
OpenTuner: An Extensible Framework for Program
Autotuning

Jason Ansel Shoaib Kamil Kalyan Veeramachaneni
Jonathan Ragan-Kelley Jeffrey Bosboom

Una-May O’Reilly Saman Amarasinghe
Massachusetts Institute of Technology

Cambridge, MA
{jansel, skamil, kalyan, jrk, jbosboom, unamay, saman}@csail.mit.edu

ABSTRACT
Program autotuning has been shown to achieve better
or more portable performance in a number of domains.
However, autotuners themselves are rarely portable between
projects, for a number of reasons: using a domain-informed
search space representation is critical to achieving good
results; search spaces can be intractably large and require
advanced machine learning techniques; and the landscape of
search spaces can vary greatly between different problems,
sometimes requiring domain specific search techniques to
explore efficiently.

This paper introduces OpenTuner, a new open source
framework for building domain-specific multi-objective pro-
gram autotuners. OpenTuner supports fully-customizable
configuration representations, an extensible technique rep-
resentation to allow for domain-specific techniques, and an
easy to use interface for communicating with the program to
be autotuned. A key capability inside OpenTuner is the use
of ensembles of disparate search techniques simultaneously;
techniques that perform well will dynamically be allocated
a larger proportion of tests. We demonstrate the efficacy
and generality of OpenTuner by building autotuners for 7
distinct projects and 16 total benchmarks, showing speedups
over prior techniques of these projects of up to 2.8× with
little programmer effort.

1. INTRODUCTION
Program autotuning is increasingly being used in domains

such as high performance computing and graphics to opti-
mize programs. Program autotuning augments traditional
human-guided optimization by offloading some or all of
the search for an optimal program implementation to an
automated search technique. Rather than optimizing a
program directly, the programmer expresses a search space
of possible implementations and optimizations. Autotuning

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PACT’14, August 24–27, 2014, Edmonton, AB, Canada.
Copyright 2014 ACM 978-1-4503-2809-8/14/08 ...$15.00.
http://dx.doi.org/10.1145/2628071.2628092.

can often make the optimization process more efficient
as autotuners are able to search larger spaces than is
possible by hand. Autotuning also provides performance
portability, as the autotuning process can easily be re-run on
new machines which require different sets of optimizations.
Finally, multi-objective autotuning can be used to trade off
between performance and accuracy, or other criteria such
as energy consumption and memory usage, and provide
programs which meet given performance or quality of service
targets.

While the practice of autotuning has increased in
popularity, autotuners themselves often remain relatively
simple and project specific. There are three main challenges
which make the development of autotuning frameworks
difficult.

The first challenge is using the right configuration
representation for the problem. Configurations can contain
parameters that vary from a single integer for a block
size to a much more complex type such as an expression
tree representing a set of instructions. The creator of
the autotuner must find ways to represent their complex
domain-specific data structures and constraints. When
these data structures are naively mapped to simpler
representations, such as a point in high dimensional space,
locality information is lost which makes the search problem
much more difficult. Picking the right representation for the
search space is critical to having an effective autotuner. To
date, all autotuners that have used a representation other
than the simplest ones have had custom project-specific
representations.

The second challenge is the size of the valid configuration
space. While some prior autotuners have worked hard to
prune the configuration space, we have found that for many
problems excessive search space pruning will miss out on
non-intuitive good configurations. We believe providing all
the valid configurations of these search spaces is better than
artificially constraining search spaces and possibly missing
optimal solutions. Search spaces can be very large, up to
103600 possible configurations for one of our benchmarks.
Full exhaustive search of such a space will not complete
in human lifetimes! Thus, intelligent machine learning
techniques are required to seek out a good result with a
small number of experiments.

The third challenge is the landscape of the configuration
space. If the configuration space is a monotonic function, a
search technique biased towards this type of search space

303

(such as a hill climber) will be able to find the optimal
configuration. If the search space is discontinuous and
haphazard an evolution algorithm may perform better.
However, in practice search spaces are much more complex,
with discontinuities, high dimensionality, plateaus, hills
with some of the configuration parameters strongly coupled
and some others independent from each other. A search
technique that is optimal in one type of configuration space
may fail to locate an adequate configuration in another. It
is difficult to provide a robust system that performs well
in a variety of situations. Additionally, many application
domains will have domain-specific search techniques (such
as scheduling or blocking heuristics) which may be critical
to finding an optimal solution efficiently. This has caused
most prior autotuners to use customized search techniques
tailored to their specific problem. This requires machine
learning expertise in addition to the individual domain
expertise to build an autotuner for a system. We believe
that this is one of the main reasons that, while autotuners
are recognized as critical for performance optimization, they
have not seen commodity adoption.

In this paper we present OpenTuner, a new framework for
building domain-specific program autotuners. OpenTuner
features an extensible configuration and technique repre-
sentation able to support complex and user-defined data
types and custom search heuristics. It contains a library
of predefined data types and search techniques to make
it easy to setup a new project. Thus, OpenTuner solves
the custom configuration problem by providing not only a
library of data types that will be sufficient for most projects,
but also extensible data types that can be used to support
more complex domain specific representations when needed.

A core concept in OpenTuner is the use of ensembles of
search techniques. Many search techniques (both built in
and user-defined) are run at the same time, each testing
candidate configurations. Techniques which perform well
by finding better configurations are allocated larger budgets
of tests to run, while techniques which perform poorly
are allocated fewer tests or disabled entirely. Techniques
are able to share results using a common results database
to constructively help each other in finding an optimal
solution. algorithms add results from other techniques as
new members of their population. To allocate tests between
techniques we use an optimal solution to the multi-armed
bandit problem using area under the curve credit assignment.
Ensembles of techniques solve the large and complex search
space problem by providing both a robust solutions to
many types of large search spaces and a way to seamlessly
incorporate domain specific search techniques.

1.1 Contributions
This paper makes the following contributions:

• To the best of our knowledge, OpenTuner is the first
to introduce a general framework to describe complex
search spaces for program autotuning.

• OpenTuner introduces the concept of ensembles of
search techniques to program autotuning, which allow
many search techniques to work together to find an
optimal solution.

• OpenTuner provides more sophisticated search tech-
niques than typical program autotuners. This enables

expanded uses of program autotuning to solve more
complex search problems and pushes the state of the
art forward in program autotuning in a way that can
easily be adopted by other projects.

• We demonstrate the versatility of our framework
by building autotuners for 7 distinct projects and
demonstrate the effectiveness of the system with 16
total benchmarks, showing speedups over existing
techniques of up to 2.8×.

• We show that OpenTuner is able to succeed both
in massively large search spaces, exceeding 103600

possible configurations in size, and in smaller search
spaces using less than 2% of the tests required for
exhaustive search.

2. RELATED WORK
Package Domain Search Method

Active Harmony [31] Runtime System Nelder-Mead
ATLAS [34] Dense Linear Algebra Exhaustive
FFTW [14] Fast Fourier Transform Exhaustive/Dynamic Prog.
Insieme [19] Compiler Differential Evolution
OSKI [33] Sparse Linear Algebra Exhaustive+Heuristic
PATUS [9] Stencil Computations Nelder-Mead or Evolutionary
PetaBricks [4] Programming Language Bottom-up Evolutionary
Sepya [21] Stencil Computations Random-Restart Gradient Ascent
SPIRAL [28] DSP Algorithms Pareto Active Learning

Figure 1: Summary of selected related projects using
autotuning

A number of offline empirical autotuning frameworks have
been developed for building efficient, portable libraries in
specific domains; selected projects and techniques used are
summarized in Figure 1. ATLAS [34] utilizes empirical
autotuning to produce an optimized matrix multiply
routine. FFTW [14] uses empirical autotuning to combine
solvers for FFTs. Other autotuning systems include
SPIRAL [28] for digital signal processing PATUS [9] and
Sepya [21] for stencil computations, and OSKI [33] for sparse
matrix kernels.

