

Efficient Large-Scale Graph Processing

on Hybrid CPU and GPU Systems

ABDULLAH GHARAIBEH, The University of British Columbia

ELIZEU SANTOS-NETO, The University of British Columbia

LAURO BELTRÃO COSTA, The University of British Columbia

MATEI RIPEANU, The University of British Columbia

The increasing scale and wealth of inter-connected data, such as those accrued by social network

applications, demand the design of new techniques and platforms to efficiently derive actionable

knowledge from large-scale graphs. However, large real-world graphs are famously difficult to process

efficiently. Not only they have a large memory footprint, but also most graph algorithms entail memory

access patterns with poor locality, data-dependent parallelism and a low compute-to-memory access ratio.

To complicate matters further, most real-world graphs have a highly heterogeneous node degree

distribution, hence partitioning these graphs for parallel processing and simultaneously achieving access

locality and load-balancing is difficult if not impossible.

This work starts from the hypothesis that hybrid platforms (e.g., GPU-accelerated systems) have both the

potential to cope with the heterogeneous structure of real graphs and to offer a cost-effective platform for

high-performance graph processing. This work assesses this hypothesis and presents an extensive

exploration of the opportunity to harness hybrid systems to process large-scale graphs efficiently. In

particular, (i) we present a performance model that estimates the achievable performance on hybrid

platforms; (ii) informed by the performance model, we design and develop TOTEM – a processing engine

that provides a convenient environment to implement graph algorithms on hybrid platforms; (iii) we show

that further performance gains can be extracted using partitioning strategies that aim to produce

partitions that each matches the strengths of the processing element it is allocated to, finally, (iv) we

demonstrate the performance advantages of the hybrid system through a comprehensive evaluation that

uses real and synthetic workloads (as large as 16 billion edges), multiple graph algorithms that stress the

system in various ways, and a variety of hardware configurations.

Categories and Subject Descriptors: C.1.3 [Processor Architectures]: Other Architecture Styles –

Heterogeneous (hybrid) systems. G.2.2 [Discrete Mathematics]: Graph Theory – Graph Algorithms

General Terms: Design, Algorithms, Performance, Experimentation

Additional Key Words and Phrases: Graphics Processing Units, GPUs, Hybrid Systems, Graph Processing,

Graph Partitioning, Performance Modeling

 INTRODUCTION

Graphs are the core data structure for problems that span a wide set of domains,

from mining social networks, to genomics, to business and information analytics. In

these domains, key to our ability to transform raw data into insights and actionable

knowledge is the capability to process large graphs efficiently and at a reasonable

cost.

A major challenge when processing large graphs is their memory footprint:

efficient graph processing requires the whole graph to be present in memory, and

large real graphs can occupy gigabytes to terabytes of space. For example, a snapshot

of the current Twitter follower network has over 500 million vertices and 100 billion

edges, and requires at least 0.5TB of memory. As a result, the most commonly

adopted solution to cost-efficiently process large-scale graphs is to partition them and

use shared-nothing cluster systems [Malewicz et al. 2010; Gonzalez et al. 2012].

We observe, however, that today more efficient solutions are affordable: it is

feasible to assemble single-node1 platforms that aggregate 100s of GB to TBs of RAM

Author’s addresses: Electrical and Computer Engineering Department, University of British Columbia, BC,

Canada. Email: {abdullah, lauroc, elizeus, matei}@ece.ubc.ca

1 We use node to refer to processing elements (i.e., machines, processors), and vertex to refer to the graph

element.

and massive computing power [Gupta et al. 2013; Rowstron et al. 2012; Shun and

Blelloch 2013] all from commodity components and for a relatively low budget.

Compared to clusters, single-node platforms are easier to program, and promise

better performance and energy efficiency for a large class of real-world graph

problems. In fact such single-node graph processing platforms are currently being

used in production: for example, Twitter’s ‘Who To Follow’ (WTF) service, which uses

the follower network to recommend connections to users, is deployed on a single node

[Gupta et al. 2013].

Despite these recent advances, single-node platforms still face a number of

performance challenges. First, graph algorithms have low compute-to-memory access

ratio, which exposes fetching/updating the state of vertices (or edges) as the major

overhead. Second, graph processing exhibits irregular and data-dependent memory

access patterns, which lead to poor memory locality and reduce the effectiveness of

caches and pre-fetching mechanisms. Finally, most real-world graphs have a highly

heterogeneous node degree distribution (i.e., they are ‘power-law’) [Barabási 2003;

Barabási et al. 2000; Jeong et al. 2001; Iori et al. 2008], which makes dividing the

work among threads for access locality and load-balancing difficult.

In this context, two reasons (summarized here and detailed in §2) support the

intuition that commodity single-node hybrid systems (e.g., GPU-accelerated nodes)

may be an appealing platform for high-performance, low-cost graph processing: First,

Graphical Processing Units (GPUs) bring massive hardware multithreading able to

mask memory access latency – the major barrier to performance for this class of

problems. Second, a hybrid system that hosts processing units optimized for fast

sequential processing and units optimized for bulk processing matches well the

heterogeneous structure of the graphs that need to be processed in practice. This

paper investigates these premises. More precisely, it investigates the feasibility and

the comparative advantages of supporting graph processing on hybrid, GPU-

accelerated nodes.

The following high-level questions guide our investigation:

Q1. Is it feasible to efficiently combine traditional CPU cores and massively parallel

processors (e.g., GPUs) for graph processing? In particular, what are the general

challenges to support graph processing on a single-node GPU-accelerated system?

Q2. Assuming that a low-level engine can efficiently process large graphs on hybrid

nodes, what would an abstraction that aims to simplify the task of implementing

graph algorithms look like?

Q3. How should the graph be partitioned to efficiently use both traditional CPU cores

and GPU(s)? More specifically, are there low-complexity partitioning algorithms

that generate partitions that match well the individual strengths of CPUs and

GPUs?

Q4. For a given class of graph problems and a fixed power or cost budget, what is the

optimal balance between traditional and massively-parallel processing elements

(e.g., should one assemble a machine with four CPUs or the same performance

can be obtained with one CPU and one GPU)?

Making progress on answering these questions is important in the context of

current hardware trends: as the relative cost of energy continues to increase relative

to the cost of silicon, future systems will host a wealth of different processing units.

In this context, partitioning the workload and assigning the partitions to the

processing element where they can be executed most efficiently in terms of power or

time becomes a key issue.

Contributions. This work demonstrates that partitioning large-scale graphs to be

processed concurrently on hybrid CPU and GPU platforms offers significant

performance gains (we have also demonstrated [Gharaibeh et al. 2013b] that these

gains hold for energy as well). Moreover, this work defines the class of partitioning

algorithms that will enable best performance on hybrid platforms: these algorithms

should focus on shaping the workload to best match the bottleneck processing engine

(rather than on minimizing communication overheads). Finally, we experiment with

a few partitioning solutions from this class, analyze the observed performance, and

propose guidelines for when they should be used.

In more detail, the contributions are:

 A performance model (§3) to assess the feasibility of accelerating large-scale graph

processing by offloading a graph partition to the GPU. The model is agnostic to the

exact graph processing algorithm, and it takes into account only a small number of

key aspects such as the parallel processing model, the characteristics of the

processing elements, and the properties of the communication channel among

these elements. The model supports the intuition that keeping the communication

overhead low is crucial for efficient graph processing on hybrid systems and it

prompts us to explore the benefits of message aggregation to reduce these

overheads.

 TOTEM2: an open-source graph processing engine for GPU-accelerated platforms (§4).

TOTEM enables efficiently using all CPU and GPU cores on a given node all while

limiting the development complexity. Guided by the performance model, TOTEM

applies a number of algorithm-agnostic optimizations that lead to performance

improvements. One key optimization we introduce is reducing communication

overhead by over an order of magnitude by aggregating messages at the source

processor.

 Insights into key performance overheads (§5). Using TOTEM’s abstractions, we

implement three graph processing algorithms that stress the hybrid system in

different ways. We demonstrate that the gains predicted by the model are

achievable in practice when offloading a random partition to the GPUs. Moreover,

we show that the optimizations applied by TOTEM significantly reduce the

overheads to communicate among the processing elements, and that the

computation phase becomes the dominating overhead.

 Low-cost partitioning strategies tailored for processing on hybrid systems (§6).

Since the optimizations we apply eliminate communication as a major bottleneck,

we focus on partitioning strategies that aim to reduce the computation bottleneck.

These strategies aim to partition the graph such that the workload assigned to the

bottleneck processing element exploits well the element’s strengths. Our

partitioning strategies are informed by vertex-connectivity, and lead to super-

linear performance gains with respect to the share of the workload this is assigned.

 Detailed evaluation of the impact of possible partitioning strategies (§6.3, §7 and

§8). Using large-scale, real-world, and synthetic graphs of different sizes (from 2 to

16 billion edges) and various hardware configurations, we explain the reasons for

the observed performance impact in detail (e.g., using hardware counters and

pseudo-code analysis). We experiment with different graph algorithms that stress

the platform in different ways. To the best of our knowledge, this is the first work

to evaluate graphs as large as 1 billion vertices and 16 billion edges on a single-

node commodity machine.

 Application evaluation (§7). We demonstrate that the gains offered by the hybrid

system hold for two key applications: ranking web pages using PageRank and

finding the main actors in a social network using Betweenness Centrality

algorithm.

2 The code can be found at: http://netsyslab.ece.ubc.ca

 Comparison with other platforms (§9.4). We favorably compare with other

platforms including Galois, Ligra and PowerGraph: the performance of TOTEM on a

modest one CPU socket and one GPU hybrid setup speeds up the performance by

more than 2x compared to the best performance achieved by state-of-the-art

frameworks on a shared-memory machine with four high-end CPU sockets.

 Guidelines (§10). The results presented in this work allow us to put forward a

number of guidelines related to the opportunity and the supporting techniques

required to harness hybrid systems for large-scale graph processing problems.

Notably, the guidelines describe which partitioning strategy to use given a

workload and an algorithm.

 GRAPH PROCESSING ON HYBRID PLATFORMS: OPPORTUNITIES AND CHALLENGES

The previous section discussed the general challenges of single-node graph

processing. This section details the opportunities and challenges brought by GPU

acceleration in this context.

