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Background

PPLs are becoming more important
Reduce development time for Bayesian Modelling
PPLs trade off efficiency and expressivity
Eg: DSLs: Stan[1], BUGS[2]; Embedded: Edward[3], Pyro[4]

P (A | B) =
P (B | A)P (A)

P (B)
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What is HackPPL

An extension to Hack
A Universal Probabilistic Programming Language
Features:
I Modelling
I Inference
I Assessment
I Mix with arbitrary Hack[5] code
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Language Features: Coroutines

Inference often uses Monte Carlo Algorithms
Want to avoid unnecessary re-execution for selectively
exploring sub-computations.
“Models are implemented as coroutines that are reified
as multi-shot continuations in inference code”
fundamental characteristics:
1. Values persist between calls
2. Execution continues where left off are returning from
suspension

Uses state machines, CPS and Trampolining

4 / 14



Language Features: Coroutines
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Language Features: Data models

Continuous Values:
I Tensors for distributions, samples, and observations
I Imported to Hack from PyTorch[6]
I Natively support reverse-mode automatic differentiation

Discrete Values:
I Introduce DTensor
I Can convert to one-hot encoding
I When used, we run simulations for all values
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Language Features: Distributions

Many built in
Must implement:
I sample(n): retrieve n i.i.d samples from distribution
I score(x): compute the log probability at x

Allow for batch sampling and scoring too.
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Inference Engine

Completely separate to modelling (for flexibility)
Aim: “Obtain a posterior estimate for model parameters”
Takes a trace-based approach
PPLInfer class:
I Centralised way to specify configuration
I Centralised way to construct pipelines

Built-ins such as Hamiltonian Monte Carlo
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Inference Engine
Auto-tunes hyperparameters using No-U-Turn[7] (for
HMC)
Supports automatic marginalisation[1] for discrete
parameter sampling
This requires multi-shot coroutines
Can resume inference from history
Supports Black Box Variational Inference[8] (a form of
scalable inference)

P (y | p, µ, σ) =
C∑
c=1

pcNormal(y | µc, σ)
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Assessment
Simple to obtain the posterior predictive distribution.
(effectively simulation mode)

P (ynew | y) =
∫

P (ynew | θ)P (θ | y)dy

There is a playground built into Nuclide IDE

A realtime visualisation library (Viz)
A model criticism library for posterior predictive
checks[9]
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Criticisms

No comparison to existing PPLs
No evaluation of performance
No evaluation of UX
Many statements lack justification
Code is incomplete for brevity — this is not stated though.
Nuclide (and in fact HackPPL) is not available outside
Facebook.
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Questions?
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