The area of iterative compilation contains many projects
that use different machine learning techniques to optimize
lower level compiler optimizations [2, 15, 26, 1]. These
projects change both the order that compiler passes are
applied and the types of passes that are applied.

In the dynamic autotuning space, there have been a
number of systems developed [18, 17, 22, 6, 8, 5] that focus
on creating applications that can monitor and automatically
tune themselves to optimize a particular objective. Many of
these systems employ a control systems based autotuner that
operates on a linear model of the application being tuned.
For example, PowerDial [18] converts static configuration
parameters that already exist in a program into dynamic
knobs that can be tuned at runtime, with the goal of
trading QoS guarantees for meeting performance and power
usage goals. The system uses an offline learning stage to
construct a linear model of the choice configuration space
which can be subsequently tuned using a linear control
system. The system employs the heartbeat framework [16]
to provide feedback to the control system. A similar
technique is employed in [17], where a simpler heuristic-
based controller dynamically adjusts the degree of loop
perforation performed on a target application to trade QoS
for performance.

304

Results Database

Search
TechniquesSearch

Driver

Search

Reads: Results
Writes: Desired Results

Measurement

User Defined
Measurement

Function

Measurement
Driver

Configuration
Manipulator

Reads: Desired Results
Writes: Results

Figure 2: Overview of the major components in the
OpenTuner framework.

Related to our Mario benchmark, Murphy [23] presents
algorithms for playing NES games based on example human
inputs. In contrast, this paper’s Mario example has no
knowledge of the game except for pixels moved to the right.

3. THE OPENTUNER FRAMEWORK
Our terminology reflects that the autotuning problem is

cast as a search problem. The search space is made up
of configurations, which are concrete assignments of a set
of parameters. Parameters can be primitive such as an
integer or complex such as a permutation of a list. When
the performance, output accuracy, or other metrics of a
configuration are measured (typically by running it in a
domain-specific way), we call this measurement a result.
Search techniques are methods for exploring the search
space and make requests for measurement called desired
results. Search techniques can change configurations using a
user-defined configuration manipulator, which also includes
parameters corresponding directly the parameters in the
configuration. Some parameters include manipulators,
which are opaque functions that make stochastic changes
to a specific parameter in a configuration.

Figure 2 provides an overview of the major components
in OpenTuner. The search process includes techniques,
which use the user defined configuration manipulator in
order to read and write configurations. The measurement
processes evaluate candidate configurations using a user
defined measurement function. These two components
communicate exclusively through a results database used to
record all results collected during the tuning process, as well
as providing ability to perform multiple measurements in
parallel.

3.1 OpenTuner Usage
To implement an autotuner with OpenTuner, first, the

user must define the search space by creating a configuration
manipulator. This configuration manipulator includes a set
of parameter objects which OpenTuner will search over.
Second, the user must define a run function which evaluates
the fitness of a given configuration in the search space to
produce a result. These must be implemented in a small
Python program in order to interface with the OpenTuner
API.

Figure 3 shows an example of using OpenTuner to search
over the space of GCC compiler flags in order to minimize

1import opentuner
2from opentuner import ConfigurationManipulator
3from opentuner import EnumParameter
4from opentuner import IntegerParameter
5from opentuner import MeasurementInterface
6from opentuner import Result
7
8GCC_FLAGS = [
9’align-functions’, ’align-jumps’, ’align-labels’,
10’branch-count-reg’, ’branch-probabilities’,
11# ... (176 total)
12]
13
14# (name, min, max)
15GCC_PARAMS = [
16(’early-inlining-insns’, 0, 1000),
17(’gcse-cost-distance-ratio’, 0, 100),
18# ... (145 total)
19]
20
21class GccFlagsTuner(MeasurementInterface):
22
23def manipulator(self):
24"""
25Define the search space by creating a
26ConfigurationManipulator
27"""
28manipulator = ConfigurationManipulator()
29manipulator.add_parameter(
30IntegerParameter(’opt_level’, 0, 3))
31for flag in GCC_FLAGS:
32manipulator.add_parameter(
33EnumParameter(flag,
34[’on’, ’off’, ’default’]))
35for param, min, max in GCC_PARAMS:
36manipulator.add_parameter(
37IntegerParameter(param, min, max))
38return manipulator
39
40def run(self, desired_result, input, limit):
41"""
42Compile and run a given configuration then
43return performance
44"""
45cfg = desired_result.configuration.data
46gcc_cmd = ’g++ raytracer.cpp -o ./tmp.bin’
47gcc_cmd += ’ -O{0}’.format(cfg[’opt_level’])
48for flag in GCC_FLAGS:
49if cfg[flag] == ’on’:
50gcc_cmd += ’ -f{0}’.format(flag)
51elif cfg[flag] == ’off’:
52gcc_cmd += ’ -fno-{0}’.format(flag)
53for param, min, max in GCC_PARAMS:
54gcc_cmd += ’ --param {0}={1}’.format(
55param, cfg[param])
56
57compile_result = self.call_program(gcc_cmd)
58assert compile_result[’returncode’] == 0
59run_result = self.call_program(’./tmp.bin’)
60assert run_result[’returncode’] == 0
61return Result(time=run_result[’time’])
62
63if __name__ == ’__main__’:
64argparser = opentuner.default_argparser()
65GccFlagsTuner.main(argparser.parse_args())

Figure 3: GCC/G++ flags autotuner using OpenTuner.

305

execution time of the resulting program. In Section 4, we
present results on an expanded version of this example which
obtains up to 2.8x speedup over -O3.

This example tunes three types of flags to GCC. First
it chooses between the four optimization levels -O0, -O1, -
O2, -O3. Second, for 176 flags listed on line 8 it decides
between turning the flag on (with -fFLAG), off (with -fno-

FLAG), or omitting the flag to allow the default value to
take precedence. Including the default value as a choice is
not necessary for completeness, but speeds up convergence
and results in shorter command lines. Finally, it assigns a
bounded integer value to the 145 parameters on line 15 with
the --param NAME=VALUE command line option.

The method manipulator (line 23), is called once at
startup and creates a ConfigurationManipulator object
which defines the search space of GCC flags. All accesses
to configurations by search techniques are done through
the configuration manipulator. For optimization level, an
IntegerParameter between 0 and 3 is created. For each
flag, a EnumParameter is created which can take the values
on, off, and default. Finally, for the remaining bounded
GCC parameters, an IntegerParameter is created with the
appropriate range.

The method run (line 40) implements the measurement
function for configurations. First, the configuration is
realized as a specific command line to g++. Next, this g++

command line is run to produce an executable, tmp.bin,
which is then run using call_program. call_program is a
convenience function which runs and measures the execution
time of the given program. Finally, a Result is constructed
and returned, which is a database record type containing
many other optional fields such as time, accuracy, and
energy. By default OpenTuner minimizes the time field,
but this can be customized.

3.2 Search Techniques
To provide robust search, OpenTuner includes techniques

that can handle many types of search spaces and runs
a collection of search techniques at the same time.
Techniques which perform well are allocated more tests,
while techniques which perform poorly are allocated fewer
tests. Techniques share results through the results database,
so that improvements made by one technique can benefit
other techniques. This sharing occurs in technique-specific
ways; for example, evolutionary techniques add results
found by other techniques as members of their population.
OpenTuner techniques are meant to be extended. Users
can define custom techniques which implement domain-
specific heuristics and add them to ensembles of pre-defined
techniques.

