmark. EI and ES
perform equally well and find the best configuration (which
yields an error of 0.014, or 1.4%) after around 105 sec-
onds, roughly five times faster than random search. MTBO
achieves good performance faster, requiring only around
2× 104 seconds to find the global optimum. FABOLAS is
roughly another order of magnitude faster than MTBO in
finding good configurations, and finds the global optimum
at the same time.
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Figure 3: SVM hyperparameter optimization on the datasets covertype (left), vehicle (middle) and MNIST(right). At each
time, the plots show test performance of the methods’ respective incumbents. FABOLAS finds a good configuration between
10 and 1000 times faster than the other methods.

Figure 4: Test performance of a convolutional neural network on CIFAR10 (left) and SVHN (right).

4.2 Support vector machines on various datasets

For a more realistic scenario, we optimized the same SVM
hyperparameters without a grid constraint on MNIST and
two other prominent UCI datasets (gathered from OpenML
(Vanschoren et al., 2014)), vehicle registration (Siebert,
1987) and forest cover types (Blackard and Dean, 1999)
with more than 50000 data points, now also comparing to
Hyperband. Training SVMs on these datasets can take sev-
eral hours, and Figure 3 shows that FABOLAS found good
configurations for them between 10 and 1000 times faster
than the other methods.

Hyperband required a relatively long time until it recom-
mended its first hyperparameter setting, but this first recom-
mendation was already very good, making Hyperband sub-
stantially faster to find good settings than standard Bayesian
optimization running on the full dataset. However, FABO-
LAS typically returned configurations with the same quality
another order of magnitude faster.

4.3 Convolutional neural networks on CIFAR-10 and
SVHN

Convolutional neural networks (CNNs) have shown supe-
rior performance on a variety of computer vision and speech
recognition benchmarks, but finding good hyperparameter
settings remains challenging, and almost no theoretical guar-
antees exist. Tuning CNNs for modern, large datasets is
often infeasible via standard Bayesian optimization; in fact,
this motivated the development of FABOLAS.

We experimented with hyperparameter optimization for
CNNs on two well-established object recognition datasets,
namely CIFAR10 (Krizhevsky, 2009) and SVHN (Netzer
et al., 2011). We used the same setup for both datasets (a
CNN with three convolutional layers, with batch normal-
ization (Ioffe and Szegedy, 2015) in each layer, optimized
using Adam (Kingma and Ba, 2014)). We considered a total
of five hyperparameters: the initial learning rate, the batch
size and the number of units in each layer. For CIFAR10, we
used 40000 images for training, 10000 to estimate validation
error, and the standard 10000 hold-out images to estimate
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Figure 5: Validation performance of a residual network on
CIFAR10.

the final test performance of incumbents. For SVHN, we
used 6000 of the 73257 training images to estimate vali-
dation error, the rest for training, and the standard 26032
images for testing.

The results in Figure 4 show that—compared to the SVM
tasks—FABOLAS’ speedup was smaller because CNNs
scale linearly in the number of datapoints. Nevertheless,
it found good configurations about 10 times faster than
vanilla Bayesian optimization. For the same reason of linear
scaling, Hyperband was substantially slower than vanilla
Bayesian optimization to make a recommendation, but it
did find good hyperparameter settings when given enough
time.

4.4 Residual neural network on CIFAR-10

In the final experiment, we evaluated the performance of our
method further on a more expensive benchmark, optimizing
the validation performance of a deep residual network on the
CIFAR10 dataset, using the original architecture from He
et al. (2015). As hyperparameters we exposed the learning
rate, L2 regularization, momentum and the factor by which
the learning rate is multiplied after 41 and 61 epochs.

Figure 5 shows that FABOLAS found configurations with
reasonable performance roughly 10 times faster than ES and
MTBO. Note that due to limited computational capacities,
we were unable to run Hyperband on this benchmark: a sin-
gle iteration took longer than a day, making it prohibitively
expensive. (Also note that by that time all other methods had
already found good hyperparameter settings.) We want to
emphasize that the runtime could be improved by adapting
Hyperband’s parameters to the benchmark, but we decided
to keep all methods’ parameters fixed throughout the experi-
ments to also show their robustness.

5 Conclusion

We presented FABOLAS, a new Bayesian optimization
method based on entropy search that mimics human ex-
perts in evaluating algorithms on subsets of the data to
quickly gather information about good hyperparameter set-
tings. FABOLAS extends the standard way of modelling
the objective function by treating the dataset size as an
additional continuous input variable. This allows the incor-
poration of strong prior information. It models the time it
takes to evaluate a configuration and aims to evaluate points
that yield—per time spent—the most information about the
globally best hyperparameters for the full dataset. In vari-
ous hyperparameter optimization experiments using support
vector machines and deep neural networks, FABOLAS of-
ten found good configurations 10 to 100 times faster than
the related approach of Multi-Task Bayesian optimization,
Hyperband and standard Bayesian optimization. Our open-
source code is available at https://github.com/automl/RoBO,
along with scripts for reproducing our experiments.

In future work, we plan to expand our algorithm to model
other environmental variables, such as the resolution size of
images, the number of classes, and the number of epochs,
and we expect this to yield additional speedups. Since our
method reduces the cost of individual function evaluations
but requires more of these cheaper evaluations, we expect
the cubic complexity of Gaussian processes to become the
limiting factor in many practical applications. We therefore
plan to extend this work to other model classes, such as
Bayesian neural networks (Neal, 1996; Hernández-Lobato
and Adams, 2015; Blundell et al., 2015; Springenberg et al.,
2016; Klein et al., 2017), which may lower the computa-
tional overhead while having similar predictive quality.
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