

Technologies
 Distributed infrastructure Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App Engine, Elastic, Azure)
cf. Many core (parallel computing) Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System (HDFS), Google File System (GFS))
 Data model/indexing High-performance schema-free database (e.g. NoSQL DB - Redis, BigTable, Hbase, Neo4J)
 Programming model Distributed processing (e.g. MapReduce) 3

	strr of HDGE Lincog						
	Do we	really	ı need laı	rge clusters	?		
•	Laptops are	and the second second					
		Twenty pag	erank iterations				
	System	cores	twitter_rv	uk_2007_05	Fixed-point iteration:		
S	park	128	857s	1759s	All vertices active in		
G	Biraph	128	596s	1235s	each iteration		
G	BraphLab	128	249s	833s	(50% computation, 50%		
G	BraphX	128	419s	462s	communication)		
📫 s	ingle thread	1	300s	651s			
	Label propa	gation to fix	ed-point (graph con	nectivity)			
	System	cores	twitter_rv	uk_2007_05			
s	park	128	1784s	8000s+	Traversal: Search		
G	Biraph	128	200s	8000s+	proceeds in a frontier		
G	BraphLab	128	242s	714s	(90% computation, 10%		
G	BraphX	128	251s	800s	communication)		
📫 s	ingle thread	1	153s	417s			
			from Frank McSI	herry HotOS 2015	14		

Manual Tuning: Profiling	
 Always the first step 	
 Simplest case: Poor man's profiler 	
 Debugger + Pause 	
 Higher level tools 	
 Perf, Vtune, Gprof 	
 Distributed profiling: a difficult active research area 	
 No clock synchronisation guarantee 	
 Many resources to consider 	
 System logs can be leveraged 	
\rightarrow tune implementation based on profiling (never captures all	
interactions)	22

Ways	s to do an Opti	imisation		
Random sear	rch: No risk of 'getting stuck' ny samples required			
	Evolution permutation	strategies: Evaluate ns against fitness funct	ion Bayes Opt: Samp continuous functio	ble efficient, requires
	Random Search	Genetic algorithm / Simulated annealing	Bayesian Optimisation	
	No overhead	Slight overhead	High overhead	
	High #evaluation	Medium-high #evaluation	Low #evaluation	25
				25

CAMPRIDGE Congress Lifes may	
AutoML: Neural Architecture Search	
Current: ML expertise + Data + Computation	
AutoML aims turning into: Data + 100 x Computation Use of Reinforcement Learning, Evolutionary Algorithms 	
and tune network model?	
 Graph transformation 	
 Compression 	
 + Hyper parameter tuning 	
	30

Summary
R244 course web page:
www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2019_2020
Session 1: Introduction
Session 2: Data flow programming: Map/Reduce to TensorFlow
Session 3: Large-scale graph data processing
Session 4: Hands-on Tutorial: Map/Reduce and Deep Neural Network
Session 5: Probabilistic Programming + Guest lecture (Brooks Paige)
Session 6: Exploring ML for optimisation in computer systems
Session 7: ML based Optimisation examples in Computer Systems
Session 8: Project Study Presentation (2019.12.12 @11:00) 36