Ensembles of techniques are created by instantiating a
meta technique, which is a technique made up of a collection
of other techniques. The OpenTuner search driver interacts
with a single root technique, which is typically a meta
technique. When the meta technique gets allocated tests,
it incrementally decides how to divide theses tests among
its sub-techniques. OpenTuner contains an extensible class
hierarchy of techniques and meta techniques, which can be
combined together and used in autotuners.

3.2.1 AUC Bandit Meta Technique
In addition to a number of simple meta techniques, such

as round robin, OpenTuner’s core meta technique used

in results is the multi-armed bandit with sliding window,
area under the curve credit assignment (AUC Bandit)
meta technique. A similar technique was used in [25] in
the different context of online operator selection. It is
based on an optimal solution to the multi-armed bandit
problem [12]. The multi-armed bandit problem is the
problem of picking levers to pull on a slot machine with
many arms each with an unknown payout probability. The
sliding window makes the technique only consider a subset of
history (the length of the window) when making decisions.
This meta-technique encapsulates a fundamental trade-off
between exploitation (using the best known technique) and
exploration (estimating the performance of all techniques).

The AUC Bandit meta technique assigns each test to
the technique, t, defined by the formula arg maxt(AUCt +

C
√

2 lg |H|
Ht

) where |H| is the length of the sliding history

window, Ht is the number of times the technique has been
used in that history window, C is a constant controlling
the exploration/exploitation trade-off, and AUCt is the
credit assignment term quantifying the performance of the
technique in the sliding window. The second term in the
equation is the exploration term which gets smaller the more
often a technique is used.

The area under the curve credit assignment mechanism,
based on [13], draws a curve by looking at the history for a
specific technique and looking only at if a technique yielded a
new global best or not. If the technique yielded a new global
best, a upward line is drawn, otherwise a flat line is drawn.
The area under this curve (scaled to a maximum value of 1)
is the total credit attributed to the technique. This credit
assignment mechanism can be described more precisely by

the formula: AUCt = 2
|Vt|(|Vt|+1)

∑|Vt|
i=1 iVt,i where Vt is the

list of uses of t in the sliding window history. Vt,i is 1 if
using technique t the ith time in the history resulted in a
speedup, otherwise 0.

3.2.2 Other Techniques
OpenTuner includes implementations of the techniques:

differential evolution; many variants of Nelder-Mead search
and Torczon hillclimbers; a number of evolutionary mutation
techniques; pattern search; particle swarm optimization; and
random search. OpenTuner also includes a bandit mutation
technique which uses the same AUC Bandit method to
decide which manipulator function across all parameters to
call on the best known configuration. These techniques
span a range of strategies and are each biased to perform
best in different types of search spaces. They also each
contain many settings which can be configured to change
their behavior. Each technique has been modified so that
with some probability it will use information found by
other techniques if other techniques have discovered a better
configuration.

The default meta technique, used in results in this paper
and meant to be robust, uses an AUC Bandit meta technique
to combine greedy mutation, differential evolution, and two
hill climber instances.

3.3 Configuration Manipulator
The configuration manipulator provides a layer of ab-

straction between the search techniques and the raw
configuration structure. It is primarily responsible for
managing a list of parameter objects, each of which can be

306

Parameter

Primitive Complex

Integer ScaledNumericFloat

LogInteger LogFloat PowerOfTwo

Switch Enum Permutation

Schedule

SelectorBoolean

Figure 4: Hierarchy of built in parameter types. User
defined types can be added at any point below Primitive
or Complex in the tree.

used by search techniques to read and write parts of the
underlying configuration.

The default implementation of the configuration ma-
nipulator uses a fixed list of parameters and stores
the configuration as a dictionary from parameter name
to parameter-dependent data type. The configuration
manipulator can be extended by the user either to change
the underlying data structure used for configurations or to
support a dynamic list of parameters that is dependent on
the configuration instance.

3.3.1 Parameter Types
OpenTuner has a hierarchy of built-in parameter types.

Each parameter type is responsible for interfacing between
the raw representation of a parameter in the configuration
and the standardized view of that parameter presented to
the search techniques. Parameter types can be extended
both to change the underlying representation, and to change
the abstraction provided to search techniques to cause a
parameter to be search in different ways.

From the viewpoint of search techniques there are two
main types of parameters, each of which provides a different
abstraction to the search techniques:

Primitive parameters present a view to search techniques
of a numeric value with an upper and lower bound.
These upper and lower bounds can be dependent on the
configuration instance.

The built in parameter types Float and LogFloat (and
similarly Integer and LogInteger) both have identical
representations in the configuration, but present a different
view of the underlying value to the search techniques.
Float is presented directly to to search techniques, while
LogFloat presents a log scaled view of the underlying
parameter to search techniques. To a search technique,
halving and doubling a log scaled parameter are changes
of equal magnitude. Log scaled variants of parameters are
often better for parameters such as block sizes where fixed
changes in values have diminishing effects the larger the
parameter becomes. PowerOfTwo is a commonly used special
case, similar to LogInteger, where the legal values of the
parameter are restricted to powers of two.

Complex parameters present a more opaque view to search
techniques. Complex parameters have a variable set of ma-
nipulation operators (manipulators) which make stochastic
changes to the underlying parameter. These manipulators
are arbitrary functions defined on the parameter which
can make high level type dependent changes. Complex
parameters are meant to be easily extended to add domain
specific structures to the search space. New complex
parameters define custom manipulation operators for use by
the configuration manipulators.

The built in parameter types Boolean, Switch, and
Enum could theoretically also be represented as primitive
parameters, since they each can be translated directly to
a small integer representation. However, in the context
of search techniques they make more sense as complex
parameters. This is because, for primitive parameters,
search techniques will attempt to follow gradients. These
parameter types are unordered collections of values for which
no gradients exist. Thus, the complex parameter abstraction
is a more efficient representation to search over.

The Permutation parameter type assigns an order to a
given list of values and has manipulators which make various
types of random changes to the permutation. A Schedule

parameter is a Permutation with a set of dependencies
that limit the legal order. Schedules are implemented as a
permutation that gets topologically sorted after each change.
Finally, a Selector parameter is a special type of tree which
is used to define a mapping from an integer input to an
enumerated value type.

In addition to these primary primitive and complex
abstractions for parameter types, there are a number of
derived ways that search techniques will interact with
parameters in order to more precisely convey intent. These
are additional methods on parameter which contain default
implementations for both primitive and complex parameter
types. These methods can optionally be overridden for
specific parameters types to improve search techniques.
Parameter types will work without these methods being
overridden, but implementing them can improve results.

As an example, a common operation in many search
techniques is to add the difference between configuration A
and B to configuration C. This is used both in differential
evolution and many hill climbers. Complex parameters have
a default implementation of this indent which compares the
value of the parameter in the 3 configurations: if A = B,
then there is no difference and the result is C; similarly,
if B = C, then A is returned; otherwise a change should
be made so random manipulators are called. This works in
general, but for individual parameter types there are often
better interpretations. For example, with permutations one
could calculate the positional movement of each item in
the list and calculate a new permutation by applying these
movements again.

3.4 Objectives
OpenTuner supports multiple user-defined objectives.

Result records have fields for time, accuracy, energy, size,
confidence, and user defined data. The default objective is
to minimize time. Many other objectives are supported,
such as: maximize accuracy; threshold accuracy while
minimizing time; and maximize accuracy then minimize size.
The user can easily define their own objective by defining
comparison operators and display methods on a subclass of
Objective.

