BOAT: Building Auto-Tuners with
Structured Bayesian Optimization

Valentin Dalibard, Michael
Schaarschmidt, Eiko Yoneki

Presented by Harrison
Brown for R244

Auto-tuners

Difficult to manually tune complex configuration parameters for various problems
* Compiler flags, configuration files, number and assignment of machines, etc

Can expose configuration parameters and performance metrics to black box
optimizers
* May take thousands of iterations on complex problems
* For systems problems with long evaluation times this process fails
* Does not leverage any contextual information about problem

OpenTuner — ensembles of various algorithms (evolutionary, hill climbing, etc)

Spearmint — traditional Bayesian Optimization

Key Terms

* Gaussian Process — collection of random variables

* Every finite linear combination of variables is normally
distributed

* Parametric models — fixed number of parameters

* Feedforward neural networks, linear regression, logistic
regression

* Non-parameticmodels —unbounded number of parameters
* K-nearest neighbors

Algorithm 1 The Bayesian optimization methodology

Input: Objective function f()

Input: Acquisition function a()

1: Initialize the Gaussian process G

2: fori:=1,2,... do

3 Sample point: x; + arg max, a(G(x))
4; Evaluate new point: y; + f(x;)
D

6

SRBEST T RIS
XN\ . e ® SR

Update the Gaussian process: G + G | (X, ¥:)
: end for

BOAT Contributions

* Novel algorithm — Structured Bayesian Optimization

e Structured probabilistic model provided by developer

* Discardsregions of low performance where traditional Bayesian Optimization over
explores

* Semi-parametric model — developer provides parametric parts to describe general
behavior

 BOAT — a framework to allow developers to build auto-tuners for their
systems
* To be used in situations where generic autotuners fail

* Model allows for probabilistic inference
* Can make predictions without large computational cost

Using BOAT and SBO

* Configuration Space
* Objective function and runtime measurements

* Probalistic model of system behavior

e Semi-parametric model
e Constructor — prior distribution to sample model parameters
* A parametric function for a given input that returns a prediction
 DAG model, allows combination of multiple semi-parametric models
* Exploits conditional independence to train independently given the measured outputs
* Allows maximization of expected improvement in SBO

struct GCRateModel : public SemiParametricModel<GCRateModel> {
GCRateModel () {
dllocated_mbs_per_sec =
std: ;uniform_real_distribution<-(®.8, 5868.8) (generator);
S Omitted: also sample the GF parameters
}
double parametric(double eden_size) const {
S/ Model the rate as inversly proportional to Eden's size
return allocated_mbs_per_sec / eden_size;
}
double allocated_mbs_per_sec;
|5

int main() {
J// Example: observe two measurements and make a prediction
ProbEngine«<GCRateModel> eng;
eng.observe(0.48, 1824); // Eden: 16824MB, GC rate: 6.48/sec
eng.observe(®.25, 2848); // Eden: 2848MB, GC rate: 8.25/sec
S/ Print average prediction for Eden: 1536MB
std::cout << eng.predict(1536) << std::endl;

struct CassandraModel : public DAGModel<CassandraModel> {
void model(int ygs, int sr, int mtt){

// Calculate the size of the heap regions
double es = ygs * sr / (sr + 2.0);// Eden space’s size

double ss = ygs / (sr + 2.8); // Survivor space's size
// Define the dataflow between semi-parametric models
double rate = output ("rate", rate_model, es);

double duration = output(“"duration”, duration_model,
es, s5, mtt);

double latency = output('latency"”, latency_model,
rate, duration, es, ss, mtt);

ProbEngine<GCRateModel> rate_model;
ProbEngine<GCDurationModel> duration_model;
ProbEngine<LatencyModel> latency_model;

* Initially use generic probabilistic model — regular Bayesian

BOAT Recommended optimization

Usage * Incrementally add structure until convergence
* Unclear on how long this process typically takes

Java Garbage Collection Case Study

Tuning garbage collection flags of JVM database
(Cassandra)

* Only 3 parameters, very small domain

Objective: 99th Percentile Latency using YCSB
cloud benchmark

Spearmint Converges within 16 iterations (4
hours)

BOAT converges to within 10% of best-found
performance by 2nd iteration

[\ %]
o

=
i

=
o

Best 99th percentile latency (ms)

|| 90000009

un

=

—§— OpenTuner
o— Spearmint

—— BOAT

5 10

15 20 25 30
Iteration

Neural Network Training Case Study

Best SGD iteration time (5)

1|:|ﬂ o-o-a

Ln
=

=
=

Lh

|

i

L

i~ OpenTuner
Spearmint
+ BOAT

S SEammE

=

5 10

15

20 25 30

lteration

In Tensorflow, users must set what available machines to be
used and assign work

Input: NN architecture, available machines, batch size

Tuning synchronous distributed SGD
* Parameters: worker machines, parameter servers, workload partition
* Objective: minimize average iteration time

OpenTuner only marginally better than uniform GPUs
assignment (9.82s)

BOAT completed within 2 hours, significant gains if
architectures take weeks to train

BOAT Impact

Novel algorithm and framework for
probalistic models

e Easy to build probalistic models with little
effort

Significant gains can be made on

complex problems such as neural
network tuning

e Useful as black box optimizers may often fail in
these domains

e |f a developer has contextual knowledge, that
should be leveraged

BOAT

Criticisms

BOAT does not give information about performance
with incorrect contextual information

Niche contribution — enough knowledge to provide
model, not enough to set the configuration parameters

Motivation states "auto-tuners like [...] OpenTuner [...]
usually require thousands of evaluations"

e More evidence is warranted in form of case studies / experiments
e OpenTuner used 7 projects
e Time versus iterations. BO has high iteration overhead

OpenTuner and Spearmint - Python, C++ user friendly

Performance gains vs usability

References

[1] V. Dalibard, M. Schaarschmidt, and E. Yoneki: BOAT: Building Auto-
Tuners with Structured Bayesian Optimization, WWW, 2017.

[2] Jasper Snoek, Hugo Larochelle, and Ryan Prescott Adams. Practical
bayesian optimization of machine learning algorithms. In Neural
Information Processing Systems, 2012.

[3] Jason Ansel et al. Opentuner: an extensible framework for program
autotuning. In Proceedings of the 23rd International Conference on
Parallel Architectures and Compilation, pages 303—-316. ACM, 2014.

