
X-Stream: Edge-centric Graph Processing 
using Streaming Partitions

Amitabha Roy, Ivo Mihailovic, Willy 
Zwaenepoel



Motivation

● Graph processing is widely used

○ Especially on huge graphs (billions of vertices, trillions of edges)

● Existing systems such as Pregel and PowerGraph have a good programming model

○ Implementation results in many random memory accesses

○ Sequential accesses to edges could result in better performance 



Scatter-Gather Programming Model

● Maintain state in vertices

● Scatter - propagate vertex state to 
neighbours

● Gather - cumulate updates and 
recompute state 

● Approach is vertex-centric

vertex_scatter(vertex v)
send updates over outgoing edges of v

vertex_gather(vertex v)
apply updates from inbound edges of v

while not done
for all vertices v that need to scatter updates

vertex_scatter(v)
for all vertices v that have updates

vertex_gather(v)



Vertex-centric vs Edge-centric

Vertex-centric

Iterates over vertices

Random accesses of edges

Requires pre-sorting to generate indexed 
edge list

Edges only used when needed

Edge-centric

Iterates over edges

Sequential accesses of edges

Requires no pre-sorting

All edges used per iteration



Edge-centric Model

● Approach is edge-centric

● Still maintain state in vertices

● Can stream edges and updates from 
storage - no longer random access to 
edges

● We now have random access to vertices

edge_scatter(edge e)
send update over e

edge_gather(update u)
apply update u to u.destination

while not done
for all edges e

edge_scatter(e)
for all updates u

update_gather(u)



Edge-centric Model



Streaming Partitions

● Comprised of 3 elements

○ Vertex set - a subset of vertices from the graph

○ Edge list - all edges where the source vertex is in the partition’s vertex set

○ Update list - all updates where the destination vertex is in the partition’s vertex set

● Vertex set exists in a cache

○ Mitigates the random access issue

○ Size must be balanced though



Streaming Partitions

● Must now introduce a new shuffle 
phase

○ Destination of update may not 
reside in the same streaming 
partition

○ Shuffle Phase reorders the 
updates so this is the case

○ Have Uout and Uin stream

scatter phase:
for each streaming_partition p

read in vertex set of p
for each edge e in edge list of p

edge_scatter(e): append update to Uout

shuffle phase:
for each update u in Uout

let p = partition containing target of u
append u to Uin(p)

destroy Uout

gather phase:
for each streaming_partition p

read in vertex set of p
for each update u in Uin(p)

edge_gather(u)
destroy Uin(p)



Two scenarios for X-Stream

In-memory

● Fast Storage = CPU cache

● Slow Storage = Main Memory

● Very limited by size of storage

Out-of-core

● Fast Storage = Main Memory

● Slow Storage = SSD or Hard Disk

● Huge capacity of storage



In-Memory Specifics

● Cache is much smaller than main memory

○ Results in more streaming partitions needed

● Need to go parallel to reach peak streaming bandwidth

○ Each partition can operate independently

■ Can result in workload imbalance

■ Fix by stealing jobs



Out-of-Core Specifics

● Merge scatter and shuffle phase

○ Only shuffle when output buffer is full

● Use a stream buffer to store updates

○ Makes shuffling more efficient - O(n)

○ Requires two stream buffers
■ Input to shuffle
■ Output of shuffle

○ Also used for partitioning



Evaluation

● Sequential Access is better than Random Access on every medium



Evaluation

● Initial results were poor for some datasets

○ The DIMACS and Yahoo web-graph datasets have a wide diameter

○ Results in more scatter-gather iterations as information passes from one end to 
the other

○ Each iteration requires entire edge list to be streamed; not much useful work each 
time



Evaluation

● Demonstrates strong scaling with regard to number of threads and I/O Parallelism



Evaluation - In Memory

● Compared to Ligra
○ BFS and Pagerank were used to 

test

● For BFS without preprocessing times 
Ligra performs better
○ X-Stream is much faster when 

pre-processing times taken into 
account

● Due to sequential access, IPC was 
much higher



Evaluation - Out-of-Core

● Compared to GraphChi

● GraphChi needs to resort edges by 
destination vertex before applying 
updates (reported as re-sort)
○ Accounts for significant proportion 

of execution

● In most cases X-Stream completed 
before GraphChi Presorted

● Disk bandwidth of X-Stream is much 
greater



Strengths and Weaknesses

Strengths

● Utilises sequential access to effectively 
maximise streaming bandwidth

● Performs quicker in general than most 
state of the art systems on some 
algorithms

Weaknesses

● If no pre-processing is required for the 
vertex-centric approach, performance 
can be weaker

● Performance is poor on a graph with a 
high diameter

● “Wasted Edges” also negatively impacts 
performance



Criticism

● Little focus on running X-Stream on multiple machines
○ See next slide

● Assumes graph has many more edges than vertices

● No discussion on the limitations of the programming model



Impact

● Nearly 450 citations

● Authors extended X-Stream with Chaos

○ Chaos essentially is the distributed version of X-Stream



Questions


