Optimizing DNN Computation with Relaxed
Graph Substitutions

Tim Lazarus

26 November, 2019

Graph Substitutions

We can optimise DNNs if we replace subgraphs with equivalent
ones that improve overall performance

For a particular input Z, computation graph G will produce output
O, or written as O = G(T)

We then say that two graphs, G and G’ are equivalent if they
produce the same output for every input. (VZ : G(Z) = G'(Z))

Relaxed Graph Substitutions

This is a local form of optimisation and may not result in optimal
results.

Previous work with graph substitutions employed a greedy
approach.

As with most modern optimising compilers, sometimes further
optimisations can be gained if we decrease performance in
intermediate steps.

Example

enlarge

conv kernel
conv3x3x256 X

% fuse conv
and relu

Figure: Example relaxed graph substitution optimisation

N

Defining substitutions

Essentially a mapping between a source graph and target graph.
Source graph defines constraints on a subgraph.

Target graph uses those constraints to create the substituted
subgraph.

We need the substitution to be valid

Example

opl ----DL opl.out }---{ op2 |

Source Graph Target Graph

Constraints on the source graph:
convl.kernel == conv2.kernel
convl.stride == conv2.stride
convl.padding == conv2.padding

Construct the target graph:

op2._ = opl._

conv3._ = convl._

conv3.outChannels = convl.outChannels + conv2.outChannels
conv3.weights = concat(convl.weights, conv2.weights)
split.sizes = [convl.outChannels, conv2.outChannels]

Figure: Example substitution definition

Cost Model

We need to estimate the cost of each substitution.
Cost model incorporates many metrics.

Can also accurately estimate dynamic execution too

Searching the Space

Use a priority queue to search most optimal graph first and
backtrack if necessary.

The space can be huge if we consider all possible substitutions.

Use a parameter « that determines the trade-off between search
time and space explored. (See next slide)

Search Algorithm

Algorithm 1: A Backtracking Search Algorithm

Input: An initial computation graph Go, a cost model Cost(-), a list of
valid graph substitutions {Si, ..., Sm}, and a hyper parameter «
Output: An optimised computation graph.
// Q is a priority queue of graphs sorted by Cost(-)
Q = {Go}
while Q # {} do
G = Q.dequeue()
for i =1 to mdo
G' = Si(9)
if Cost(G') < Cost(Gopt) then
gopt = g,
end
if Cost(G') < a x Cost(Gop:) then
Q.enqueue (G')
end
end
end
return Gt

Graph Splitting

Split the graph into smaller subgraphs so the search is more
manageable.

For each node v, we define the Cap(v) as the number of
substitutions that map to an in or out edge of v.

We can then minimise the number of substitutions that span across
a split as the problem maps to a minimum vertex cut problem.

Can perform a local search around splits to find further potential
optimisations.

Evaluation

TensorFlow = TensorFlow XLA TensorRT -
TensorFlow w/ TensorFlow XLA w/ TensorRT w/
W= MetaFlow graph opt. ™ MetaFlow graph opt. ™ MetaFlow graph opt.

MetaFlow

Execution Time (ms)

Inception-v3 SqueezeNet ResNet-50

Figure: Compared with TensorFlow, TensorRT and TensorFlow XLA

Evaluation

DNN Execution Time (ms) | Memory Accesses (GB) Launched Kernels FLOPs (GFLOPs) Device Utilization
TensorRT MetaFlow | TensorRT MetaFlow TensorRT MetaFlow | TensorRT MetaFlow | TensorRT MetaFlow
Inception-v3 | 5.51 5.00 95.4 62.2 138 115 | '5.68 5.69 1.03 114
SqueezeNet | 0.94 0.75 62.1 46.1 50 40 0.64 1.00 0.68 1.35
ResNet50 1.97 1.86 37.2 35.8 70 67 0.52 0.54 0.26 0.29
RNNTC 0.91 0.60 133 117 220 83 022 0.20 0.24 0.33
NMT 245 1.56 532 4.68 440 135 0.84 0.78 0.34 0.50

Figure: Comparison of different cost metrics

Evaluation

@

(S93NUIW) W] Ydieas pua-03-pul

= n

o~
O

—l

A A Best discovered graph
A|B-8 End-to-end search time

«

1

<

m

= n
=] o

S =@ o w o =n o
5 & © ~ K © ©

(Sw ul sawl] 2duaJajul)

wr
0

1.08 11

1.06

1.02

<
—

ydeus) paianodsiq 1599 40 2dUewWIoUDd

Figure: Evaluation of varying values of «

Criticism

Strengths
» Well defined problem

» System is open-source
» Good testing of system

» Can be used on top of
other optimisations

Criticism

Strengths Weaknesses
» Well defined problem » Paper lacked
implementation detail
» System is open-source » Poor analysis of results

» Good testing of system

» Can be used on top of
other optimisations

Extensions

Can be used with existing optimisations like TVM or FlexFlow (as
we saw last week)

There's a new paper in town...

TASO

Extends this paper by automatically generating possible graph
substitutions.

For a given set of operators, it enumerates all possible subgraphs
up to a fixed size.

It then finds equivalent subgraphs through formal verification.

Questions?