3.5 Search Driver and Measurement
OpenTuner is divided into two submodules, search and

measurement. The search driver and measurement driver in
each of these modules orchestrate most of the framework of
the search process. These two modules communicate only
through the results database. The measurement module
is minimal by design and is primarily a wrapper around
the user defined measurement function which creates results
from configurations.

307

This division between search and measurement is moti-
vated by a number of different factors:

• To allow parallelism between multiple search mea-
surement processes, possibly across different machines.
Parallelism is most important in the measurement
processes since in most autotuning applications mea-
surement costs dominate. To allow for parallelism the
search driver will make multiple requests for desired
results without waiting for each request to be fulfilled.
If a specific technique is blocked waiting for results,
other techniques in the ensemble will used to fill out
requests to prevent idle time.

• The separation of the measurement modules is
desirable to support online learning and sideline
learning. In these setups, autotuning is not done before
deployment of an application, but is done online as an
application is running or during idle time. Since the
measurement module is minimal by design, it can be
replaced by an domain specific online learning module
which periodically examines the database to decide
which configuration to use and records performance
back to the database.

• Finally, in many embedded or mobile settings which
require constrained measurement environments it is
desirable to have a minimal measurement module
which can easily be re-implemented in other languages
without needing to modify the majority of the
OpenTuner framework.

3.6 Results Database
The results database is a fully featured SQL database. All

major database types are supported, and SQLite is used if
the user has not configured a database type so that no setup
is required. It allows different techniques to query and share
results in a variety of ways and is useful for introspection
about the performance of techniques across large numbers
of runs of the autotuner.

4. EXPERIMENTAL RESULTS

Project Benchmark Possible Configurations

GCC/G++ Flags all 10806

Halide Blur 1025

Halide Wavelet 1032

Halide Bilateral 10176

HPL n/a 109.9

PetaBricks Poisson 103657

PetaBricks Sort 1090

PetaBricks Strassen 10188

PetaBricks TriSolve 101559

Stencil all 106.5

Unitary n/a 1021

Mario n/a 106328

Figure 5: Search space sizes in number of possible
configurations, as represented in OpenTuner.

We validated OpenTuner by using it to implemented
autotuners for seven distinct projects. This section describes
these seven projects, the autotuners we implemented, and
presents results comparing to prior practices in each project.

Figure 5 lists, for each benchmark, the number of distinct
configurations that can be generated by OpenTuner. This

measure is not perfect because some configurations may be
semantically equivalent and the search space depends on
the representation chosen in OpenTuner. It does, however,
provide a sense of the relative size of each search space,
which is useful as a first approximation of tuning difficulty.
For many of these benchmarks, the size of the search space
makes exhaustive search intractable. Thus, we compare to
the best performance obtained by the benchmark authors
when optimality is impossible to quantify.

For each benchmark, we keep the environment as constant
as possible, but do not use the same environment for
all benchmarks, due to particular requirements for each
benchmark, and because one (the stencil benchmark) is
based on data from an environment outside our control.

4.1 GCC/G++ Flags
The GCC/G++ flags autotuner is described in detail

in Section 3.1. There are a number features that were
omitted from the earlier example code for simplicity, which
are included in the full version of the autotuner.

First, we added error checking to gracefully handle the
compiler or the output program hanging, crashing, running
out of memory, or otherwise going wrong. Our tests
uncovered a number of bugs in GCC which triggered
internal compiler errors and we implemented code to detect,
diagnose, and avoid error-causing sets of flags. We are
submitting bug reports for these crashes to the GCC
developers.

Second, instead of using a fixed list of flags and
parameters (which the example does for simplicity), our full
autotuner automatically extracts the supported flags from
g++ --help=optimizers. Parameters and legal ranges are
extracted automatically from params.def in the GCC source
code.

Additionally, there were a number of smaller features
such as: time limits to abort slow tests which will not be
optimal; use of LogInteger parameter types for some values;
a save_final_config method to output the final flags; and
many command line options to control autotuner behavior.

We ran experiments using gcc 4.7.3-1ubuntu1, on an 8
total core, 2-socket Xeon E5320. We allowed flags such as
-ffast-math which can change rounding or NaN behavior of
floating-point numbers and have small impacts on program
results. We still observe speedups with these flags removed.

For target programs to optimize we used: a fast Fourier
transform in C, fft.c, taken from the SPLASH2 [35]
benchmark suite; a C++ template matrix multiply, matrix-
multiply.cpp, written by Xiang Fan [11] (version 3); a C++
ray tracer, raytracer.cpp, taken from the scratchpixel
website [27]; and a genetic algorithm to solve the traveling
salesman program in C++, tsp_ga.cpp, by Kristoffer
Nordkvist [24], which we modified to run deterministically.
These programs were chosen to span a range from
highly optimized codes, like fft.c which contains cache
aware tiling and threading, to less optimized codes, like
matrixmultiply.cpp which contains only a transpose of one
of the inputs.

Figure 6 shows the performance for autotuning GCC flags
on these four different sample programs. Final speedups
ranged from 1.15× for FFT to 2.82× for matrix multiply.

Figure 7 shows a separate experiment to try to understand
which flags contributed the most to the speedups obtained.
Full GCC command lines found contained over 250 options

308

 0.8

 0.85

 0.9

 0.95

 1

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

gcc -O1
gcc -O2
gcc -O3

OpenTuner

(a) fft.c

 0.1

 0.15

 0.2

 0.25

 0.3

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(b) matrixmultiply.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(c) raytracer.cpp

 0.4

 0.45

 0.5

 0.55

 0.6

 0 300 600 900 1200 1500 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

g++ -O1
g++ -O2
g++ -O3

OpenTuner

(d) tsp ga.cpp

Figure 6: GCC/G++ Flags: Execution time (lower is better) as a function of autotuning time. Aggregated performance
of 30 runs of OpenTuner, error bars indicate median, 20th, and 80th percentiles. Note that in (b) the O1/O2/O3 and in (c)
the O2/O3 lines are on top of each other and may be difficult to see.

and are difficult understand by hand. To approximate the
importance of each flag, we measured the slowdown resulting
from removing it from the autotuned GCC command. We
normalize all slowdowns to sum to 100%. This experiment
was conducted on a single run of the autotuner. This
measurement of importance is imperfect because flags can
interact in complex ways and are not independent. We
note that the total slowdown from removing each flag
independently is larger than the slowdown of removing all
flags.

The benchmarks show interesting behavior and varying
sets of optimal flags. The matrix multiply benchmark
reaches optimal performance through a few large steps, and
its speedup is dominated by 3 flags: -fno-exceptions, -

fwrapv, and -funsafe-math-optimizations. On the other
hand, TSP takes many small, incremental steps and its
speedup is spread over a large number of flags with smaller
effects. The FFT benchmark is heavily hand optimized and
performs more poorly at -O3 than at -O2; the flags found
for it are primarily disabling, rather than enabling, various
compiler optimizations which interact poorly with its hand-
written optimizations. While there are some patterns, each
benchmark requires a different set of flags to get the best
performance.

4.2 Halide
Halide [29, 30] is a domain-specific language and compiler

for image processing and computational photography,
specifically targeted towards image processing pipelines
(graphs) that contain many stages. Halide separates
the expression of the kernels and pipeline itself from the
pipeline’s schedule, which defines the order of execution
and placement of data by which it is mapped to machine
execution. The schedule dictates how the Halide compiler
synthesizes code for a given pipeline. This allows expert
programmers to easily define and explore the space of
complex schedules which result in high performance.

