
HackPPL: a universal probabilistic
programming language

J. Ai et al.

Presented by Oliver Hope

1 / 14

Background

PPLs are becoming more important
Reduce development time for Bayesian Modelling
PPLs trade off efficiency and expressivity
Eg: DSLs: Stan[1], BUGS[2]; Embedded: Edward[3], Pyro[4]

P (A | B) =
P (B | A)P (A)

P (B)

2 / 14

What is HackPPL

An extension to Hack
A Universal Probabilistic Programming Language
Features:
I Modelling
I Inference
I Assessment
I Mix with arbitrary Hack[5] code

3 / 14

Language Features: Coroutines

Inference often uses Monte Carlo Algorithms
Want to avoid unnecessary re-execution for selectively
exploring sub-computations.
“Models are implemented as coroutines that are reified
as multi-shot continuations in inference code”
fundamental characteristics:
1. Values persist between calls
2. Execution continues where left off are returning from
suspension

Uses state machines, CPS and Trampolining

4 / 14

Language Features: Coroutines

5 / 14

Language Features: Data models

Continuous Values:
I Tensors for distributions, samples, and observations
I Imported to Hack from PyTorch[6]
I Natively support reverse-mode automatic differentiation

Discrete Values:
I Introduce DTensor
I Can convert to one-hot encoding
I When used, we run simulations for all values

6 / 14

Language Features: Distributions

Many built in
Must implement:
I sample(n): retrieve n i.i.d samples from distribution
I score(x): compute the log probability at x

Allow for batch sampling and scoring too.

7 / 14

Inference Engine

Completely separate to modelling (for flexibility)
Aim: “Obtain a posterior estimate for model parameters”
Takes a trace-based approach
PPLInfer class:
I Centralised way to specify configuration
I Centralised way to construct pipelines

Built-ins such as Hamiltonian Monte Carlo

8 / 14

Inference Engine
Auto-tunes hyperparameters using No-U-Turn[7] (for
HMC)
Supports automatic marginalisation[1] for discrete
parameter sampling
This requires multi-shot coroutines
Can resume inference from history
Supports Black Box Variational Inference[8] (a form of
scalable inference)

P (y | p, µ, σ) =
C∑
c=1

pcNormal(y | µc, σ)

9 / 14

Assessment
Simple to obtain the posterior predictive distribution.
(effectively simulation mode)

P (ynew | y) =
∫

P (ynew | θ)P (θ | y)dy

There is a playground built into Nuclide IDE

A realtime visualisation library (Viz)
A model criticism library for posterior predictive
checks[9]

10 / 14

Criticisms

No comparison to existing PPLs
No evaluation of performance
No evaluation of UX
Many statements lack justification
Code is incomplete for brevity — this is not stated though.
Nuclide (and in fact HackPPL) is not available outside
Facebook.

11 / 14

Questions?

12 / 14

References I
[1] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt,

M. Brubaker, J. Guo, P. Li, and A. Riddell, “Stan: A probabilistic
programming language,” Journal of Statistical Software, Articles, vol. 76,
no. 1, pp. 1–32, 2017. [Online]. Available:
https://www.jstatsoft.org/v076/i01

[2] W. R. Gilks, A. Thomas, and D. J. Spiegelhalter, “A language and program
for complex bayesian modelling,” 1994.

[3] D. Tran, A. Kucukelbir, A. B. Dieng, M. R. Rudolph, D. Liang, and D. M. Blei,
“Edward: A library for probabilistic modeling, inference, and criticism,”
ArXiv, vol. abs/1610.09787, 2016.

[4] E. Bingham, J. P. Chen, M. Jankowiak, F. Obermeyer, N. Pradhan,
T. Karaletsos, R. Singh, P. A. Szerlip, P. Horsfall, and N. D. Goodman,
“Pyro: Deep universal probabilistic programming,” J. Mach. Learn. Res.,
vol. 20, pp. 28:1–28:6, 2018.

[5] Hack · programming productivity without breaking things. [Online].
Available: https://hacklang.org/

[6] Pytorch. [Online]. Available: https://pytorch.org/

13 / 14

https://www.jstatsoft.org/v076/i01
https://hacklang.org/
https://pytorch.org/

References II

[7] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: adaptively
setting path lengths in hamiltonian monte carlo,” J. Mach. Learn. Res.,
vol. 15, pp. 1593–1623, 2011.

[8] R. Ranganath, S. Gerrish, and D. M. Blei, “Black box variational
inference,” in AISTATS, 2013.

[9] A. Gelman, X.-L. Meng, and H. S. Stern, “Posterior predictive assessment
of model fitness via realized discrepancies,” 1996.

14 / 14