The opportunities: GPU-acceleration has the potential to offer the key

advantage of massive, hardware-supported multithreading. In fact, current GPUs not

only have much higher memory bandwidth than traditional CPU processors, but can

mask memory access latency as they support orders of magnitude more in-flight

memory requests through hardware multithreading.

Additionally, properly mapping the graph-layout and the algorithmic tasks

between the CPU(s) and the GPU(s) holds the promise to exercise each of these

computing units where they perform best: CPUs for fast sequential processing (e.g.,

for the few high degree nodes of a power-law graph) and GPUs for the bulk parallel

processing (e.g., for the many low-degree nodes).

Indeed, past work [Hong et al. 2011a; Merrill et al. 2012] demonstrated that GPU

offloading offers tangible benefits compared to traditional multiprocessors for graph

processing. However, these previous projects assume the entire graph fits the GPU

memory. This is a major limitation as GPUs support over an order of magnitude less

memory space than the host (a trend that held for the past ten years, and, based on

announcements of future GPU models, will continue at least in the medium term).

The challenges: Large-scale graph processing poses two major challenges to

hybrid systems. First, the large amount of data to be processed, and the need to

communicate between processors put pressure on two scarce resources: the GPUs’ on-

board memory and the host to GPU transfer bandwidth. Intelligent graph

representation, partitioning and allocation to compute elements are key to reduce

memory pressure, limit the generated PCI-E bus transfer traffic and efficiently

harness each processing element in an asymmetrical platform.

Second, to achieve good performance on GPUs, the application must, as much as

possible, match the SIMD computing model. As graph problems exhibit data-

dependent parallelism, traditional implementations of graph algorithms lead to low

memory access locality. Nevertheless, GPUs are able to hide memory access latency

via massive hardware multithreading that, with careful design of the graph data

structure and thread assignment, can reduce the impact of these factors.

Finally, mapping high-level abstractions (e.g., vertex-centric processing) and APIs

to facilitate application development to the low-level infrastructure while limiting the

efficiency loss, is an additional challenge.

 MODELING HYBRID SYSTEMS’ PERFORMANCE

Our model aims to provide insights to answer the following question: Is it beneficial

to partition the graph and process it on both the host and the GPU (compared to

processing on the host only)?

It is worth stressing that our goal is a simple model that captures the key

characteristics of a GPU-accelerated platform, highlights its bottlenecks, and helps

reasoning about the feasibility of offloading. We deliberately steer away from a

complex (though potentially more accurate) model. Our evaluation validates this

choice.

 Notations and Assumptions

Let G = (V, E) be a directed

graph, where V is the set of

vertices and E is the set of

directed edges; |V| and |E|

represent their respective

cardinality. Also, let P = {pcpu,

pgpu} be the set of processing

elements of a hybrid node

(Figure 1). While the model

can be easily generalized to a

mix of multiple CPUs and

GPUs; for the sake of

simplicity, here we use a setup with only two processing units.

The model makes the following assumptions:

(i) Each processing element has its own local memory. The processing elements are

connected by a bidirectional interconnect with communication rate c measured in

edges per second (E/s) – this is a reasonable unit as the time complexity of a large

number of graph algorithms depends on the number of edges in the graph. But,

the same model can be recast in terms of vertex-centric algorithms by

normalizing by the number of vertices instead of edges.

(ii) Once the graph is partitioned, the GPU processes its partition faster. This is

because: first, GPUs have a higher graph processing rate than CPUs (based on

published results [Hong et al. 2011a; Hong et al. 2011b], which we validated

independently); second, GPUs have significantly less memory than the host,

which limits the size of the offloaded partition.

(iii) The model assumes the overheads of scheduling the workload (e.g., partitioning

the graph) and gathering the results produced by each processor are negligible

compared to the algorithm’s processing time.

 The Model

Under the assumptions stated in the previous section, the time to process a partition

of G, Gp = (Vp, Ep)  G on a processing element p is given by:

p

p

b

p

p
r

E

c

E
Gt )((1)

where rp is the processing rate of processor p (in edges/s), and
p

b

p
EE  represents the

subset of boundary edges – edges where either the source or the destination vertex is

not located in p’s local memory.

Equation 1 estimates the time required to process a partition as a combination of

the time it takes to communicate possible updates through boundary edges

(communication phase) plus the time it takes to process the edges in that given

partition on processor p (computation phase). Intuitively, the higher the processing

rate of a processing element, the lower is the processing time. Similarly, the less

Figure 1: An illustration of the model, its parameters,

and their values for today’s state-of-the-art commodity

components.

rcpu rgpu Processing rates on the CPU and GPU

c Communication rate between the host and GPU

α Ratio of the graph edges that remain on the host

β Ratio of edges that cross the partition

communication a processing element needs to access the edges in its partition, the

lower is the processing time.

Now, we build on Equation 1 and define the makespan3 of a graph workload G on

a given platform P as follows:

 )(max)(
p

Pp
P

GtGm


 (2)

The intuition behind Equation 2 is that the performance of a parallel system is

limited by its slowest component. Since, as discussed before, the model assumes that

the host processes its partition slower than the GPU (assumption ii), resulting that

the time spent on processing the CPU partition is always higher than that of the

GPU partition (i.e., t(Gcpu) > t(Ggpu)).

Hence, the speedup of processing a graph on a hybrid platform (compared to

processing it on the host only) can be calculated by Equation 3, as follows:

 
 

 

 

 

cpucpu

b

cpu

cpu

cpucpu

cpu

P

cpu

P

rEcE

rE

Gm

Gm

Gm

Gm
Gs






}{

}{}{

 (3)

To understand the gains resulted from moving a portion of the graph to the GPU,

we rewrite Equation 3 by introducing two parameters that characterize the ‘quality’

of the graph partition. Let α be the share of edges (out of the total number of graph

edges |E|) assigned to the host, similarly let β be the percentage of boundary edges

(i.e., the edges that cross the partition). Introducing these parameters, we have:

 















c

rcr

c

rEcE

rE
Gs

cpucpucpu

cpu

P

1
 (4)

As expected, Equation 4 predicts that a high host-accelerator interconnect

communication rate, c, improves the speedup. In fact, if c is set to infinity, the

speedup can be approximated as 1/α. This is intuitive, as in this case the

communication overhead becomes negligible compared to the time spent on

processing the CPU’s share of edges, and the speedup becomes proportional with the

offloaded portion of the graph.

 Setting the Model’s Parameters

Figure 1 presents an illustration of the model with reasonable values for its

parameters for a state-of-the-art commodity hybrid platform. We discuss them in

turn:

 Communication rate (c) is directly proportional to the interconnect bandwidth and

inversely proportional to the amount of data transferred per edge. The GPU is

typically connected to the host via a PCI-E bus. Latest GPU models support PCI-E

gen3.0, which has a measured transfer bandwidth of 12GB/sec. If we assume the

data transferred per edge is a 4-byte value (e.g., the “distance” in Breadth-first

Search or the “rank” in PageRank), the transfer rate c becomes 3 Billion E/s – or

BE/s.

 CPU’s processing rate (rcpu) depends on the CPU’s characteristics, the graph

algorithm, and the graph topology. We test a range of values for this parameter by

3 Makespan: the completion time of a graph processing task [Pinedo 2012].

exploring realistic scenarios. In fact, the values used as input to the model are

informed by the best reported graph processing rates in the literature [Nguyen et

al. 2013] for state-of-the-art commodity single-node machines.

 Percentage of boundary edges (β) depends on the graph partitioning between the

processing elements. In the worst case, all edges cross the partition. Random

partitioning leads to an average β=50%.

 The share of the graph that stays on the CPU (α) is configurable, but is constrained

by the memory space available on the processing elements (for example, larger

memory on the GPU allows for offloading a larger partition, hence smaller α). Our

exploration for this parameter keeps more than half of the graph on the CPU (α >

60%) as a conservative measure to ensure that the assumption t(Gcpu) > t(Ggpu)

always holds. This constraints the speedup to less than 2x.

Figure 2 shows the

speedup predicted by the

model (Equation 4) for

different values of α, while

varying the CPU

processing rate (left plot)

and the percentage of

boundary edges (right plot).

The figure indicates that

as the CPU processing rate

increases (higher rcpu, left

plot) or for a graph

partition that leads to larger percentage of boundary edges (higher β, right plot), the

speedup decreases. This is because the communication overhead becomes more

significant.

Nonetheless, the figure indicates that offloading

part of the graph to be processed in parallel on the

GPU can be beneficial. In particular, if β, is kept low

(below 40% in Figure 2 (right)) the model predicts

speedups. The figure also presents a hypothetical worst

case where all of the edges are boundary edges (e.g., a

bipartite graph where the partition cuts each edge).

Even in this case, and due to the high communication

rate c, a slowdown is predicted only for α > 70%.

Finally, Figure 3 demonstrates the effect of the

amount of transferred data per edge on the predicted

speedup. As expected, the speedup drops as we double

the amount of transferred data. However, if β is kept

reasonably low, the model predicts tangible speedups

even when tripling the size of data transferred per

boundary edge. To this end, the next section discusses how to keep β low for real-

world graphs.

 Reducing the Impact of Boundary Edges

This section presents an efficient technique that minimizes β, i.e., the percentage of

boundary edges for real-world graphs and a wide range of graph algorithms.

In particular, we explore the opportunity to aggregate messages sent from

multiple vertices residing in one processing element to a single vertex residing on the

other. The intuition behind this optimization is that the power-law nature of real-

world graphs leads to a topology where multiple edges from the same partition point

Figure 2: Predicted speedup (values below one indicate

slowdown). Left: varying the CPU’s processing rate (β is set

to 5%). Right: varying the percentage of boundary edges

(rcpu is set to 1 BE/s). The communication rate is 3 BE/s

Figure 3: Predicted speedup

while varying the volume of

transferred data per edge (α

is set to 60% and rcpu to

1 BE/s).

to the high-degree vertices on the other partition and thus enable message

aggregation.

Note that aggregation is employed in cluster-based graph processing frameworks

[Malewicz et al. 2010] as well to reduce the communication overhead between

partitions residing in different nodes. However, this technique is even more effective

in the single hybrid node platform we target because the number of partitions we

expect to have (e.g., two for a system with one GPU) is significantly lower than in the

case of a distributed system with hundreds of compute nodes (hundreds of partitions).

To highlight the benefit of

aggregation, we test a naïve

random-based graph

partitioning algorithm and

compare how much

communication would happen

with and without aggregation.

