Variational Deep Q-Networks in Edward

Harri Bell-Thomas

R244: Open Source Project Presentation

19/11/2019

Q-Learning

Q-Learning is model-free reinforcement learning.

Q is the action-value function defining the reward used for
reinforcement — this is learned.

Conceptually,

Q™(s, a) = Eq,wrn(s)) [Z;’io ey | S0 = 8, a0 = a}

Q-Learning: Bellman Error

The value of Q™ at a certain point in time, t, in terms of the
payoff from an initial choice, a;, and the value of the remaining
decision problem that results after that choice.

J(7) =E, [(Q”(st, a;) — maxE[r; +yQ (st4,, a)])z]

a—> Sq ~ p, ap ~ m(-|st)

Deep Q-Networks

Briefly

Approximate the action-value function Q™ (s, a) with a neural
network Qy(s,a). The (greedy) policy represented by this is 7.

Discretise the expectation using K sample trajectories, each with
period T. Use this to approximate J(0).

T—1

™=

J0) = %3 X X (958,) = max [ri +70f (52,))2

i=1 t=0

Variational Inference

Main Concepts:

1. Try to solve an optimisation problem over a class of tractable
distributions, g, parameterised by ¢, in order to find the one
most similar to p.

2. ¢ minKL(q4(0) || p(6]D))

3. Approximate this using gradient descent.

Variational Deep Q-Networks

Idea: For efficient exploration we need g4(6) to be dispersed —
near even coverage of the parameter space. Encourage this by
adding an entropy bonus to the objective.

Egq,(0) [(Qa(sja a;) — maxE[r; +vQy(s], a')])ﬂ — AH(g4(0))

Assigning systematic randomness to Q enables efficient exploration
of the policy space. Further, encouraging high entropy over
parameter distribution prevent premature convergence.

tl;dr Higher chance of finding maximal rewards in a faster time
than standard DQNs.

Algorithm

Algorithm 1 Variational DQN

1: INPUT: improper uniform prior p(6); target parameter update period 7 ; learning rate «v; genera-

tive model variance o2

2: INITIALIZE: parameters ¢, ¢~ ; replay buffer R < {}; step counter counter < 0
3: fore=1,2,3...E do

4: while episode not terminated do

5: counter < counter + 1

6: Sample 0 ~ qg(¢)

7: In state s, choose a; = arg max, Qg (s, a), get transition s and reward r;
8: Save experience tuple {s¢, a;, ¢, $¢+1} to buffer R

9: Sample N parameters 6, ~ qo(¢~) and sample N tuples D = {s;, a;, t;, s} from R
10: Compute target d; = 7; + max,s Q- (s}, a’) for jth tuple in D
11: Take gradient A¢ of the KL divergenjce in (8)
12: ¢ ¢ — alo
13: if counter mod 7 = 0 then
14: Update target parameter ¢~ <— ¢
15: end if
16: end while
17: end for

Figure: VDQN Pseudocode.

Aim / Goals

Workplan

Questions?

