
Device Placement Optimization with
Reinforcement Learning

A Hierarchical Model for Device Placement

A. Mirhoseini, Hieu Pham, A. Goldie et al

November 2019



Problem Background

I Tensorflow allows user to place operators on different devices
to take advantage of parallelism and heterogeneity

I Current solution: human experts use heuristics to place the
operators as best they can

I Some simple graph-based automated approaches (e.g.
Scotch) perform worse



Approach

I Use reinforcement learning and neural nets to find the best
placement



Background: RNNs

I RNNs model dependencies between data; they have
persistence

I E.g. previous words or previous placements of operators



Background: LSTM and the Vanishing Gradient Problem

I Too many multiplications means gradient quickly diminishes
to 0

I Gated structure can model long term dependencies better

I Forget, input and output gates control a hidden state



Background: Reinforcement Learning

I Traditional use of NNs is in a supervised setting with labelled
training data

I Need to learn from the environment

I Want to maximise the expected reward:
J(θ) =

∑
τ P(τ ; θ)R(τ)

I The derivative, ∇θJ(θ) is equivalent to∑
τ P(τ ; θ)∇θlog(P(τ ; θ)R(τ)

I This is actually an expected value, so can use monte-carlo
sampling to approximate:
∇θJ(θ) ≈ 1

K

∑K
i=1 R(xi )∇θlog(P(xi |θ))



Implementation: Neural network architecture

I Sequence-to-sequence model; this is two RNNs that
communicate via shared state

I Input: sequence of vectors representing the type of each
operation, output sizes, encoding of links with other operators

I Output: placements for operations



Implementation: RL

I Uses monte-carlo sampling as discussed

I Reward function is the square-root of running time

I High fixed cost for OOM on e.g. single GPUs

I Subtract a moving average from reward to decrease variance



Grouping

I Dataflow graph huge: big search space and vanishing gradient

I Solution one: Co-locate operators manually into groups that
should be executed on the same device

I Solution two: Add another (feed-forward) neural network, the
grouper

I Hierarchical approach: grouper and placer



Evaluation: Experimental setup

I Measure time for single step of several different models:
RNNLM, NMT, Inception-V3, ResNet

I Run on a single machine, using CPU and 2 - 8 GPUs

I Baselines are single CPU, single GPU, using the Scotch
library, expert placement



Evaluation: Results

I Only 3 hours for hierarchical model

I Performance significantly better than the manually co-located
version



Evaluation: Understanding the results

I Classic tradeoff: distributing more for more parallelism, want
to minimise copying costs

I Different architectures have different amounts of parallelism
available to exploit



Strengths

I Hierarchical planner completely end-to-end

I Overhead of three hours is small (original paper 13-27 hours)

I Capable of finding complex placements which are beyond a
human

I Sometimes very substantial improvements



Weaknesses

I First paper not reproducible: don’t mention the version of
Tensorflow, even original authors couldn’t reproduce results

I Results mixed; often no improvement if best placement is
trivial. Can this be determined by looking at the amount of
parallelism in the graph?

I Will it scale? NMT 8-layer has a decrease in performance
compared to human expert. Why this sudden decline?

I How many times did they run the random RL process?

I Incorporate humans to improve placements even further



Questions