Figure 4 shows β resulted from

two- and three- way

partitioning, representing

setups with one and two GPUs

respectively, for real (Twitter

and UK-WEB) and synthetic

graphs (RMAT28 and

UNIFORM28). The graphs are

described in detail in section (§5.1); for now, the relevant characteristic that

differentiates them is the degree distribution: real-world and RMAT28 graphs have

skewed degree distribution, while UNIFORM28 has a uniform distribution.

The figure shows that aggregation significantly reduces β (to less than 5%) for the

graphs with skewed distribution. The worst case input is an Erdős-Renyi random

graph [Erdős and Rényi 1960], which has uniform edge degree distribution. However,

as discussed before, most graphs processed in practice have power-law degree

distribution, thus this optimization is useful in practice. Examples of such graphs

include social networks [Kwak et al. 2010], the Internet [Faloutsos et al. 1999], the

World Wide Web [Barabási et al. 2000], financial networks [Iori et al. 2008], protein-

protein interaction networks [Jeong et al. 2001], and airline networks [Wang and

Chen 2003] to mention few.

Finally, it is important to mention that aggregation works for algorithms where it

is possible to reduce, at the source partition, into one value the values sent to the

same remote vertex. Although some graph algorithms cannot benefit from

aggregation (e.g., triangle counting), we argue that a wide range of graph algorithms

has this characteristic. For example, the “visited” status in BFS, minimum “distance”

in SSSP, and the “rank” sum in PageRank.

 Summary

With parameters set to values that represent realistic scenarios, the model predicts

speedups for the hybrid platform, even when using naïve random partitioning. Hence,

we conclude that it can be beneficial to explore this opportunity in more depth by

prototyping an engine to partition graphs and process them on a hybrid platform

(described in §4). We show that the model offers good accuracy in §5, then evaluate

the advantages of advanced partitioning techniques for a set of graph processing

algorithms, workloads, and processing platforms (§6-§8), and compare with the

performance of state of the art graph processing frameworks (§9.4)

Figure 4: The impact of aggregation. Resulted ratio of

edges that cross partitions (β) with and without

aggregation for two real-world graphs (Twitter and

UK-WEB), one synthetic power-law graph (RMAT28),

and one synthetic graph with uniform node degree

distribution (UNIFORM28).

 TOTEM: A GRAPH PROCESSING ENGINE FOR HYBRID PLATFORMS

To enable application programmers to leverage hybrid platforms, we designed TOTEM

– a graph processing engine for hybrid and multi-GPU single-node systems. This

section presents TOTEM’s programming model (§4.1), its implementation (§4.2), and a

discussion of its design trade-offs (§4.3).

 Programming Model

TOTEM adopts the Bulk Synchronous Parallel (BSP) computation model [Valiant

1990], where processing is divided into rounds – supersteps in BSP terminology. Each

superstep consists of three phases executed in order: in the computation phase, each

processing unit executes asynchronously computations based on values stored in

their local memories; in the communication phase, the processing units exchange the

messages that are necessary to update their statuses before the next computation

unit starts; finally, the synchronization phase guarantees the delivery of the

messages. Specifically, a message sent at superstep i is guaranteed to be available in

the local memory of the destination processing unit only at superstep i +1.

Adopting the BSP model allows to circumvent the fact that the GPUs are

connected via the higher-latency PCI-E bus. In particular, batch communication

matches well BSP, and enables TOTEM to hide (some of) the bus latency.

In more detail, TOTEM performs each of these phases as follows:

 Computation phase. TOTEM initially partitions the graph and assigns each

partition to a processing unit. In each compute phase, the processing units work in

parallel, each executing a user-specified kernel on the set of vertices that belongs

to its assigned partition.

 Communication phase. TOTEM enables the partitions to communicate via boundary

edges. The engine stores messages sent to remote vertices in local buffers that are

transferred in the communication phase to the corresponding remote partitions. As

the performance model shows, reducing communication overhead is paramount to

improve performance. The engine achieves such reduction by aggregating at the

source processor messages targeted to the same remote destination vertex (as

discussed in §3.4). The aggregation is performed based on a user-provided callback.

Note that the synchronization phase is performed implicitly as part of the

communication phase.

 Termination. The engine terminates execution when all partitions vote to finish

(through a user-defined callback) in the same superstep. At this point, the engine

invokes another user-specified callback to collect the results from all partitions.

 Design and Implementation

TOTEM is open-source, and is implemented in C and CUDA. A client application

configures TOTEM to execute a graph algorithm by implementing a number of

callback functions executed at different points in the BSP execution cycle. The

TOTEM framework itself is essentially in charge of implementing this callback API

and this hide the inherent complexity of various low-level optimizations that target

the hybrid platform. For example, TOTEM optimizes the data layout to increase access

locality, enables transparent and efficient communication between the processing

elements, and efficiently maps the callback functions to hardware threads.

Figure 5 shows a simple graph processing algorithm implemented with TOTEM.

The engine loads the graph and creates one partition for the host and a partition for

each GPU. The init_func callback provided by the user allows allocating

algorithm-specific state (such as the cost array in BFS or the rank array in

PageRank), the kernel_func callback performs the core computation of the

algorithm, the msg_reduce_func callback defines how a message received from a

boundary edge updates a vertex’s state (e.g., update the vertex’s state with the sum

of the two in the case of

PageRank, or the minimum in

SSSP). Finally, the

finalize_func callback

enables the client to release state

allocated at initialization. TOTEM

accepts other configuration

parameters, most notably is the

graph partitioning algorithm

(discussed in §6).

All callbacks are invoked per

partition. If the partition is GPU

resident, the engine ensures that

the execution context is correctly set such that CUDA calls invoked from the callback

are executed on the corresponding GPU.

While a number of aspects related to TOTEM’s design and implementation are

worth discussing, for brevity we discuss only two: the data structures used to

represent the graph and communication via boundary edges.

Graph representation. Graph partitions are represented as Compressed Sparse

Rows (CSR) in memory

[Barrett et al. 1994], a space-

efficient graph representation

that uses O(|V| + |E|) space.

Figure 6 shows an example of

a two-way partitioning setup.

The arrays V and E represent

the CSR data structure. In

each partition, the vertex IDs

span a linear space from zero

to |Vp|-1. A vertex ID together

with a partition ID represents

a global ID of a vertex. A

vertex accesses its edges by

using its ID as an index in V to

fetch the start index of its neighbors in E.

The array E stores the destination vertex of an edge, which includes the partition

ID (shown in the figure as subscripts) encoded in the high-order bits. In the case of

boundary edges, the value stored in E is not the remote neighbor’s ID, rather it is an

index to its entry in the outbox buffer (discussed later). To simplify state

management, a vertex in a directed graph has access only to its outgoing edges,

which is sufficient for most graph algorithms (undirected edges can be represented as

two directed edges, one in each direction).

The array S represents the algorithm-specific local state for each vertex, it is of

length |Vp|, and is indexed using vertex IDs. A similar array of length |Ep| can be

used if the state is required per-edge rather than per-vertex.

The processing of a vertex typically consists of iterating over its neighbors. A

neighbor ID is fetched from E, and is used to access S for local neighbors, or the

outbox buffer for the remote ones. Typically, accessing the state of a neighbor (either

in S or in the outbox buffer) is done via atomic operations as multiple vertices may

simultaneously try to update the state of a common neighbor.

To improve pre-fetching, the set of neighbors of each vertex in E are sorted and

are placed such that the local edges are processed first (entails accessing S), and then

the boundary edges (entails accessing the outbox buffers).

Figure 5: A simplified TOTEM configuration and

how an algorithm callbacks map to the BSP phases.

Figure 6: An illustration of the graph data structure and

the communication infrastructure in a two-way

partitioning setup.

Communication via boundary edges. A challenge for a graph processing

engine for hybrid setups is keeping the cost of communication low. TOTEM addresses

this problem by using local buffers and user-provided aggregation callbacks.

Messages sent via boundary edges in the computation phase of a superstep are

temporarily buffered and, if possible, aggregated in these buffers then transferred in

the communication phase.

TOTEM maintains two sets of buffers for each processing unit (Figure 6). The

outbox buffers have an entry for each remote neighbor, while the inbox buffers have

an entry for each local vertex that is remote to another partition. An in/outbox buffer

is composed of two arrays: one maintains the remote vertex ID and the other stores

the messages.

The outbox buffer in a partition is symmetric to an inbox buffer in another.

Therefore, in the communication phase, only the message array is transferred. Once

transferred, TOTEM uses the user-defined aggregation function to update the remote

neighbors’ state in the S array at the remote partition with the new values. Similar

to E, the entries in the inbox buffers are sorted by vertex IDs to improve pre-fetching

and cache efficiency when doing the update.

Finally, note that TOTEM allows for two way communication via the boundary

edges: a vertex can either “push” updates to its neighbors, or “pull” (i.e., read) the

neighbors state to update its own value. This is a necessary feature for some graph

algorithms (e.g., Betweenneess Centrality) and an optimization for others (e.g.,

PageRank).

Summary of other optimizations. In the following we summarize the main

optimizations employed by TOTEM. They have been discovered through an iterative

exploration process and provide sizeable gains.

(i) Sorting vertex IDs in the inbox buffers to improve pre-fetching and cache

efficiency when updating the vertices’ local state.

(ii) Processing the local and remote edges separately to improve data access locality.

(iii) For large-scale graphs, the V and E arrays of GPU partitions are allocated on

the host (as mapped memory) to enable assigning larger portion of the graph to

the memory limited GPUs. Note that those arrays are immutable, and they are

accessed sequentially during an algorithm execution, hence allowing for

coalesced memory access reads via the high-bandwidth PCI-E bus.

(iv) Overlapping communication with computation to hide communication overhead.

For example, if the GPU finishes processing its partition faster than the CPU

does, the GPU will start copying its output buffer to the CPU’s input buffer

while the CPU still processing its partition, and vice versa. Double buffering

techniques enable such an optimization.

 Design Trade-offs

There are two main trade-offs in the current TOTEM implementation that are worth

discussing. First, the graph representation (CSR) used makes it expensive to support

updates to the graph structure during algorithm execution (e.g., creation of new

edges or vertices). This is a tradeoff, as CSR enables a lower memory footprint and

efficient iteration over the graph’s elements (vertices and edges), which are essential

for performance. Any other graph data structure that enables mutable graphs will

have to have some form of dynamic memory management (e.g., linked lists), which is

costly to support, particularly on GPUs.

