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Large-scale Data Processing and Optimisation

Eiko Yoneki

University of Cambridge Computer Laboratory

Massive Data: Scale-Up vs Scale-Out
 Popular solution for massive data processing
 scale and build distribution, combine theoretically unlimited 
number of machines in single distributed storage 
 Parallelisable data distribution and processing is key

 Scale-up: add resources to single node (many cores) in system 
(e.g. HPC)

 Scale-out: add more nodes to system (e.g. Amazon EC2)
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Technologies 

 Distributed infrastructure
 Cloud (e.g. Infrastructure as a service, Amazon EC2, Google App 

Engine, Elastic, Azure)

cf. Many core (parallel computing)

 Storage
 Distributed storage (e.g. Amazon S3, Hadoop Distributed File System 

(HDFS), Google File System (GFS))

 Data model/indexing
 High-performance schema-free database (e.g. NoSQL DB - Redis, 

BigTable, Hbase, Neo4J)

 Programming model
 Distributed processing (e.g. MapReduce)
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NoSQL (Schema Free) Database

 NoSQL database
 Operate on distributed infrastructure 
 Based on key-value pairs (no predefined schema)
 Fast and flexible

 Pros: Scalable and fast
 Cons: Fewer consistency/concurrency guarantees and 

weaker queries support

 Implementations
 MongoDB, CouchDB, Cassandra, Redis, BigTable, Hibase …
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Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo, 
Cassandra, Redis, Mongo, 

Spanner…

Logging System/Distributed 
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Dryad, Flumejava…

Streaming 
Processing

Storm, SEEP, Naiad, 
Spark Streaming, Flink, 

Milwheel, Google 
Dataflow...

Graph Processing
Pregel, Giraph, 

GraphLab, PowerGraph, 
(Dato), GraphX,          

X-Stream...

Query Language
Pig, Hive, SparkSQL,  

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch, 

MLlib…

Programming
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MapReduce Programming 

 Target problem needs to be parallelisable
 Split into a set of smaller code (map)
 Next small piece of code executed in parallel 
 Results from map operation get synthesised into a result of 

original problem (reduce)

6



4

Data Flow Programming 

 Non standard programming models
 Data (flow) parallel programming 
 e.g. MapReduce, Dryad/LINQ, NAIAD, Spark, Tensorflow…

MapReduce: 
Hadoop

More flexible dataflow model

Two-Stage fixed dataflow

DAG (Directed Acyclic Graph) 
based: Dryad/Spark…
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Brain Networks: 
100B neurons(700T  
links) requires 100s 
GB memory

Emerging Massive-Scale Graph Data

Protein Interactions 
[genomebiology.com]

Gene expression 
data

Bipartite graph of 
phrases in 
documents Airline Graphs

Social media data

Web 1.4B 
pages(6.6B 
links) 
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Graph Computation Challenges

 Data driven computation: dictated by graph’s structure and 
parallelism based on partitioning is difficult

 Poor locality: graph can represent relationships between irregular 
entries and access patterns tend to have little locality

 High data access to computation ratio: graph algorithms are often 
based on exploring graph structure leading to a large access rate to 
computation ratio

1. Graph algorithms (BFS, Shortest path)
2. Query on connectivity (Triangle, Pattern)
3. Structure (Community, Centrality)
4. ML & Optimisation (Regression, SGD)
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Data-Parallel vs. Graph-Parallel
 Data-Parallel for all? Graph-Parallel is hard!
 Data-Parallel (sort/search - randomly split data to feed MapReduce) 
 Not every graph algorithm is parallelisable (interdependent 

computation) 
 Not much data access locality
 High data access to computation ratio
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Graph-Parallel

 Graph-Parallel (Graph Specific Data Parallel)

 Vertex-based iterative computation model
 Use of iterative Bulk Synchronous Parallel Model  

Pregel (Google), Giraph (Apache), Graphlab, 
GraphChi (CMU - Dato)

 Optimisation over data parallel
GraphX/Spark (U.C. Berkeley)

 Data-flow programming – more general framework  
NAIAD (MSR), TensorFlow..
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Bulk synchronous parallel: Example
 Finding the largest value in a connected graph

Message
Local Computation

Communication

Local Computation

Communication

…
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Are Large Clusters and Many cores Efficient?   
 Brute force approach really efficiently works?
 Increase of number of cores (including use of GPU)
 Increase of nodes in clusters
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Do we really need large clusters?
 Laptops are sufficient?

from Frank McSherry HotOS 2015

Fixed-point iteration: 
All vertices active in 
each iteration
(50% computation, 50% 
communication)

Traversal: Search 
proceeds in a frontier
(90% computation, 10% 
communication)
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Data Processing for Neural Networks

 Practicalities of training Neural Networks
 Leveraging heterogeneous hardware

Modern Neural Networks Applications:

Image Classification            Reinforcement Learning
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Single Machine Setup

 One or more beefy GPUs
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Distribution: Parameter Server Architecture

Source: Dean et al.: Large Scale Distributed Deep Networks
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 Can exploit both    
Data Parallelism and 
Model Parallelism

Software Platform for ML Applications

Torch
(Lua)

Theano
(Python)

Tensorflow
(Python/C++)

Ray

KerasLasagne
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RLgraph: Dataflow Composition

 Our group’s work
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Data Processing Stack

Resource Management Layer

Storage Layer

Data Processing Layer

Resource Management Tools
Mesos, YARN, Borg, Kubernetes, EC2, OpenStack…

Distributed
File Systems

GFS, HDFS, Amazon S3, Flat FS..