Until today, production uses of Halide have relied on
hand-tuned schedules written by experts. The autotuning
problem in Halide is to automatically synthesize schedules
and search for high-performance configurations of a given
pipeline on a given architecture. The Halide project
previously integrated a custom autotuner to automatically
search over the space of schedules, but it was removed
because it became too complex to maintain and was difficult
to use in practice.1

1Unfortunately, the original Halide autotuner cannot be
used as a baseline to compare against, because the Halide
language and compiler have changed too much since its
removal to make direct comparison meaningful.

309

Flag (Importance)

-fno-tree-vectorize (25.0%)
-funroll-loops (6.7%)

-fno-jump-tables (5.4%)
-fno-inline (5.0%)

-fno-ipa-pure-const (4.8%)
-fno-tree-cselim (4.7%)

-fno-rerun-cse-after-loop (4.5%)
-fno-tree-forwprop (4.0%)

-fno-tree-tail-merge (4.0%)
-fno-cprop-registers (3.2%)

264 other flags (32.7%)

(a) fft.c

Flag (Importance)

-fno-exceptions (28.5%)
-fwrapv (27.8%)

-funsafe-math-optimizations (27.0%)
–param=large-stack-frame=65 (1.1%)

-fschedule-insns2 (1.0%)
-funroll-loops (0.9%)

-fno-ivopts (0.8%)
–param=sccvn-max-scc-size=2995 (0.7%)

–param=max-sched-extend-
regions-iters=2

(0.6%)

–param=slp-max-insns-in-
bb=1786

(0.6%)

272 other flags (10.9 %)

(b) matrixmultiply.cpp

Flag (Importance)

-funsafe-math-optimizations (21.1%)
-ffinite-math-only (9.4%)
-frename-registers (3.9%)

-fwhole-program (2.8%)
–param=selsched-insns-to-rename=2 (2.4%)

-fno-tree-dominator-opts (2.3%)
–param=min-crossjump-insns=17 (2.2%)

–param=max-crossjump-edges=31 (2.1%)
–param=sched-state-edge-prob-

cutoff=17
(2.0%)

–param=sms-loop-average-count-
threshold=4

(1.8%)

265 other flags (49.9 %)

(c) raytracer.cpp

Flag (Importance)

-freorder-blocks-and-partition (2.8%)
-funroll-all-loops (1.9%)

–param=omega-max-geqs=64 (1.8%)
–param=predictable-branch-outcome=2 (1.5%)
–param=min-insn-to-prefetch-ratio=36 (1.5%)

-fno-rename-registers (1.4%)
–param=max-unswitch-insns=200 (1.4%)

–param=omega-max-keys=2000 (1.4%)
–param=max-delay-slot-live-search=83 (1.3%)

–param=prefetch-latency=50 (1.3%)
279 other flags (83.7%)

(d) tsp ga.cpp

Figure 7: Top 10 most important GCC flags for each benchmark. Importance is defined as the slowdown when the flag is
removed from the final configuration. Importance is normalized to sum to 100%.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0 100 200 300 400 500

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Hand-optimized
OpenTuner

(a) Blur

 0

 0.005

 0.01

 0.015

 0.02

 0 500 1000

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Hand-optimized
OpenTuner

(b) Wavelet

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 0 5000 10000 15000

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Hand-optimized
OpenTuner

(c) Bilateral

Figure 8: Halide: Execution time (lower is better) as a function of autotuning time. Aggregated performance of 30 runs of
OpenTuner, error bars indicate median, 20th, and 80th percentiles.

Halide’s model of schedules is based on defining three
things for each function in a pipeline:

1. In what order pixels within the stage should be
evaluated.

2. At what granularity pixels should be interleaved
between producer and consumer stages.

3. At what granularity pixels should be stored for reuse.

In the Halide language, these choices are specified by
applying schedule operators to each function. The
composition of potentially many schedule operators for each
function together define the organization of computations
and data for a whole pipeline.

For example, the best hand-tuned schedule (against which
we compare our autotuner) for a two-stage separable blur
pipeline is written as follows:
blur_y.split(y, y, yi, 8)

.parallel(y)

.vectorize(x, 8);
blur_x.store_at(blur_y, y)

.compute_at(blur_y, yi)

.vectorize(x, 8);

blur_y(x, y) and blur_y(x, y) are the Halide functions
which make up the pipeline. The scheduling operators
available to the autotuner are the following:

• split introduces a new variable and loop nest by
adding a layer of blocking. Recursive splits make the
search space theoretically infinite; we limit the number
of splits to at most 4 per dimension per function, which
is sufficient in practice. We represent each of these
splits as a PowerOfTwoParameter, where setting the
size of the split to 1 corresponds to not using the split
operator.

• parallel, vectorize, and unroll cause the loop nest
associated with a given variable in the function to be
executed in parallel (over multiple threads), vectorized
(e.g., with SSE), or unrolled. OpenTuner represents
each of these operators as a parameter per variable
per function (including variables introduced by splits).
The parallel operator is a BooleanParameter, while
vectorize and unroll are PowerOfTwoParameters like
splits.

• reorder / reorder_storage take a list of variables
and reorganizes the loop nest order or storage
order for those variables. We encode a single
reorder and a single reorder_storage for each
function. We represent reorder_storage as a
PermutationParameter over the original (pre-split)
variables in the function. The reorder operator for
each function is a ScheduleParameter over all the
post-split variables, with the permutation constraint
that the split children of a single variable are ordered
in a fixed order relative to each other, to remove
redundancy in the choice space.

Together, these operators define the order of execution
(as a perfectly nested loop) and storage layout within
the domain of each function, independently. Finally, the
granularity of interleaving and storage between stages are
specified by two more operators:

• compute_at specifies the granularity at which a given
function should be computed within its consumers.

• store_at specifies the granularity at which a given
function should be stored for reuse by its consumers.

310

 8.6

 8.65

 8.7

 8.75

 8.8

 8.85

 8.9

 8.95

 9

 9.05

 0 200 400 600 800 1000 1200 1400 1600 1800

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

Vendor-optimized
OpenTuner

Figure 9: High Performance Linpack: Execution
time (lower is better) as a function of autotuning time.
Aggregated performance of 30 runs of OpenTuner, error bars
indicate median, 20th, and 80th percentiles.

Both granularity choices are specified as a level in the loop
nest of a downstream function whose scope encloses all
uses of the producer. These producer-consumer granularity
choices are the most difficult parameters to encode and
search, because the valid choices for these parameters are
inter-dependent with both granularity and order choices
for all other functions in the pipeline. Näıvely encoding
these parameters without respecting this interdependence
creates numerous invalid schedules—which are meaningless
in Halide’s schedule language and rejected by the compiler—
for each valid schedule.

The result of all these operators is a schedule space that
is an exceedingly complex tree; transformations can add or
delete subtrees, for example. Searching over such a space
is far more difficult when it must be encoded in simple
integer parameters, so we take advantage of OpenTuner’s
ability to encode more complex parameter types. We
represented the set of all compute and storage interleaving
choices for a whole pipeline as a single instance of a custom,
domain-specific parameter type. The parameter extends a
ScheduleParameter, encoding open and close pairs for each
scope in the scheduled pipeline’s loop nest, with a correction
step which projects any invalid permutations back into the
space of meaningful schedules.

Figure 8 presents results for three benchmarks drawn
from Halide’s standard demo applications: a two-stage
blur, an inverse Daubechies wavelet transform, and a fast
bilateral filter using the bilateral grid. For all three of
these examples OpenTuner is able to create schedules that
match or beat the best hand optimized schedules shipping
with the Halide source code. Results were collected on
three IvyBridge-generation Intel processors2 using the latest
release of Halide.