Nevertheless, a large and important class of applications is based on static graphs.

For example, many graph-based applications in social networks [Gupta et al. 2013;

Wang et al. 2013] and web analytics [Malewicz et al. 2010] are performed on periodic

snapshots of the system’s state, which is typically maintained in storage efficient,

sometimes graph-aware, indexing systems [Curtiss et al. 2013; Barroso et al. 2003].

The second limitation is related to the way communication is performed. During

the communication phase of each superstep, the current implementation copies the

whole outbox buffer of a partition to the inbox buffer of a remote partition assuming

that there is a message to be sent via every edge between the two partitions. This is

efficient for algorithms that communicate via each edge in every superstep, such as

PageRank. However, this is an overhead for algorithms that communicate only via a

selective set of edges in a superstep (e.g., in the level-synchronized BFS algorithm, at

a given superstep, only the vertices in the frontier communicate data via their

outgoing edges). Additional compression techniques can be employed to lower the

communication volume.

 EVALUATING MODEL ACCURACY AND PROCESSING OVERHEADS

This section aims to address the

following questions: First, how

does TOTEM performance

compare to that predicted by the

model? Answering this question

allows us to validate the model

and understand, for each use

case, how much room is possibly

left for optimizations.

Second, we evaluate on

which phase (computation or

communication) and processing

element (CPU or GPU) the bulk

of time is spent? Such profiling

identifies the bottlenecks in the system, and guides our quest for better performance.

Testbed characteristics. We use a machine with state-of-the-art CPU and GPU

models (Table 1). The two processing elements are representative for their categories

and support different performance attributes. On the one hand, GPUs have

significantly larger number of hardware threads, higher memory access bandwidth,

and support a larger number of in-flight memory requests. On the other hand, the

CPU cores are clocked at over double the frequency, and have access to roughly one

order of magnitude larger memory and cache.

Benchmarks. We evaluate three graph algorithms with different characteristics:

Breadth-first Search (BFS), Betweeness Centrality (BC) and PageRank. The details

of the algorithms and their implementations are discussed in later sections. However,

one difference between the

algorithms is worth mentioning here:

BFS uses a summary data structure,

particularly a bitmap, to increase

the utilization of the cache, while BC

and PageRank do not.

Workloads. We use an instance

of Graph500 workload, RMAT28

graph 4 (Table 2). The memory

footprint of this workload is large

compared to the space available on a

single GPU (~4 times larger), yet it

4 The RMAT graphs are described by the log base 2 of the number of vertices (e.g., RMAT30 graph has 230

vertices). Unlike in the Graph500 challenge, our graphs are directed (as generated by the model).

Table 2: Workload characteristics. The synthetic

graphs were generated using the Recursive

MATrix (RMAT) process [Chakrabarti et al. 2004]

with the following parameters: (A,B,C) = (0.57,

0.19, 0.19) and an average vertex degree of 16.

Workload |V| |E|

Twitter [Cha et al. 2010] 52M 1.9B

UK-Web [Boldi et al. 2008] 105M 3.7B

RMAT27 128M 2.0B

RMAT28 256M 4.0B

RMAT29 512M 8.0B

RMAT30 1,024M 16.0B

Table 1: Testbed characteristics: two Xeon 2560

processors and two GeForce Kepler Titan GPUs,

connected via PCI-E 3.0 bus.

Characteristic
Sandy-Bridge

(Xeon 2650)

Kepler

(Titan)

Number of Processors 2 2

Cores / Proc. 8 14

Core frequency (MHz) 2000 800

Hardware Threads / Core 2 192

Hardware Threads / Proc. 16 2688

LLC / Proc. (MB) 20 2

Memory / Proc. (GB) 128 6

Mem. Bandwidth / Proc. (GB/s) 52 288

TDP / Proc. (Watt) 95 250

allows us to explore offloading ratios as low as 50% when using a second GPU.

Data collection and notations. For each data point, here and in later

evaluation sections, we present the average over 64 runs. Error bars present the 95%

confidence interval, in most cases, are too narrow to be visible.

The different hardware configurations used in our experiments are presented in

the following notation: xS yG, where x is the number of CPU sockets (processors)

used, while y represents the number of GPUs. For example, “2S1G” refers to

processing the graph on two CPU sockets and one GPU.

 Totem and the Performance Model

We first compare the speedup predicted by the model and the one achieved by TOTEM.

Figure 7 shows the speedup while varying α, the percentage of edges left on the CPU

for the three graph algorithms. Note that the figure shows the speedup while using

one (2S1G) and two (2S2G) GPUs.

We observe the following. First, the achieved speedup has strong positive

correlation with the one predicted by the model for all algorithms and with low

average error. Second, the model under-predicts BFS performance. This is because,

for BFS, offloading to the GPU not only reduces the amount of work that the CPU

needs to do, but also improves the CPU processing rate due to improved cache hit

ratio: the bitmap used by BFS becomes smaller and hence fits better the cache. This

effect is not captured by the model.

The latter observation is important as it suggests that carefully choosing the part

of the graph to be offloaded to the GPU may lead to superlinear speedups due to

cache effects. We evaluate this premise in more detail in Section 6 in which we also

explore different partitioning strategies that aim to further increase the chance of

achieving superlinear speedups.

Finally, it is worth mentioning that similar accuracy holds for other workloads.

Moreover, we have shown in a previous work [Gharaibeh et al. 2012] this also holds

for a different hardware platform. We do not present these results here for brevity.

Figure 7: Predicted (circles) and achieved (triangles) speedup for RMAT28 graph while

varying the percentage of edges assigned to the CPU partition (using random partitioning).

The plot shows the results while using one (2S1G) and two (2S2G) GPUs. Having a second

GPU allows offloading more edges. Note that the start point on the x-axis represents the

minimum percentage of edges that needs to be kept on the host due to GPU space

constraints. Also, note that due to different memory space requirements, the point at which

a second GPU needs to be used is different for each algorithm. Pearson’s correlation

coefficient [Lee Rodgers and Nicewander 1988] is reported on each plot - this is a value in the

range [1,-1] where 1 is total positive correlation and 0 is no correlation.

 Overhead Analysis

To understand on which phase

(computation or communication)

and processing element (CPU or

GPU) the bulk of time is spent,

we look at the breakdown of the

total execution time. Figure 8

shows the percentage of time

spent on each phase for BFS

while processing RMAT28 graph.

Two points are worth

discussing. First, the GPU

processes its partition at a faster

rate, and, as a result processing

the CPU partition always

remains the main bottleneck.

The GPU is 2 to 20 times faster.

This indicates that our assumption that the GPU finishes its processing first holds in

practice.

Second, the CPU-GPU communication overhead is significantly lower than the

computation, even when using two GPUs. This is due to aggregating boundary edges

and to the high bandwidth of the PCI-E bus.

Note that the two other algorithms, BC and PageRank, exhibited the exact same

behavior, moreover these results were observed on all other workloads.

The fact that communication is not a bottleneck has important consequences:

rather than focusing on minimum cuts when partitioning the graph to reduce

communication (a pre-processing step that, generally, is prohibitively expensive), an

effective partitioning strategy should focus on reducing computation.

To this end, the next section explores the impact of various graph partitioning

strategies and workload allocation schemes on the performance of graph algorithms

on a hybrid system. Particularly, we focus on investigating low-cost partitioning

techniques that generate workload that match well the strength of the processing

element they are allocated to.

 GRAPH PARTITIONING FOR HYBRID SYSTEMS

This section presents the set of requirements for effective partitioning strategies for

hybrid systems (§6.1), discusses (§6.2) and evaluates (§6.3) our proposed degree-based

partitioning strategy.

 Partitioning Strategy Requirements

An effective graph partitioning strategy must have the following characteristics:

 Has a low space and time complexity. Processing large-scale graphs is expensive in

terms of both space and time; hence partitioning algorithms with time complexity

higher than linear or quasilinear are impractical.

 Handles scale-free graphs. Many important graphs in different domains present

skewed vertex degree distributions. Therefore, the partitioning strategy must be

able to handle the severe workload imbalance associated with such graphs.

 Handles large (billion-edge scale and larger) graphs. The amount of memory

offered by single-node systems is considerably large. For instance, 256GB on our

evaluation machine is enough to fit a graph with one billion vertices and 16 billion

edges (i.e., a scale 30 graph in Grap500 terminology).

 Minimizes algorithm’s execution time by reducing computation (rather than

communication). The BSP model divides processing into computation and

Figure 8: Breakdown of BFS execution time for the

RMAT28 graph (the same data points in Figure 7).

Left: using two GPUs (2S2G). Right: using one GPU

(2S1G). The “Computation” bar shows the time of the

bottleneck processor (the CPU in this case). The GPU

partition(s), processed concurrently, is shown for

comparison.

communication phases. We focus on partitioning strategies that reduce the

computation time. We note that our approach is in sharp contrast to previous work

on graph partitioning for distributed graph processing, as they focus on minimizing

the time spent on communication (e.g., by minimizing the edge-cut between

partitions) [Chamberlain 1998]. Our evaluation in the previous section (§5.2)

provides the intuition that supports this choice: message aggregation and batch

communication (assisted by the high bandwidth of the PCI-E bus that typically

connects discrete GPUs) can significantly reduce the communication overhead for

concurrent graph processing (or similar applications, as the optimizations are

application agnostic) on hybrid systems, which makes computation rather than

communication the bottleneck.

 Partition by Degree Centrality

We propose to partition the graph by degree centrality, placing the high-degree

vertices in one type of processor and the low-degree ones in the other type. Our

hypothesis is that this simple and low-cost partitioning strategy brings tangible

performance benefits while meeting the solution requirements.

The motivation behind this intuition is twofold. First, dividing a real-world graph

using the vertex degree as the partition criterion produces partitions with

significantly different degrees of parallelism levels that match those of the different

processing elements of the hybrid system. Second, such a partitioning strategy

produces partitions that are more homogenous in terms of vertex connectivity

compared to the original graph, resulting in a more balanced workload within a

partition. This is important to maximize the utilization of a processor’s cores,

especially for the GPU because of its strict parallel computation model.

