
Optimizing DNN Computation with Relaxed

Graph Substitutions

Tim Lazarus

26 November, 2019



Graph Substitutions

We can optimise DNNs if we replace subgraphs with equivalent
ones that improve overall performance

For a particular input I, computation graph G will produce output
O, or written as O = G(I)

We then say that two graphs, G and G
0 are equivalent if they

produce the same output for every input. (8I : G(I) = G
0(I))



Relaxed Graph Substitutions

This is a local form of optimisation and may not result in optimal
results.

Previous work with graph substitutions employed a greedy
approach.

As with most modern optimising compilers, sometimes further
optimisations can be gained if we decrease performance in
intermediate steps.



Example

Figure: Example relaxed graph substitution optimisation



Defining substitutions

Essentially a mapping between a source graph and target graph.

Source graph defines constraints on a subgraph.

Target graph uses those constraints to create the substituted
subgraph.

We need the substitution to be valid



Example

Figure: Example substitution definition



Cost Model

We need to estimate the cost of each substitution.

Cost model incorporates many metrics.

Can also accurately estimate dynamic execution too



Searching the Space

Use a priority queue to search most optimal graph first and
backtrack if necessary.

The space can be huge if we consider all possible substitutions.

Use a parameter ↵ that determines the trade-o↵ between search
time and space explored. (See next slide)



Search Algorithm

Algorithm 1: A Backtracking Search Algorithm
Input: An initial computation graph G0, a cost model Cost(·), a list of

valid graph substitutions {S1, ..., Sm}, and a hyper parameter ↵
Output: An optimised computation graph.
// Q is a priority queue of graphs sorted by Cost(·)
Q = {G0}
while Q 6= {} do

G = Q.dequeue()
for i = 1 to m do

G0 = Si (G)
if Cost(G0) < Cost(Gopt) then

Gopt = G0

end

if Cost(G0) < ↵ ⇥Cost(Gopt) then

Q.enqueue(G0)
end

end

end

return Gopt



Graph Splitting

Split the graph into smaller subgraphs so the search is more
manageable.

For each node v , we define the Cap(v) as the number of
substitutions that map to an in or out edge of v .

We can then minimise the number of substitutions that span across
a split as the problem maps to a minimum vertex cut problem.

Can perform a local search around splits to find further potential
optimisations.



Evaluation

Figure: Compared with TensorFlow, TensorRT and TensorFlow XLA



Evaluation

Figure: Comparison of di↵erent cost metrics



Evaluation

Figure: Evaluation of varying values of ↵



Criticism

Strengths

I Well defined problem

I System is open-source

I Good testing of system

I Can be used on top of
other optimisations

Weaknesses

I Paper lacked
implementation detail

I Poor analysis of results



Criticism

Strengths

I Well defined problem

I System is open-source

I Good testing of system

I Can be used on top of
other optimisations

Weaknesses

I Paper lacked
implementation detail

I Poor analysis of results



Extensions

Can be used with existing optimisations like TVM or FlexFlow (as
we saw last week)

There’s a new paper in town...



TASO

Extends this paper by automatically generating possible graph
substitutions.

For a given set of operators, it enumerates all possible subgraphs
up to a fixed size.

It then finds equivalent subgraphs through formal verification.



Questions?