4.3 High Performance Linpack
The High Performance Linpack benchmark [10] is used

to evaluate floating point performance of machines ranging
from small multiprocessors to large-scale clusters, and is
the evaluation criterion for the Top 500 [32] supercomputer
benchmark. The benchmark measures the speed of

2Blur was tuned on a Core i5-3550, wavelet on a Core i7-
3770, and bilateral grid on a 12 cores of a dual-socket Xeon
E5-2695 v2 server.

solving a large random dense linear system of equations
using distributed memory. Achieving optimal performance
requires tuning about fifteen parameters, including matrix
block sizes and algorithmic parameters. To assist in tuning,
HPL includes a built in autotuner that uses exhaustive
search over user-provided discrete values of the parameters.

We run HPL on a 2.93 GHz Intel Sandy Bridge quad-core
machine running Linux kernel 3.2.0, compiled with GCC
4.5 and using the Intel Math Kernel Library (MKL) 11.0
for optimized math operations. For comparison purposes,
we evaluate performance relative to Intel’s optimized HPL
implementation3. We encode the input tuning parameters
for HPL as näıvely as possible, without using any machine-
specific knowledge. For most parameters, we utilize
EnumParameter or SwitchParameter, as they generally
represent discrete choices in the algorithm used. The major
parameter that controls performance is the blocksize of the
matrix; this we represent as an IntegerParameter to give
as much freedom as possible for the autotuner for searching.
Another major parameter controls the distribution of the
matrix onto the processors; we represent this by enumerating
all 2D decompositions possible for the number of processors
on the machine.

Figure 9 shows the results of 30 tuning runs using Open-
Tuner, compared with the vendor-provided performance.
The median performance across runs, after 1200 seconds
of autotuning, exceeds the performance of Intel’s optimized
parameters. Overall, OpenTuner obtains a best performance
of 86.5% of theoretical peak performance on this machine,
while exploring a miniscule amount of the overall search
space. Furthermore, the blocksize chosen is not a power
of two, and is generally a value unlikely to be guessed for
use in hand-tuning.

4.4 PetaBricks
PetaBricks [3] is an implicitly parallel language and

compiler which incorporates the concept of algorithmic
choice into the language. The PetaBricks language provides
a framework for the programmer to describe multiple
ways of solving a problem while allowing the autotuner to
determine which combination of ways is best for the user’s
situation. The search space of PetaBricks programs is both
over low level optimizations and over different algorithms.
The autotuner is used to synthesize poly-algorithms which
weave many individual algorithms together by switching
dynamically between them at recursive call sites.

The primary components in the search space for PetaBricks
programs are algorithmic selectors which are used to
synthesize instances of poly-algorithms from algorithmic
choices in the PetaBricks language. A selector is used to
map input sizes to algorithmic choices, and is represented
by a list of cutoffs and choices. As an example,
the selector [InsertionSort, 500,QuickSort, 1000,MergeSort]
would correspond to synthesizing the function:

void Sort(List& list) {
if(list.length < 500)
InsertionSort(list);

else if(list.length < 1000)
QuickSort(list);

else
MergeSort(list);

}

3Available at http://software.intel.com/en-us/
articles/intel-math-kernel-library-linpack-download.

311

http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download
http://software.intel.com/en-us/articles/intel-math-kernel-library-linpack-download

 0
 0.02
 0.04
 0.06
 0.08
 0.1

 0.12
 0.14
 0.16
 0.18
 0.2

 0 600 1200 1800 2400 3000 3600

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(a) Poisson

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(b) Sort

 0

 0.05

 0.1

 0.15

 0.2

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(c) Strassen

 0.0095

 0.01

 0.0105

 0.011

 0.0115

 0 600 1200

E
xe

cu
tio

n
Ti

m
e

(s
ec

on
ds

)

Autotuning Time (seconds)

PetaBricks Autotuner
OpenTuner

(d) Tridiagonal Solver

Figure 10: PetaBricks: Execution time (lower is better) as a function of autotuning time. Aggregated performance of 30
runs of OpenTuner, error bars indicate median, 20th, and 80th percentiles.

where QuickSort and MergeSort recursively call Sort so
the program dynamically switches between sorting methods
as recursive calls are made on smaller and smaller lists.
We used the general SelectorParameter to represent this
choice type, which internally keeps track of the order of the
algorithmic choices and the cutoffs. PetaBricks programs
contain many algorithmic selectors and a large number of
other parameter types, such as block sizes, thread counts,
iteration counts, and program specific parameters.

Results using OpenTuner compared to the built-in
PetaBricks autotuner are shown in Figure 10. The
PetaBricks autotuner uses a different strategy that starts
with tests on very small problem inputs and incrementally
works up to full sized inputs [4]. In all cases, the autotuners
arrive at similar solutions, and for Strassen, the exact same
solution. For Sort and Tridiagonal Solver, OpenTuner
beats the native PetaBricks autotuner, while for Poisson
the PetaBricks autotuner arrives at a better solution, but
has much higher variance.

The Poisson equation solver (Figure 10a) presents the
most difficult search space. The search space for Poisson
in PetaBricks is described in detail in [7]. It is a variable
accuracy benchmark where the goal of the autotuner is
to find a solution that provides 8-digits of accuracy while
minimizing time. All points in Figure 10a satisfy the
accuracy target, so we do not display accuracy. Open-
Tuner uses the ThresholdAccuracyMinimizeTime objective

described in Section 3.4. The Poisson search space selects
between direct solvers, iterative solvers, and multigrid
solvers where the shape of the multigrid V-cycle/W-cycle
is defined by the autotuner. The optimal solution is a
poly-algorithm composed of multigrid W-cycles. However,
it is difficult to obtain 8 digits of accuracy with randomly
generated multigrid cycle shapes, though it is easy with
a direct solver (which solves the problem exactly). This
creates a large “plateau” which is difficult for the autotuners
to improve upon, and is shown near 0.16. The native
PetaBricks autotuner is less affected by this plateau because
it constructs algorithms incrementally bottom up; however
the use of these smaller input sizes causes larger variance as
mistakes early on get amplified.

4.5 Stencil
In [20], the authors describe a generalized system for

autotuning memory-bound stencil computations on modern
multicore machines and GPUs. By composing domain-
specific transformations, the authors explore a large space
of implementations for each kernel; the original autotuning
methodology involves exhaustive search over thousands of
implementations for each kernel.

We obtained the raw execution data, courtesy of the
authors, and use OpenTuner instead of exhaustive search
on the data from a Nehalem-class 2.66 GHz Intel Xeon
machine, running Linux 2.6. We compare against the
optimal performance obtained by the original autotuning

312

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

 1.8e+08

 2e+08

 0 10 20 30 40 50 60

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

Tests

Optimal
OpenTuner

(a) Laplacian

 1e+08

 2e+08

 3e+08

 4e+08

 5e+08

 6e+08

 0 10 20 30 40 50 60

E
xe

cu
tio

n
Ti

m
e

(c
yc

le
s)

Tests

Optimal
OpenTuner

(b) Divergence

Figure 11: Stencil: Execution time (lower is better) as
a function of tests. Aggregated performance of 30 runs
of OpenTuner, error bars indicate median, 20th, and 80th
percentiles.

system through exhaustive search. The search space for
this problem involves searching for parameters for the
parallel decomposition, cache and thread blocking, and loop
unrolling for each kernel; to limit the impact of control
flow and cache misalignment, these parameters depend on
one another (for example, the loop unrolling will be a
small integer divisor of the thread blocking). We encode
these parameters as PowerOfTwoParameters but ensure that
invalid combinations are discarded.

