
PetaBricks: A Languages and Compiler for
Algorithmic Choice

Jason Ansel et al.

Presented by Harri Bell-Thomas

19/11/2019



Motivating Example

Sorting — there is no single best sorting algorithm. It depends on
context (input size, data types etc).

Optimal performance comes from composing different approaches.
For example the GNU C++ standard library’s std::sort method is
a composition of three different sorting algorithms.

1. Quicksort, subdividing a maximum of 2 log2(n) times.

2. Then continue sorting using Heapsort.

3. Any partition of 16 elements or fewer is sorted quickly using
Insertion sort.

How do we choose these cutoff points?



Headline Concepts

It is common for the best solution to a problem to be a hybrid
algorithm, exploiting different properties in different contexts.

Therefore;

I Give this compiler the ability to make algorithmic choices.

I Let the programmer specify accuracy choices to aid
algorithmic optimisation — optimal efficiency for any level of
accuracy.

I Automatically parallelise solutions where possible.

I Let the autotuner be aware of different hardware architectures
and optimise for their strengths/consider their weaknesses.



PetaBricks Language

C++ derivative. Two major components; transforms and rules.

transform kmeans

from Points[n, 2] // Array of 2D points.

through Centroids[sqrt(n), 2]

to Assignments[n]

{

// Rule 1. Points -> Centroids.

to (Centroids.column(i) c) from (Points p) {

c = p.column(rand(0, n));

}

// Rule 2. Points and Centroids to Assigments.

to (Assignments a) from (Points p, Centroids c) {

while (true) {

int change;

AssignClusters(a, change, p, c, a);

if (change == 0) return; // Reached fixed point.

NewClusterLocations(c, p, a);

}

}

...

}



Components

1. Source-to-source compiler (PetaBricks→C++).
Performs static analysis of transforms and encodes choices/tunable parameters

into the output code.

2. Runtime library to aid generated code.

3. Autotuning system and choice framework.
Autotuning happens at either compile time (via a configuration file) or

installation time.



Compiler

Figure: PetaBricks compiler overview.



Comments

I Autotuning.
I Bottom-up approach.
I “Spirit of a genetic tuner”.
I (No mention of example compile-times).

I Automated consistency checks

I No deadlocks or race conditions

I Automated/implicit parallelising of output code — runtime
library operates a work-stealing dynamic scheduler, makes use
of “continuation points”.



Results

Very thorough analysis based on real-world problems, good to see.1

(a) Performance of the autotuned
PetaBricks-sort algorithm.

(b) Scalability factor for example
PetaBricks programs.

1*cough* Google *cough* Facebook *cough*



Critique

In summary — excellent design and promising results.
*with a few questionable parts subtly glossed over.

There are a number of novel and important contributions to note,
including;

I Automated performance tuning before this did not consider
exploring optimisations on top of dynamic algorithm
combinations.

I It is claimed that this is the first algorithm-composition engine
that considers and optimises for desired accuracy.

I A viable approach for creating high-performance optimised
programs that are also portable.

I Nothing is assumed about the hardware prior to optimisation.
As a result programs can be re-optimised as architectures
change over time.



Criticism

I No mention of compile time — the original PhD thesis reveals
that this in the order of half to an entire day for the example
algorithms.
I Does this greatly limit the contexts in which this can be

usefully applied? How long to optimise on a Raspberry Pi?

I The paper claims the approach is suitable for trees and sparse
structures, but offers no explanation or evidence for this. The
implementation specifics appear highly dependent on
matrix-based representations.
I There is an implicit reliance on algorithms that are

sub-dividable or can produce compatible partial
solutions/intermediate forms — mentioned in passing halfway
through.

I Most content in this paper is copied verbatim from the
original thesis, leaving out key explanations. Without a
working knowledge of domain-specifics this is a tricky read.