Partitioning the graph based on vertex degree is low cost in terms of

computational and space complexity. One way to classify the low and high degree

vertices is by sorting, with time complexity O(|V|log|V|). In practice, one can

improve the running time even further by using partial sorting (i.e., finding the

degree values that divide the graph into the desired partitions), which takes linear

O(|V|) time complexity [Chambers 1971]. Additionally, these manipulations can be

done in place, which is especially important when handling large-scale graphs.

 Evaluation

6.3.1 Highlighting the Effect of Partitioning

We use the BFS benchmark to

evaluate the partitioning

strategies. We compare three

partitioning strategies: RAND,

HIGH, and LOW. RAND divides

the graph randomly. The other

two strategies are based on

degree centrality: HIGH divides

the graph such that the highest

degree vertices are assigned to

the CPU, and LOW divides the

graph such that the lowest

degree vertices are assigned to

the CPU.

Figure 9 shows BFS traversal

rate in billions traversed edges

per second (TEPS) for the

RMAT28 workload (|V|=256M, |E|=4B). Note that the graph is too large to fit

Figure 9: BFS traversal rate (in billions of traversed

edges per second - TEPS) for the RMAT28 graph

and different partitioning algorithms while varying

the percentage of edges placed on the CPU. Left: two

GPUs (2S2G); Right: one GPU (2S1G). The

performance of processing the whole graph on the

host only (2S) is shown as a straight line.

Figure 10: Breakdown of execution time for the

RMAT28 graph. Left: using two GPUs and 50%

of the edges are assigned to the CPU. Right:

using one GPU and 80% of the edges are

assigned to the CPU. The “Computation” bar

refers to the computation time of the bottleneck

processor (the CPU in this case).

entirely on one or two GPUs and, thus, the host must keep at least 80% and 50% of

the graph’s edges, respectively.

In this figure, the x-axis represents the share of the edge array assigned to the

CPU partition (after the vertices in the vertex-array have been ordered by degree).

For example, consider the 80% data point and HIGH partitioning. The high-degree

vertices are assigned to the host until 80% of the edges of the graph and their

corresponding vertices are placed on the host. The remaining vertices and their edges

are placed on the GPU. Similarly, in the case of LOW partitioning, the low-degree

vertices are assigned to the host until it holds 80% of the graph’s edges.

The figure reveals a significant performance difference generated by the various

partitioning schemes. In particular, assigning the high-degree nodes to the CPU

results in superlinear speedup with respect to the share of the graph offloaded for

processing on the GPU. For example, offloading 50% of the graph to be processed on

the GPUs offers 2.8x speedup. A question that arises from this analysis is: What are

the causes for this observed performance difference?

6.3.2 Explaining the Performance Difference

Figure 10 presents the breakdown of

execution time for two of the data

points presented in Figure 9: the 50%

and 80% data points, which represent

the maximum partition size that can

be offloaded to two and one GPU(s),

respectively. The breakdown shows

that the hybrid system’s performance

is bottlenecked by the CPU regardless

of the partitioning scheme, even when

offloading 50% of the edges to be

processed on the GPUs. This happens

because of two reasons: (i) the GPU

has a higher processing rate; and (ii)

the communication overhead is

negligible compared to the

computation phase. Based on these

two observations, the rest of this section focuses on the effect of graph partitioning

strategies on CPU performance.

Figure 11 lists the pseudo-code for the

BFS kernel used in our implementation.

Hong et al. [Hong et al. 2011b] showed that

this implementation has a superior

performance over typical queue-based

approaches. In order to reduce main memory

traffic, the algorithm uses a bit-vector (lines 6

and 7 in Figure 11) to mark the vertices that

have already been visited, thus avoiding

fetching their state from main memory.

Chhugani et al. [Chhugani et al. 2012]

showed that a cache-resident “visited” bit-

vector is critical for BFS performance on the

CPU, and that the performance significantly

drops for large graphs as the bit-vector

becomes larger. For the RMAT28 workload,

1 BFS(Partition p, int level){
2 bool done = false;
3 parallel for v in p.vertices{
4 if (v.level != level) continue;
5 for (n in v.nbrs){
6 if (!p.visited.isSet(n)){
7 if (p.visited.atomicSet(n)){
8 n.level = level + 1;
9 done = false;
10 }}}}
11 return done;
12 }

Figure 11: Pseudocode of the level-

synchronous BFS compute kernel. The

kernel is invoked in each round for

each partition. The algorithm

terminates when all partitions in the

same round return true.

the size of the “visited”

bit-vector is 32MB (i.e.,

a bit array that

represents the 256M

vertices) and it is only a

little smaller than the

total amount of last

level cache (LLC) on the

two CPU sockets, which

is 40MB.

To evaluate the

cache behavior, Figure

12 shows the LLC cache

miss rate (left) and the

percentage of main

memory accesses (right)

for the different

partitioning schemes.

Depending on the

partitioning strategy, the “visited” vector is differently distributed between the host

and the accelerator. Thus, to better understand the profiling data in Figure 12,

Figure 13 shows the percentage of vertices assigned to the CPU due to graph

partitioning. The two figures highlight the strong correlation between |Vcpu| and the

cache miss rate.

On the one hand, RAND and LOW partitioning

strategies produce a CPU partition with a large

number of vertices leading to a large “visited” vector

comparable in size to that of the original graph.

Therefore the LLC miss rate changes only slightly

when compared to processing on the CPU only:

improved for RAND due to lower |Vcpu|, and

worsened for LOW due to the added overhead of

handling boundary edges (i.e., edges with source

and destination vertices reside on partitions that

are assigned to different processors). However,

Figure 12 (right) shows that both these strategies

still reduce the number of main memory accesses –

as a consequence of offloading part of the graph to

the GPU, resulting in an overall performance

improvement by the hybrid system.

On the other hand, due to the power-law degree distribution of the graph, the

CPU partition produced by the HIGH strategy has two orders of magnitude fewer

vertices for the same number of edges, resulting in a much more cache friendly CPU

workload. This leads to a significant improvement in the CPU processing rate; as a

result, the hybrid system is faster than the other two partitioning strategies.

With the HIGH partitioning strategy, offloading as little as 5% of the edges to the

GPU offers 2x speedup compared to processing the graph on the CPU only, and up to

2.5x speedup when offloading 25% of the edges. This demonstrates that although

GPUs have limited memory, they can significantly improve the performance. This is

because GPUs are able to efficiently handle the sparser part of the graph as they rely

on massive multi-threading rather than caches to hide memory access latency.

Figure 12: Performance counter statistics gathered when

running BFS on an RMAT28 graph for a CPU-only

configuration (2S), and a hybrid configuration using one GPU

(2S1G) when 80% of the edges are assigned to the CPU. Left:

LLC miss ratio (the higher the better), computed as

100×(LLC_MISS /LLC_REFS). Right: the percentage of main

memory accesses on the host compared to processing the whole

graph on the host (the lower the better), computed as

100×(LLC_MISS2S1G/ LLC_MISS2S).

Figure 13: Percentage of vertices

placed on the CPU for RMAT28

graph while varying the

percentage of edges assigned to

the partition, and for various

partitioning strategies.

 EXTENDING THE APPLICATION SET

This section focuses on the following questions: Do the performance gains offered by

the hybrid system on BFS extend to more complex applications? How do the

partitioning strategies influence performance in such settings?

To answer these questions, we present two additional applications implemented

using TOTEM: ranking web pages using PageRank (§7.1) and finding the main actors

in a social network using Betwenness Centrality (§7.2).

 Ranking Web Pages

PageRank [Page et al. 1999] is a

fundamental algorithm used by

search engines to rank web pages.

In this section, we evaluate

PageRank on the UK-WEB

workload [Boldi et al. 2008], a

crawl of over 100 million pages

from the .uk domain, and 3.7

billion directed links among the

pages.

Figure 14 presents the compute

kernel of the PageRank algorithm.

Note that the kernel is pull-based:

each vertex pulls the ranks of its

neighbors via the incoming edges

to compute a new rank. This is faster than a push-based approach, where each vertex

pushes its rank to its neighbors via the outgoing edges. The latter approach requires

atomic operations, and hence less efficient [Nguyen et al. 2013].

Compared to BFS, PageRank has a higher compute-to-memory access ratio, and

does not employ summary data structures. Therefore, the cache has a lower effect on

the processing performance on the host.

Figure 15 shows

PageRank’s processing

rate 5 . While a single

GPU offers narrow

improvement due to

limitations on the size

of the offloaded

partition, adding a

second GPU

significantly improves

the performance for

such a large workload:

up to 2.3x speedup

compared to

processing the whole

graph on the CPU only.

Compared to the

other two strategies, LOW partitioning allows offloading a larger portion of the edges

to the GPU. This happens because PageRank requires a larger per-vertex state than

BFS; hence, the number of vertices assigned to a partition has a larger effect on a

5 The corresponding TEPS for PageRank is computed by dividing the number of edges in the graph by the

mean time per PageRank iteration (in each iteration, each vertex accesses the state of all its neighbors)

1 PageRank(Partition p) {
2 Delta =(1- dFactor)/vCount;
3 parallel for v in p.vertices {
4 sum = 0;
5 for (nbr in p.incomingNbrs) {
6 sum = sum + nbr.rank;
7 }
8 v.rank = delta + dFactor * sum;
9 }
10 }

Figure 14: Pseudocode of PageRank’s compute

kernel. vCount is the total number of vertices in the

graph, while dFactor is the damping factor, a

constant defined by the PageRank algorithm. The

kernel is invoked in each BSP round for each

partition. The algorithm terminates after executing

the kernel a predefined number of times.

Figure 15: PageRank traversal rate for the UK-WEB graph.

Left: using two GPUs. Right: using one GPU. Missing bars

represent cases where the GPU memory space is not enough to

fit the GPU partition. The performance of processing the whole

graph on two CPU sockets (2S) is shown as a straight line.

partition’s memory footprint.

Since LOW places the high

degree vertices on the GPU, the

number of vertices assigned to

the GPU partition by LOW is

significantly lower than that

assigned by HIGH and RAND

strategies for the same number

of edges

Note that the HIGH strategy

performs the best among all

partitioning strategies. To

explain this result, Figure 16

shows the breakdown of

execution time. Similar to BFS,

the communication overhead is

negligible; the CPU is the

bottleneck processor in all partitioning strategies; and that HIGH partitioning is the

most efficient due to faster CPU processing.