Figure 11 shows the results of using OpenTuner for the
Laplacian and divergence kernel benchmarks, showing the
median performance obtained over 30 trials as a function
of the number of tests (results for the gradient kernel are
similar, so we omit them for brevity). OpenTuner is able
to obtain peak performance on Laplacian after less than 35
tests of candidate implementations and 25 implementations
for divergence; thus, using OpenTuner, less than 2% of
the search space needs to be explored to reach optimal
performance. These results show that even for problems
where exhaustive search is tractable (though it may take
days), OpenTuner can drastically improve convergence to
the optimal performance with little programmer effort.

4.6 Unitary Matrices
As a somewhat different example, we use OpenTuner in an

example from physics, namely the quantum control problem
of synthesizing unitary matrices in SU(2) in optimal time,

 0.99

 0.992

 0.994

 0.996

 0.998

 1

 0 10 20 30 40 50 60

A
cc

ur
ac

y

Autotuning Time (seconds)

OpenTuner (easy problem instances)
OpenTuner (hard problem instances)

Figure 12: Unitary: Accuracy (higher is better) as a
function of autotuning time. Aggregated performance of 30
runs of OpenTuner, error bars indicate median, 20th, and
80th percentiles.

using a finite control set composed of rotations around two
non-parallel axes. (Such rotations generate the complete
space SU(2).)

Unlike other examples, which use OpenTuner as a
traditional autotuner to optimize a program, the Unitary
example uses OpenTuner to perform a search over the
problem space as a subroutine at runtime in a program.
The problem has a fixed set of operators (or controls),
represented as matrices, and the goal is to find a sequence of
operators that, when multiplied together, produce a given
target matrix. The objective function is an accuracy value
defined as a function of the distance of the product of the
sequence to the goal (also called the trace fidelity).

Figure 12 shows the performance of the Unitary example
on both easy and hard instances of the problem. For both
types of problem instance OpenTuner is able to meet the
accuracy target within the first few seconds. This is example
shows that OpenTuner can be used for more types of search
problems than just program autotuning.

4.7 Mario
To demonstrate OpenTuner’s versatility, we used the

system to learn to play Super Mario Bros., a Nintendo
Entertainment System game in which the player, as Mario,
runs to the right, jumping over pits and onto enemies’
heads to reach the flagpole at the end of each level. We
use OpenTuner to search for a sequence of button presses
that completes the game’s first level. The button presses
are written to a file and played back in the NES emulator
FCEUX. The emulator is configured to evaluate candidate
input sequences faster than real time. OpenTuner evaluates
96 input sequences in parallel in different instances of the
emulator. A Lua script running in the emulator detects
when Mario dies or reaches the flagpole by monitoring a
location in the emulated memory. At that time it reports the
number of pixels Mario has moved to the right, which is the
objective function OpenTuner tries to maximize. The game
is deterministic, so only one trial is necessary to evaluate this
function. OpenTuner does not interpret the game’s graphics
or read the emulated memory; the objective function’s value
is the only information OpenTuner receives. Horizontal
movement is controlled by many EnumParameters choosing

313

 1000

 1500

 2000

 2500

 3000

 3500

 0 60 120 180 240 300

P
ix

el
s

M
ov

ed
 R

ig
ht

 (P
ro

gr
es

s)

Autotuning Time (seconds)

Win Level
OpenTuner

Figure 13: Mario: Pixels Mario moves to the right (higher
is better) as a function of autotuning time. Reaching
pixel 3161 (the flagpole) completes the level. Aggregated
performance of 30 runs of OpenTuner, error bars indicate
median, 20th, and 80th percentiles.

to run or walk left or right or to not move, each paired with
an IntParameter specifying the duration of the movement
in frames. As the goal is to move right, the search space is
given a 3 to 1 right-moving bias. Jumping is controlled by
IntParameters specifying on which frames to jump and how
long to hold the jump button.

Figure 13 shows the performance of the Mario example.
OpenTuner rapidly reaches 1500 pixels because many initial
(mostly random) configurations will make it that far in the
level. The bottlenecks evident in the figure correspond
to pits which Mario must jump over, which requires
coordinating all four kinds of parameter: Mario must jump
on the correct frame for a long enough duration, having
built up speed from walking or running right for a long
enough duration, and then must not return left into the
pit. Performance is aided by a“ratcheting”effect: due to the
NES’s memory limits, portions of the level that have scrolled
off the screen are quickly overwritten with new portions, so
the game only allows Mario to move left one screen (up
to 256 pixels) from his furthest-right position. The final
sequences complete the level after between 3500 and 5000
input actions.

5. CONCLUSIONS
We have shown OpenTuner, a new framework for building

domain-specific multi-objective program autotuners. Open-
Tuner supports fully customizable configuration represen-
tations and an extensible technique representation to allow
for domain-specific techniques. OpenTuner introduces the
concept of ensembles of search techniques in autotuning,
which allow many search techniques to work together to find
an optimal solution and provides a more robust search than
a single technique alone.

While implementing these seven autotuners in Open-
Tuner, the biggest lesson we learned reinforced a core
message of this paper of the need for domain-specific
representations and domain-specific search techniques in
autotuning. As an example, the initial version of the
PetaBricks autotuner we implemented just used a point in
high dimensional space as the configuration representation.
This generic mapping of the search space did not work at
all. It produced final configurations an order of magnitude

slower than the results presented from our autotuner that
uses selector parameter types. Similarly, Halide’s search
space strongly motivates domain specific techniques that
make large coordinated jumps, for example, swapping
scheduling operators on x and y across all functions
in the program. We were able to add domain-specific
representations and techniques to OpenTuner at a fraction
of the time and effort of building a fully custom system for
that project. OpenTuner was able to seamlessly integrate
the techniques with its ensemble approach.

OpenTuner is free and open source4 and as the community
adds more techniques and representations to this flexible
framework, there will be less of a need to create a new
representation or techniques for each project and we hope
that the system will work out-of-the-box for most creators
of autotuners. OpenTuner pushes the state of the art
forward in program autotuning in a way that can easily
be adopted by other projects. We hope that OpenTuner
will be an enabling technology that will allow the expanded
use of program autotuning both to more domains and
by expanding the role of program autotuning in existing
domains.

6. ACKNOWLEDGEMENTS
We would like to thank Clarice Aiello for contributing the

Unitary benchmark program. We gratefully acknowledge
Connelly Barnes for helpful discussions and bug fixes related
to autotuning the Halide project.

This work is partially supported by DOE award DE-
SC0005288 and DOD DARPA award HR0011-10-9-0009.
This research used resources of the National Energy
Research Scientific Computing Center, which is supported
by the Office of Science of the U.S. Department of Energy
under Contract No. DE-AC02-05CH11231.

7. REFERENCES
[1] F. Agakov, E. Bonilla, J. Cavazos, B. Franke,

G. Fursin, M. F. P. O’boyle, J. Thomson,
M. Toussaint, and C. K. I. Williams, “Using machine
learning to focus iterative optimization,” in CGO’06,
2006, pp. 295–305.

[2] L. Almagor, K. D. Cooper, A. Grosul, T. J. Harvey,
S. W. Reeves, D. Subramanian, L. Torczon, and
T. Waterman, “Finding effective compilation
sequences.” in LCTES’04, 2004, pp. 231–239.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski,
Q. Zhao, A. Edelman, and S. Amarasinghe,
“PetaBricks: A language and compiler for algorithmic
choice,” in PLDI, Dublin, Ireland, Jun 2009.

[4] J. Ansel, M. Pacula, S. Amarasinghe, and U.-M.
O’Reilly, “An efficient evolutionary algorithm for
solving bottom up problems,” in Annual Conference
on Genetic and Evolutionary Computation, Dublin,
Ireland, July 2011.