Operational Store/NoSQL DB
Big Table, Hbase, Dynamo, 
Cassandra, Redis, Mongo, 

Spanner…

Logging System/Distributed 
Messaging Systems

Kafka, Flume…

Execution Engine
MapReduce, Spark, Dryad, Flumejava…

Streaming 
Processing

Storm, SEEP, Naiad, 
Spark Streaming, Flink, 

Milwheel, Google 
Dataflow...

Graph Processing
Pregel, Giraph, 

GraphLab, PowerGraph, 
(Dato), GraphX,          

X-Stream...

Query Language
Pig, Hive, SparkSQL,  

DryadLINQ…

Machine Learning
Tensorflow, Caffe, torch, 

MLlib…

Programming
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Computer Systems Optimisation

 What is performance? 
 Resource usage (e.g. time, power)
 Computational properties (e.g. accuracy, fairness, latency)

 How do we improve it:
 Manual tuning
 Runtime autotuning
 Static time autotuning
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Manual Tuning: Profiling
 Always the first step
 Simplest case: Poor man’s profiler

 Debugger + Pause

 Higher level tools
 Perf, Vtune, Gprof…

 Distributed profiling: a difficult active research area
 No clock synchronisation guarantee

 Many resources to consider

 System logs can be leveraged

 tune implementation based on profiling (never captures all 
interactions) 22
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Auto-tuning Complex Systems

 Grid search

 Evolutionary approaches (e.g.                )

 Hill-climbing (e.g.               )

 Bayesian optimisation (e.g.           )

1000s of evaluations 
of objective function

Computation more 
expensive

Fewer samples

 Many dimensions 
 Expensive objective function
 Hand-crafted solutions impractical 

(e.g. extensive offline analysis)

Blackbox Optimisation
 can surpass human 

expert-level tuning
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Static time Autotuning
Especially useful when: 
 There is a variety of environments (hardware, input distributions)
 The parameter space is difficult to explore manually
 Defining a parameter space
 e.g. Petabricks: A language and compiler for algorithmic choice (2009)
 BNF-like language for parameter space
 Uses an evolutionary algorithm for optimisation
 Applied to Sort, matrix multiplication
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Ways to do an Optimisation

Random Search
Genetic 

algorithm /
Simulated 
annealing

Bayesian 
Optimisation

No overhead Slight overhead High overhead

High #evaluation Medium-high 
#evaluation

Low #evaluation
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Parameter Space of Task Scheduler 
 Tuning distributed SGD scheduler over TensorFlow
 10 heterogeneous machines with ~32 parameters 
 ~1053 possible valid configurations

 Objective function: minimise distributed SGD iteration time

26
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Bayesian Optimisation
 Iteratively builds probabilistic model of objective function
 Typically Gaussian process as probabilistic model
 Data efficient: converges quickly

Limitations:
 In high dimensional parameter space, model does not converge 

to objective function
 Not efficient to model dynamic and/or combinatorial model 27

Bayesian Optimisation

Limitations:
 In high dimensional parameter space, model does not converge 

to objective function
 Not efficient to model dynamic and/or combinatorial model 28

LLVM Compiler pass list optimisation
(BaysOpt vs Random Search)
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Computer Systems Optimisation Models
 Short-term dynamic control: major system components are under 

dynamic load, such as resource allocation and stream processing, where 
the future load is not statistically dependent on the current load.                     
BaysOpt is sufficient to optimise distinct workloads. For dynamic workload, 
Reinforcement Learning would perform better.

 Combinatorial optimisation: a set of options to be selected from a larger 
set under potential rules of combination. There is no straightforward 
similarity between different combinations. Many problems in device 
assignment, indexing, compiler optimisation fall in this category.                     
BaysOpt cannot be easily applied. Either learning online if the task is cheap 
via random sampling, or via RL + pre-training if the task is expensive, or 
massively parallel online training if the resources are available.

Many systems problems are combinatorial in nature 
29

AutoML: Neural Architecture Search 

Current: ML expertise + Data + Computation

AutoML aims turning into: Data + 100 x Computation  
 Use of Reinforcement Learning, Evolutionary Algorithms

 ..and tune network model? 
 Graph transformation
 Compression
 + Hyper parameter tuning

30
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Probabilistic Model

 Probabilistic models incorporate random variables and 
probability distributions into the model 
 Deterministic model gives a single possible outcome 
 Probabilistic model gives a probability distribution

 Used for various probabilistic logic inference (e.g. MCMC-
based inference, Bayesian inference…)

Python based PP:
 Pyro: https://pyro.ai/examples
 Edward: http://edwardlib.org 
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Probabilistic Programming

Edward, Pyro
Probabilistic C++
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Scale of Community Size in ML/AI
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SysML Conference spawn in 2018-2019

 SysML is a conference targeting research 
at the intersection of systems and machine 
learning

 Aims to elicit new connections amongst
these fields, including identifying best
practices and design principles for learning
systems, as well as developing novel
learning methods and theory tailored to
practical machine learning workflows
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Gap between Research and Practice
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Summary

 R244 course web page:
www.cl.cam.ac.uk/~ey204/teaching/ACS/R244_2019_2020 

Session 1: Introduction 
Session 2: Data flow programming: Map/Reduce to TensorFlow
Session 3: Large-scale graph data processing
Session 4: Hands-on Tutorial: Map/Reduce and Deep Neural Network
Session 5: Probabilistic Programming + Guest lecture (Brooks Paige)
Session 6: Exploring ML for optimisation in computer systems
Session 7: ML based Optimisation examples in Computer Systems
Session 8: Project Study Presentation (2019.12.12 @11:00)
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