Two interrelated factors lead to this result. First, from the pseudo-code in Figure

14, notice that the number of memory read operations is proportional to the number

of edges in the graph (line 5), while the number of write operations is proportional to

the number of vertices (line 7). Second, as discussed in the previous section, for the

same number of edges, the different partitioning strategies produce partitions with

drastically different number of vertices (see Figure 13). Particularly, HIGH produces

a CPU partition with significantly fewer vertices.

As a result of these observations, we expect that HIGH leads to a CPU partition

that performs significantly fewer write operations compared to the other two

strategies, while the number of read operations will be similar for all partitioning

strategies.

Figure 17 confirms this

analysis: it shows the

percentage of write and

read memory accesses on

the CPU (compared to

processing the whole graph

on the host) when

offloading the largest

possible partition to two

GPUs (i.e., the percentage

of edges on the CPU is 30%,

35% and 40% for LOW,

RAND and HIGH,

respectively). The figure

demonstrates that the

percentage of read accesses

(Figure 17 left) is similar for all partitioning strategies, with HIGH performing

slightly more reads than the other two as it allows offloading fewer edges, while the

percentage of write accesses (Figure 17 right) significantly differs.

One may expect that the overhead of reads will be dominant as the number of

edges is much larger than the number of vertices. However, two reasons lead to the

visible impact of writes. First, the performance analysis tool LMbench [McVoy and

Staelin 1996] shows that the host memory write throughput is lower, almost half,

Figure 16: Breakdown of PageRank execution time

(five iterations) for the UK-WEB graph when

offloading the maximum size partition to two (left

three bars) and one GPU (right three bars). The

“Computation” bar refers to the compute time of the

bottleneck processor (the CPU in this case).

Figure 17: Host memory accesses statistics gathered when

running PageRank on UK-WEB graph while when

offloading the maximum size partition to two GPUs (2S2G).

The performance counter used to collect these statistics is

“mem_uops_retired”. Left: read accesses; right: write

accesses compared to processing the graph on the host only.

than its read throughput. Second, the reduction in the number of write accesses is

significant: HIGH generates two orders of magnitude fewer write operations

compared to LOW and RAND. Note that this reduction is compensated by a major

increase in write memory operations in the GPU partitions, which is reflected in the

increase of the GPU compute time for HIGH and RAND compared to LOW in Figure

16. Still, the GPU’s high memory bandwidth allows processing this part of the

workload faster than the CPU and, hence, it leads to an overall gain in performance.

Finally, similar behavior is obtained for other graphs. Additionally, we show in

past work [Gharaibeh et al. 2013a] that this also hold on a different machine.

 Finding the Main Actors in a Social Network

A key measure of importance for

vertices in social networks is

Betweenness Centrality (BC).

This section presents an

evaluation of BC on a snapshot

of the Twitter follower network

[Cha et al. 2010]. The workload

includes over 52 million users

and 1.9 billion directed follower

links.

We evaluate Brande’s BC

algorithm [Brandes 2001],

which is based on forward and

backward BFS traversals.

Figure 18 lists the pseudocode of

the forward and backward

propagation kernels. Overall,

the algorithm has different

characteristics and is more

complex than PageRank and the

basic BFS algorithm presented

previously. Compared to basic

BFS, BC traversal does not

benefit from summary data

structures targeted for

improving cache efficiency.

Compared to PageRank, BC is a

traversal-based algorithm,

where the set of “active” vertices

changes across iterations, and it uses atomic operations.

Figure 19 (left) shows BC processing rate while offloading part of the graph to be

processed on one GPU (i.e., 2S1G configuration). The figure demonstrates that for a

specific percentage of edges offloaded to the GPU, HIGH offers the best performance.

Moreover, similar to PageRank, LOW partitioning allows offloading a larger

percentage of the edges to the GPU than HIGH and RAND. In fact, since BC requires

relatively large per-vertex state, LOW allows offloading 20% more edges to the GPU

compared to HIGH. Unlike PageRank, however, offloading more edges to the GPU

via LOW partitioning has a significant impact on improving the overall performance

of the hybrid system.

To understand this behavior, Figure 19 (right) shows the breakdown of overheads

when offloading the maximum size partition to one GPU (i.e., the percentage of edges

offloaded is 50%, 30% and 40% for HIGH, LOW and RAND, respectively). Notice that

1 forwardPropagation(Partition p, int level){
2 finished = true;
3 parallel for v in p.vertices{
4 if (p.dist[v] == level){
5 vNumSPs = p.numSPs[v];
6 for (nbr in v.neighbors){
7 if (p.dist[nbr] == INF){
8 p.dist[nbr] = level + 1;
9 finished = false;
10 } // if
11 if (p.dist[nbr] == level + 1){
12 atomicAdd(p.numSPs[nbr], vNumSPs);
13 } // if
14 } // for
15 }
16 }
17 return finished;
18 }

19 backwardPropagation(Partition p, int level){
20 parallel for v in p.vertices {
21 if (p.dist[v] == level) {
22 vDelta = 0;
23 vNumSPs = p.numSPs[v];
24 for (nbr in v.neighbors) {
25 if (p.dist[nbr] == (level + 1)) {
26 vDelta += ((vNumSPs/p.numSPs[nbr])*
 p.delta[nbr]);

27 } // if
28 } // for
29 p.delta[v] = vDelta;
30 p.betweenness[v] += vDelta;
31 } // if
32 } // for
33 return ((level – 1) == 0);
34 }

Figure 18: Pseudocode of BC’s compute kernels. The

algorithm is executed in two BSP cycles. A first BSP

cycle is run using the forward propagation kernel.

Once the first cycle terminates, a second cycle is run

using the backward propagation kernel.

communication has

minimal impact on

performance, and that

the CPU is again the

bottleneck processor.

Therefore, in the

following, we quantify the

major operations in the

compute kernel by

examining the

pseudocode in Figure 18.

The major operations

in the algorithm are:

5×|E| scattered reads

(lines 7, 11, 12 and 26),

1×|E| atomic additions

with scattered writes

(line 12), 3×|E| floating

point operations, 2×|V| writes (lines 29 and 30) and 1×|V| additions (line 30).

This analysis reveals that, similar to PageRank, BC performs expensive

operations proportional to both the number of edges and vertices. Therefore, for a

specific percentage of edges offloaded to the GPU, HIGH performs better than LOW

and RAND as it results in significantly fewer vertices assigned to the bottleneck

processor, the CPU. However, unlike PageRank, BC performs larger and more

expensive operations per edge than per vertex. Therefore, the ability of LOW

partitioning scheme to offload more edges to the GPU results in notably better

performance than HIGH and RAND partitioning schemes.

We now turn our attention to comparing the performance of the hybrid system

with the CPU only (2S) performance (the dotted line in Figure 19 (left)). First, we

note that our BC implementation applies several CPU-specific optimizations (which

we do not discuss here for brevity), and that its performance is proportional to the

best reported runtimes. In particular, Nguygen et al. [Nguyen et al. 2013] report a

runtime of 12 seconds (i.e., 0.32 Billion TEPS) when processing the same Twitter

workload on a quad socket platform. This is only 40% faster than the performance we

report here on a dual-socket testbed with lower-end processors (§9.4 presents a more

detailed comparison).

Finally, the hybrid system (2S1G) delivers significant improvement compared to

both symmetric platforms discussed above: adding a GPU boosts the performance by

5x compared to the dual socket (2S) configuration. Moreover, the hybrid 2S1G

platform (with lower-end CPU models) offers over 3x speedup compared to the quad-

socket system, yet at a much lower energy and cost budget.

 EVALUATING SCALABILITY USING SYNTHETIC WORKLOADS

This section focuses on the following questions: How does the hybrid system scale

when increasing the graph size and with various hardware configurations? What is

more beneficial, adding more CPUs or GPUs?

Figure 20 presents BFS, PageRank and BC traversal rate for different hardware

configurations (up to two sockets and two GPUs) and graph sizes (1 to 16 billion

edges).

First, we focus on the analysis of configurations with two processing units. The

figures show that, for all algorithms, the hybrid system (1S1G) performs better than

the dual-socket system (2S). On the one hand, adding a second socket doubles the

amount of last level cache and the number of memory channels, which are critical

Figure 19: BC performance on the Twitter network for the

2S1G system. Left: traversal rate (in Billion TEPS) using one

GPU. The horizontal line indicates the performance of a two

socket system (2S). Right: Breakdown of execution time when

offloading the maximum size partition to one GPU (i.e., the

percentage of edges offloaded is 50%, 30% and 40% for

HIGH, LOW and RAND, respectively).

resources for graph processing performance, hence leading to close to double the

performance compared to 1S configuration. On the other hand, the performance gain

of 1S1G, brought by matching the heterogeneous graph workload with the hybrid

system, outperforms that of the dual-socket symmetric system: between 30% to 60%

improvement compared to the dual socket system (2S).

Second, the figure also demonstrates the ability of the hybrid system to harness

extra processing elements. For example, in the case of BFS, the system achieves up

to 3 Billion TEPS for the smallest graph (i.e., |E|= 2B), and, more important, it

achieves as high as 1.68 Billion TEPS for an RMAT30 graph (i.e., |E|= 16B). It is

worth pointing out that such performance is competitive, yet at a lower cost, with the

performance results of the latest Graph5006 list published as of writing this paper

(November 2013) for graphs of the same size. Also note that TOTEM is a generic

graph-processing engine, as opposed to the dedicated BFS implementations for most

systems in Graph500.

Finally, the figures also demonstrate that the GPU can provide significant

improvements for the large graphs, RMAT29 and RMAT30. This is made possible by

employing mapped memory to increase the size of the offloaded partition.

Particularly, for such large graphs, the GPU’s limited memory space significantly

constrains the size of the offloaded partition. For example, the GPUs on our testbed

support 5GB of memory, and can host at most 0.625 Billion edges considering 64-bit

edge identifiers (not including the space needed for the vertices’ state, hence this

limit is even lower especially for PageRank and BC); therefore, the GPU’s device

memory can store less than 5% of graph’s edges. To enable offloading a larger

partition to the GPU, we allocate part of the state on host memory and map it into

the GPU’s address space. The tradeoff is extra communication overhead over the

high latency PCI-E bus.