[5] W. Baek and T. Chilimbi, “Green: A framework for
supporting energy-conscious programming using
controlled approximation,” in PLDI, June 2010.

[6] V. Bhat, M. Parashar, . Hua Liu, M. Khandekar,
N. Kandasamy, and S. Abdelwahed, “Enabling
self-managing applications using model-based online

4Available from http://opentuner.org/

314

http://opentuner.org/

control strategies,” in International Conference on
Autonomic Computing, Washington, DC, 2006.

[7] C. Chan, J. Ansel, Y. L. Wong, S. Amarasinghe, and
A. Edelman, “Autotuning multigrid with PetaBricks,”
in Supercomputing, Portland, OR, Nov 2009.

[8] F. Chang and V. Karamcheti, “A framework for
automatic adaptation of tunable distributed
applications,” Cluster Computing, vol. 4, March 2001.

[9] M. Christen, O. Schenk, and H. Burkhart, “Patus: A
code generation and autotuning framework for parallel
iterative stencil computations on modern
microarchitectures.” in IPDPS. IEEE, 2011.

[10] J. J. Dongarra, P. Luszczek, and A. Petitet, “The
LINPACK Benchmark: past, present and future,”
Concurrency and Computation: Practice and
Experience, vol. 15, no. 9, pp. 803–820, 2003.

[11] X. Fan, “Optimize your code: Matrix multiplication,”
https://tinyurl.com/kuvzbp9, 2009.

[12] A. Fialho, L. Da Costa, M. Schoenauer, and M. Sebag,
“Analyzing bandit-based adaptive operator selection
mechanisms,” Annals of Mathematics and Artificial
Intelligence – Special Issue on Learning and Intelligent
Optimization, 2010.

[13] A. Fialho, R. Ros, M. Schoenauer, and M. Sebag,
“Comparison-based adaptive strategy selection with
bandits in differential evolution,” in PPSN’10, ser.
LNCS, R. S. et al., Ed., vol. 6238. Springer,
September 2010.

[14] M. Frigo and S. G. Johnson, “The design and
implementation of FFTW3,” IEEE, vol. 93, no. 2,
February 2005.

[15] G. Fursin, C. Miranda, O. Temam, M. Namolaru,
E. Yom-Tov, A. Zaks, B. Mendelson, E. Bonilla,
J. Thomson, H. Leather, C. Williams, M. O’Boyle,
P. Barnard, E. Ashton, E. Courtois, and F. Bodin,
“MILEPOST GCC: machine learning based research
compiler,” in Proceedings of the GCC Developers’
Summit, Jul 2008.

[16] H. Hoffmann, J. Eastep, M. D. Santambrogio, J. E.
Miller, and A. Agarwal, “Application heartbeats: a
generic interface for specifying program performance
and goals in autonomous computing environments,” in
ICAC, New York, NY, 2010.

[17] H. Hoffmann, S. Misailovic, S. Sidiroglou, A. Agarwal,
and M. Rinard, “Using code perforation to improve
performance, reduce energy consumption, and respond
to failures,” Massachusetts Institute of Technology,
Tech. Rep. MIT-CSAIL-TR-2209-042, Sep 2009.

[18] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic,
A. Agarwal, and M. Rinard, “Power-aware computing
with dynamic knobs,” in ASPLOS, 2011.

[19] H. Jordan, P. Thoman, J. J. Durillo, S. Pellegrini,
P. Gschwandtner, T. Fahringer, and H. Moritsch, “A
multi-objective auto-tuning framework for parallel
codes,” in Proceedings of the International Conference
on High Performance Computing, Networking, Storage
and Analysis, ser. SC ’12, 2012.

[20] S. Kamil, C. Chan, L. Oliker, J. Shalf, and
S. Williams, “An auto-tuning framework for parallel
multicore stencil computations,” in IPDPS’10, 2010,
pp. 1–12.

[21] S. A. Kamil, “Productive high performance parallel
programming with auto-tuned domain-specific
embedded languages,” Ph.D. dissertation, EECS
Department, University of California, Berkeley, Jan
2013.

[22] G. Karsai, A. Ledeczi, J. Sztipanovits, G. Peceli,
G. Simon, and T. Kovacshazy, “An approach to
self-adaptive software based on supervisory control,”
in International Workshop in Self-adaptive software,
2001.

[23] T. Murphy VII, “The first level of Super Mario Bros.
is easy with lexicographic orderings and time travel,”
April 2013.

[24] K. Nordkvist, “Solving TSP with a genetic algorithm
in C++,” https://tinyurl.com/lq3uqlh, 2012.

[25] M. Pacula, J. Ansel, S. Amarasinghe, and U.-M.
O’Reilly, “Hyperparameter tuning in bandit-based
adaptive operator selection,” in European Conference
on the Applications of Evolutionary Computation,
Malaga, Spain, Apr 2012.

[26] E. Park, L.-N. Pouche, J. Cavazos, A. Cohen, and
P. Sadayappan, “Predictive modeling in a polyhedral
optimization space,” in CGO’11, April 2011, pp. 119
–129.

[27] S. Pixel, “3D Basic Lessons: Writing a simple
raytracer,” https://tinyurl.com/lp8ncnw, 2012.

[28] M. Püschel, J. M. F. Moura, B. Singer, J. Xiong, J. R.
Johnson, D. A. Padua, M. M. Veloso, and R. W.
Johnson, “Spiral: A generator for platform-adapted
libraries of signal processing alogorithms,” IJHPCA,
vol. 18, no. 1, 2004.

[29] J. Ragan-Kelley, A. Adams, S. Paris, M. Levoy,
S. Amarasinghe, and F. Durand, “Decoupling
algorithms from schedules for easy optimization of
image processing pipelines,” ACM Trans. Graph.,
vol. 31, no. 4, pp. 32:1–32:12, Jul. 2012.

[30] J. Ragan-Kelley, C. Barnes, A. Adams, S. Paris,
F. Durand, and S. Amarasinghe, “Halide: a language
and compiler for optimizing parallelism, locality, and
recomputation in image processing pipelines,” in
Proceedings of the 34th ACM SIGPLAN conference on
Programming language design and implementation,
ser. PLDI ’13. New York, NY, USA: ACM, 2013, pp.
519–530.

[31] C. Tapus, I.-H. Chung, and J. K. Hollingsworth,
“Active harmony: Towards automated performance
tuning,” in In Proceedings from the Conference on
High Performance Networking and Computing, 2003.

[32] Top500, “Top 500 supercomputer sites,”
http://www.top500.org/, 2010.

[33] R. Vuduc, J. W. Demmel, and K. A. Yelick, “OSKI: A
library of automatically tuned sparse matrix kernels,”
in Scientific Discovery through Advanced Computing
Conference, San Francisco, CA, June 2005.

[34] R. C. Whaley and J. J. Dongarra, “Automatically
tuned linear algebra software,” in Supercomputing,
Washington, DC, 1998.

[35] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta,
“The SPLASH-2 programs: characterization and
methodological considerations,” in Symposium on
Computer Architecture News, June 1995.

315

https://tinyurl.com/kuvzbp9
https://tinyurl.com/lq3uqlh
https://tinyurl.com/lp8ncnw

	Introduction
	Contributions

	Related Work
	The OpenTuner Framework
	OpenTuner Usage
	Search Techniques
	AUC Bandit Meta Technique
	Other Techniques

	Configuration Manipulator
	Parameter Types

	Objectives
	Search Driver and Measurement
	Results Database

	Experimental Results
	GCC/G++ Flags
	Halide
	High Performance Linpack
	PetaBricks
	Stencil
	Unitary Matrices
	Mario

	Conclusions
	Acknowledgements
	References