We reduce this overhead by taking the following measures: First, we reduce the

impact of the high latency of the bus by restricting the use of mapped memory to

allocate the part of the state that is (i) read-only, and (ii) can be accessed sequentially

in batches; particularly, we used mapped memory to allocate the edges array since we

assume static graphs. Second, we maximize transfer throughput by ensuring that the

edges of a vertex are read in a coalesced manner when the vertex iterates over its

neighbors. Finally, a side-effect of using mapped memory is that it naturally supports

overlapped communication of a vertex’s edge list with the computation of another

vertex.

6 www.graph500.org

Figure 20: BFS, PageRank and BC processing rates for different hardware configurations

and R-MAT graph sizes. When GPUs are used, the graph is partitioned to obtain best

performance. Experiments on configurations with a single socket (i.e., 1S and 1S1G) were

performed by binding the CPU threads to the cores of a single socket. The result for an

RMAT30 graph is missing for PageRank and BC because of memory space constraints (the

state required by PageRank and BC is larger than that for BFS).

 RELATED WORK AND PERFORMANCE COMPARISON WITH OTHER SYSTEMS

This section discusses related work from several aspects: §9.1 reviews efforts on

optimizing graph algorithms for multi- and many-core platforms; §9.2 reviews related

to graph partitioning; §9.3 reviews abstractions similar to TOTEM that aim to hide

the complexity of implementing graph algorithms on parallel platforms; finally, §9.4

compares the performance of TOTEM with the best report numbers in the literature.

 Optimizing Graph Algorithms

While we are unaware of previous works on optimizing graph processing on hybrid

systems, many efforts exist on optimizing graph algorithms on homogeneous systems:

either on multicore CPUs or on GPUs alone. For example, several studies focus on

optimizing BFS on multi-core CPUs [Agarwal et al. 2010; Hong et al. 2011b;

Chhugani et al. 2012]. For example, Chhugani et al. [Chhugani et al. 2012] apply a

set of sophisticated techniques to improve the cache hit rate of the “visited” bit-vector,

reduce inter-socket communication, and eliminate the overhead of atomic operations

by using probabilistic bitmaps. Our approach to partition the graph goes in the same

direction in terms of improving the cache hit rate on the CPU using a hybrid system.

Past projects have also explored GPU-only graph processing. These projects either

assume that the graph fits the memory of one [Hong et al. 2011a; Katz and Kider Jr

2008], or multiple GPUs [Merrill et al. 2012]. In both cases, due to the limited

memory space available, the scale of the graphs that can be processed is significantly

smaller than the graphs presented in this paper.

Hong et al. [Hong et al. 2011b] work is, perhaps, the closest in spirit to our work

as it attempts to harness platform heterogeneity: the authors propose to divide BFS

processing into a first phase done on the CPU (as, at the beginning, only limited

parallelism is available), and a second phase on the GPU once enough parallelism is

exposed, having the whole graph transferred to the GPU to accelerate processing.

However, this technique still assumes that the whole graph fits the GPU memory;

moreover, the work is focused on BFS only.

In summary, techniques that aim to optimize graph processing for either the CPU

or the GPU are complementary to our approach in that they can be applied to the

compute kernels to improve the overall performance of the hybrid system. In fact, we

use some of these techniques in our hybrid implementations, such as using pull-

based approach in PageRank and optimizing thread allocation on the GPU [Li and

Becchi 2013; Hong et al. 2011a].

 Graph Partitioning

There is no shortage of work on graph partitioning for parallel processing.

Traditionally, the problem is defined as to partition a graph in a balanced way, while

minimizing the edge cut. It has been shown that this problem is NP-hard [Garey et al.

1974], therefore several heuristics were proposed to provide approximate solutions.

Some heuristics, such as Kernighan–Lin [Kernighan 1970], have quadratic O(n2logn)

time complexity, which is prohibitively expensive for the scale of the graphs we

target. Multilevel partitioning techniques, such as METIS by Karypis et al. [Karypis

and Kumar 1998], offer an attractive moderate time complexity.

We believe that classical solutions do not properly address the requirements for

graph partitioning on hybrid platforms. Such techniques are mainly optimized to

minimize communication, which is not the bottleneck in our case. Moreover, they

target homogeneous parallel platforms as they focus on producing balanced

partitions, which is not sufficient for a hybrid system that has processing units with

largely different characteristics.

 Graph Processing Frameworks

A number of frameworks have been proposed to simplify the task of implementing

graph algorithms at scale, which can be divided into two categories depending on the

target platform. On the one hand, frameworks for shared-nothing clusters, such as

Pregel [Malewicz et al. 2010] and PowerGraph [Gonzalez et al. 2012], partition the

graph across the cluster nodes, and provide abstractions to implement algorithm

algorithms as vertex programs run in parallel. Cluster-based solutions offer the

flexibility to scale with the size of the workload by adding more nodes. However, this

flexibility comes at a performance and complexity costs. Particularly, performance

suffers from the high cross-node communication overhead: over one order of

magnitude slower compared to single-node systems [Nguyen et al. 2013]. Moreover,

the fact that the system is distributed introduces new problems such as network

partition, partial failures, high latency and jitter, which must be addressed when

designing the framework and when implementing algorithms on top of it, hence

greatly increasing the complexity of the solution.

On the other hand, single-node platforms are becoming increasingly popular for

large-scale graph processing. As discussed in §1, recent advances in memory

technology make it feasible to assemble single-node platforms with significant

memory space that is enough to load and process large-scale graphs for a variety of

applications. Such platforms are more efficient in terms of both performance and

energy, and potentially less complex to program compared to shared-nothing clusters.

Examples of frameworks that capitalize on this opportunity include Ligra [Shun and

Blelloch 2013], Galois [Nguyen et al. 2013] and STINGER [Ediger et al. 2012].

However, we are not aware of any frameworks that harness GPUs in a hybrid setup

for large-scale graph processing.

 Comparing Totem’s Performance with Other Frameworks

Recent work by Nguyen et al.

[Nguyen et al. 2013]

compared the performance of

different frameworks

(including the Ligra and

Galois frameworks

mentioned above) on a quad-

socket node. The largest

workload that Nguyen et al.

used was the Twitter

network described in Table 2.

To evaluate the

advantages of a hybrid

system, we compare TOTEM’s

performance with that

reported by Nguyen et al.

Figure 21 selects, for each

algorithm, the best

performance reported by

Nguyen et al. (labeled as 4S

in the figure to indicate a

quad-socket configuration)

and compares it with

TOTEM’s performance. The

figure compares the three algorithms described in this work when processing the

same Twitter graph.

Figure 21: Processing rates for different algorithms and

hardware configurations for the Twitter workload. The

performance of the four socket platform (labeled 4S) is the

best performance for processing the same workload

reported by [Nguyen et al. 2013] for various frameworks

that include Galois, Ligra, and PowerGraph. The

characteristics of the 4S platform are: Four Intel E7-4860

processors, each with 10 cores (20 hardware threads) @

2.27GHz and 24MB of LLC per processor, hence a total of

80 hardware threads and 96MB of LLC – significantly

better than our platform.

First, the figure demonstrates that TOTEM’s performance on a 2S configuration is

competitive with the best reported numbers on the 4S one, even surpassing it in the

case of PageRank. This increases our confidence that we compared to a meaningful

baseline in the experiments presented earlier.

Second, the hybrid configurations offer significant speedups compared to both

symmetric systems (2S and 4S). In the case of BFS, while the 4S system delivers 60%

better performance than 2S, a modest 1S1G hybrid configuration speeds up the

performance by 3.5x compared to 2S, and 2.1x compared to 4S at a much lower cost

in terms of both acquisition and energy. Moreover, the hybrid configuration 2S2G

offer over 5.5x speedup compared to 4S, the symmetric system with the same number

of processing elements.

Finally, the figure shows that similar significant performance improvements for

the other two algorithms.

 LESSONS AND DISCUSSION

The results presented in this work allow us to put forward a number of guidelines on

the opportunity and the supporting techniques required to harness hybrid systems

for graph processing problems. We phrase these guidelines as answers to a number of

questions.

 Q: Does it make sense to use a hybrid system?

A: Yes. One concern when considering using a hybrid system is the limited GPU

memory that may render using a GPU ineffective when processing large graphs.

We show, however, that it is possible to offload a relatively small portion of the

graph to the GPU and obtain benefits that are higher than the proportion of the

graph offloaded for GPU processing. This is made possible by exploiting the

heterogeneity of the graph workload and the characteristics of the hybrid system to

reshape the workload to execute faster on the bottleneck processor.

 Q: Is it possible to design a graph processing engine that is both generic and

efficient?

A: Yes. A range of graph algorithms can be implemented on top of TOTEM, which

exposes similar BSP-based computational model and functionality to that offered

by a number of other widely accepted generic graph processing engines designed

for cluster environments (e.g., Pregel). Our experiments show that being generic –

that is, being able to support multiple algorithms and not only the popular

Graph500 BFS benchmark, did not hinder TOTEM’s ability to efficiently harness

hybrid systems, and scale when increasing the number of processing elements.

TOTEM’s performance on a hybrid system with dual-socket and dual-GPU is

capable of 1.7 Billion breadth-first search traversed edges per second on an RMAT

graph with 16 billion edges, a performance that is competitive with (though at the

bottom of) recent highly specialized entries in the Graph500 list.

 Q: Is the partitioning strategy key for achieving high performance?

A: Yes. The low-cost partitioning strategies we explore – informed by vertex

connectivity – provide in all cases better performance than blind, random

partitioning.

 Q: Which partitioning strategies work best?

A: The answer is nuanced and the choice of the best partitioning strategy depends

on the graph size and on the specific characteristics of the algorithm (particularly

on how much state is maintained and on the read/write characteristics). If the

graph is large, then the CPU will likely be the bottleneck as it is assigned the

larger portion of the graph, while only a small fraction can be offloaded to the GPU.

Thus, the goal of partitioning is to improve the CPU performance by producing and

assigning to it the friendliest workload to its architecture. Our evaluation shows

that placing the high degree vertices on the CPU offers the best overall

performance: it improves the cache hit rate for algorithms that use summary data

structures, and, for the ones that do not use them, it offloads most of the expensive

per-vertex work to the accelerator. However, for algorithms with large state per

vertex, placing the few high degree nodes on the GPU allows for offloading

significantly more edges (20% more in the case of Betweenness Centrality when

processing the Twitter network in §7.2), and hence better balances the load

between the CPU and the GPU.

 Q: Should one search for partitioning strategies that lead to higher performance by

searching for partitioning solutions that reduce the communication overheads?

A: No. We show that, in the case of scale-free graphs, the communication overhead

can be significantly reduced – to the point that it becomes negligible relative to the

processing time – by simple aggregation techniques. Aggregation works well for

four reasons. First, real-world graphs have skewed connectivity distribution.

Second, the number of partitions the graph is split into is relatively low (only two

for a hybrid system with one GPU). Third, aggregation can be applied to many

practical graph algorithms, such as BFS, PageRank, Single-source Shortest Path

and Betweenness Centrality to mention only a few. Fourth, there is practically no

visible cost for aggregation: conceptually, aggregation moves the computation to

where the data is, which must happen anyway. In contrast, partitioning

algorithms that aim to reduce communication have typically high computational or

space complexity and may be themselves ‘harder’ than the graph processing

required [Feldmann 2012].

 Q: Is there an energy cost to the time-to-solution gains provided by using GPUs?

A: No. One concern is that the GPU’s high peak power consumption may make an

accelerated solution inefficient in terms of energy. Our experience [Gharaibeh et al.

2013b] rejects this concern: GPU-acceleration allows a faster ‘race-to-idle’, enabling

energy savings that are sizeable for newer GPU models which are power-efficient

in idle state (as low as 25W [NVIDIA 2013]). Additionally, as demonstrated in the

various profiling figures in this paper (Figure 8, Figure 10, Figure 16, and Figure

19), the GPU finishes much faster than the CPU, and that allows it to go to the

idle state even sooner. In a past work [Gharaibeh et al. 2013b], we present a

detailed discussion and evaluation of the power and energy aspects of graph

processing on hybrid systems, and we show that a hybrid system is not only

efficient in terms of time-to-solution, but also in terms of energy and energy-delay

product.

REFERENCES

AGARWAL, V., PETRINI, F., PASETTO, D., AND BADER, D.A. 2010. Scalable Graph Exploration on Multicore

Processors. The International Conference for High Performance Computing, Networking, Storage, and

Analysis.

BARABÁSI, A.-L. 2003. Linked: How Everything Is Connected to Everything Else and What It Means. Plume.

BARABÁSI, A.-L., ALBERT, R., AND JEONG, H. 2000. Scale-Free Characteristics of Random Networks: the

Topology of the World-Wide Web. Physica A: Statistical Mechanics and its Applications 281, 1-4, 69–77.

BARRETT, R., BERRY, M., CHAN, T.F., ET AL. 1994. Templates for the Solution of Linear Systems: Building

Blocks for Iterative Methods, 2nd Edition. SIAM.

BARROSO, L.A., DEAN, J., AND HOLZLE, U. 2003. Web Search for a Planet: the Google Cluster Architecture.

IEEE Micro 23, 2, 22–28.

BOLDI, P., SANTINI, M., AND VIGNA, S. 2008. A Large Time-Aware Web Graph. ACM SIGIR Forum 42, 2,

33–38.

BRANDES, U. 2001. A Faster Algorithm for Betweenness Centrality. Journal of Mathematical Sociology 25,

2, 163–177.

CHA, M., HADDADI, H., BENEVENUTO, F., AND GUMMADI, P.K. 2010. Measuring User Influence in Twitter:

The Million Follower Fallacy. International AAAI Conference on Weblogs and Social Media .

CHAKRABARTI, D., ZHAN, Y., AND FALOUTSOS, C. 2004. R-MAT: A Recursive Model for Graph Mining. SIAM

International Conference on Data Mining.

CHAMBERLAIN, B.L. 1998. Graph Partitioning Algorithms for Distributing Workloads of Parallel

Computations. Technical report, University of Washington.

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.28.299.

CHAMBERS, J.M. 1971. Algorithm 410 Partial Sorting. Communications of the ACM 14, 5, 357–358.

CHHUGANI, J., SATISH, N., KIM, C., SEWALL, J., AND DUBEY, P. 2012. Fast and Efficient Graph Traversal

Algorithm for CPUs: Maximizing Single-Node Efficiency. International Parallel and Distributed

Processing Symposium.

CURTISS, M., BECKER, I., BOSMAN, T., ET AL. 2013. Unicorn: A System for Searching the Social Graph.

Proceedings of the VLDB Endowment 6, 11, 1150–1161.

EDIGER, D., MCCOLL, R., RIEDY, J., AND BADER, D.A. 2012. STINGER: High Performance Data Structure

for Streaming Graphs. High Performance Extreme Computing.

ERDŐS, P. AND RÉNYI, A. 1960. On the Evolution of Random Graphs. Publ. Math. Inst. Hungar. Acad. Sci 5,

17–61.

FALOUTSOS, M., FALOUTSOS, P., AND FALOUTSOS, C. 1999. On Power-Law Relationships of the Internet

Topology. ACM SIGCOMM Computer Communication Review 29, 4, 251–262.

FELDMANN, A. 2012. Fast Balanced Partitioning Is Hard Even on Grids and Trees. In: B. Rovan, V.

Sassone and P. Widmayer, eds., Mathematical Foundations of Computer Science 2012. Springer Berlin

/ Heidelberg, 372–382.

GAREY, M.R., JOHNSON, D.S., AND STOCKMEYER, L. 1974. Some Simplified NP-Complete Problems.

Symposium on the Theory of Computing.

GHARAIBEH, A., BELTRÃO COSTA, L., SANTOS-NETO, E., AND RIPEANU, M. 2012. A Yoke of Oxen and a

Thousand Chickens for Heavy Lifting Graph Processing. International Conference on Parallel

Architectures and Compilation Techniques.

GHARAIBEH, A., COSTA, L.B., SANTOS-NETO, E., AND RIPEANU, M. 2013a. On Graphs, GPUs, and Blind

Dating: A Workload to Processor Matchmaking Quest. International Parallel and Distributed

Processing Symposium.

GHARAIBEH, A., SANTOS-NETO, E., BELTRÃO COSTA, L., AND RIPEANU, M. 2013b. The Energy Case for

Graph Processing on Hybrid CPU and GPU Systems. Workshop on Irregular Applications:

Architectures and Algorithm.

GONZALEZ, J.E., LOW, Y., GU, H., BICKSON, D., AND GUESTRIN, C. 2012. PowerGraph: Distributed Graph-

Parallel Computation on Natural Graphs. Symposium on Operating Systems Design and

Implementation.

GUPTA, P., GOEL, A., LIN, J., SHARMA, A., WANG, D., AND ZADEH, R. 2013. WTF: The Who to Follow Service

at Twitter. International World Wide Web Conference .

HONG, S., KIM, S.K., OGUNTEBI, T., AND OLUKOTUN, K. 2011a. Accelerating CUDA Graph Algorithms at

Maximum Warp. Symposium on Principles and Practice of Parallel Programming.

HONG, S., OGUNTEBI, T., AND OLUKOTUN, K. 2011b. Efficient Parallel Graph Exploration on Multi-Core

CPU and GPU. International Conference on Parallel Architectures and Compilation Techniques.

IORI, G., DE MASI, G., PRECUP, O.V., GABBI, G., AND CALDARELLI, G. 2008. A Network Analysis of the

Italian Overnight Money Market. Journal of Economic Dynamics and Control 32, 1, 259–278.

JEONG, H., MASON, S.P., BARABÁSI, A.L., AND OLTVAI, Z.N. 2001. Lethality and Centrality in Protein

Networks. Nature 411, 6833, 41–2.

KARYPIS, G. AND KUMAR, V. 1998. A Fast and High Quality Multilevel Scheme for Partitioning Irregular

Graphs. SIAM Journal on Scientific Computing 20, 1.

KATZ, G.J. AND KIDER JR, J.T. 2008. All-Pairs Shortest-Paths for Large Graphs on the GPU. Symposium on

Graphics Hardware.

KERNIGHAN, B. 1970. An Efficient Heuristic Procedure for Partitioning Graphs. The Bell System Technical

Journal 49, 1, 291 – 307.

KWAK, H., LEE, C., PARK, H., AND MOON, S. 2010. What is Twitter, a Social Network or a News Media?

International World Wide Web Conference.

LEE RODGERS, J. AND NICEWANDER, W.A. 1988. Thirteen Ways to Look at the Correlation Coefficient. The

American Statistician 42, 1, 59–66.

LI, D. AND BECCHI, M. 2013. Deploying Graph Algorithms on GPUs: An Adaptive Solution. International

Parallel and Distributed Processing Symposium.

MALEWICZ, G., AUSTERN, M.H., BIK, A.J.C., ET AL. 2010. Pregel: A System for Large-Scale Graph

Processing. SIGMOD International Conference on Management of data .

MCVOY, L. AND STAELIN, C. 1996. lmbench: Portable Tools for Performance Analysis. USENIX Annual

Technical Conference.

MERRILL, D., MICHAEL, G., AND GRIMSHAW, A. 2012. Scalable GPU Graph Traversal. Symposium on

Principles and Practice of Parallel Programming.

NGUYEN, D., LENHARTH, A., AND PINGALI, K. 2013. A Lightweight Infrastructure for Graph Analytics.

Symposium on Operating Systems Principles.

NVIDIA. 2013. TESLA K20 GPU Active Accelerator Board Specification. .

PAGE, L., BRIN, S., MOTWANI, R., AND WINOGRAD, T. 1999. The PageRank Citation Ranking: Bringing

Order to the Web. Technical Report, Stanford InfoLab.

PINEDO, M.L. 2012. Scheduling: Theory, Algorithms, and Systems. Springer Verlag.

ROWSTRON, A., NARAYANAN, D., DONNELLY, A., O’SHEA, G., AND DOUGLAS, A. 2012. Nobody Ever Got Fired

for Using Hadoop on a Cluster. International Workshop on Hot Topics in Cloud Data Processing.

SHUN, J. AND BLELLOCH, G.E. 2013. Ligra: A Lightweight Graph Processing Framework for Shared

Memory. Symposium on Principles and Practice of Parallel Programming.

VALIANT, L.G. 1990. A Bridging Model for Parallel Computation. Communications of the ACM 33, 8, 103–

111.

WANG, R., CONRAD, C., AND SHAH, S. 2013. Using Set Cover to Optimize a Large-Scale Low Latency

Distributed Graph. Workshop on Hot Topics in Cloud Computing.

WANG, X.F. AND CHEN, G. 2003. Complex networks: Small-World, Scale-Free and Beyond. IEEE Circuits

and Systems Magazine 3, 1, 6–20.

