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Motivation

e Graph processing is widely used
o Especially on huge graphs (billions of vertices, trillions of edges)

e Existing systems such as Pregel and PowerGraph have a good programming model
o Implementation results in many random memory accesses

o Sequential accesses to edges could result in better performance



Scatter-Gather Programming Model

e Maintain state in vertices vertex scatter (vertex v)

send updates over outgoing edges of v

e Scatter - propagate vertex state to vertex_gather(vertex v)
. hbours apply updates from inbound edges of v
neig

while not done
for all vertices v that need to scatter updates

e (Gather - cumulate updates and vertex_ scatter (v)
I‘ecompu'[e State for all vertices v that have updates

vertex gather (v)

e Approach is vertex-centric



Vertex-centric vs Edge-centric

Vertex-centric Edge-centric

Iterates over vertices lterates over edges

Random accesses of edges Sequential accesses of edges
Requires pre-sorting to generate indexed Requires no pre-sorting

edge list

Edges only used when needed All edges used per iteration



Edge-centric Model

i - H edge scatter (edge e)
e Approach is edge-centric e e e .
e Still maintain state in vertices edge_gather (update u) o
apply update u to u.destination
e Can stream edges and updates from wnile not done
or a eages e
storage - no longer random access to edge_scatter (e)
edges for all updates u

update gather (u)

e We now have random access to vertices



Edge-centric Model

1. Edge Centric Scatter 2. Edge Centric Gather

Edges (sequential read) Updates (sequential read)
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Streaming Partitions

e Comprised of 3 elements

o Vertex set - a subset of vertices from the graph

o Edge list - all edges where the source vertex is in the partition’s vertex set

o Update list - all updates where the destination vertex is in the partition’s vertex set
e \Vertex set exists in a cache

o Mitigates the random access issue

o Size must be balanced though



Streaming Partitions

Must now introduce a new shuffle
phase

o Destination of update may not
reside in the same streaming
partition

o Shuffle Phase reorders the
updates so this is the case

o Have Uout and Uin stream

scatter phase:
for each streaming partition p
read in vertex set of p
for each edge e in edge list of p
edge scatter(e): append update to Uout

shuffle phase:
for each update u in Uout
let p = partition containing target of u
append u to Uin (p)
destroy Uout

gather phase:
for each streaming partition p
read in vertex set of p
for each update u in Uin(p)
edge gather (u)
destroy Uin (p)



Two scenarios for X-Stream

In-memory Out-of-core
e Fast Storage = CPU cache e fast Storage = Main Memory
e Slow Storage = Main Memory e Slow Storage = SSD or Hard Disk

e Very limited by size of storage e Huge capacity of storage



In-Memory Specifics

e Cache is much smaller than main memory
o Results in more streaming partitions needed
e Need to go parallel to reach peak streaming bandwidth
o Each partition can operate independently
m Can result in workload imbalance

m Fix by stealing jobs



Out-of-Core Specifics

e Merge scatter and shuffle phase

Only shuffle wh tput buffer is full i
o Only shuffle when output buffer is fu Index Array (K entries)

e Use a stream buffer to store updates
/ . N
o Makes shuffling more efficient - O(n) / / \ \J\
o Requires two stream buffers Chunk

m Input to shuffle
m Output of shuffle

Chunk Array

o Also used for partitioning



Evaluation

Sequential Access is better than Random Access on every medium

Medium Read (MB/s) Write (MB/s)
Random  Sequential Random  Sequential
RAM (1 core) 567 2605 1057 2248
RAM (16 cores) 14198 25658 10044 13384
SSD 22.5 667.69 48.6 576.5
Magnetic Disk 0.6 328 2 316.3

Figure 11: Sequential Access vs. Random Access




Evaluation

e Initial results were poor for some datasets
o The DIMACS and Yahoo web-graph datasets have a wide diameter

o Results in more scatter-gather iterations as information passes from one end to
the other

o Each iteration requires entire edge list to be streamed; not much useful work each
time



Evaluation

e Demonstrates strong scaling with regard to number of threads and I/0 Parallelism
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Figure 14: Strong Scaling
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Figure 15: I/0 Parallelism




Evaluation - In Memory

Threads || Ligra(s)  X-Stream(s) | Ligra-pre (s)
BEFS

e Comparedto Ligra

I 1110 168.50 1250.00
2 559 86.97 647.00
o BFS and Pagerank were used to ! 28 512 5200
test 16 0.85 18.48 157.20
Pagerank
I 99020 455.06 1264.00
. . ) 2 510.60 241.56 654.00
) F.OI’ BFS without preprocessing times g fggjg 1;2:3 ;ﬁ:gg
Ligra performs better I T 30,05 16020
o X-Stream is much faster when Figure 20: Ligra [48] on Twitter (99 % CI under 5%)
pre-processing times taken into BFS [33] X-Stream
aCCO u nt ﬁgm refs. 8&3427mi11i0n é;OOmillion
Ligra,BFS [48] X-Stream
PC 075 139
e Dueto sequential access, IPC was Mem refs. 13 bilion S
much h Ig her Figure 21: Instructions per Cycle and Total Number

of Memory References for BFS



Evaluation - Out-of-Core

e Compared to GraphChi

e GraphChi needs to resort edges by
destination vertex before applying
updates (reported as re-sort)

o Accounts for significant proportion
of execution

e In most cases X-Stream completed
before GraphChi Presorted

e Disk bandwidth of X-Stream is much
greater

Pre-Sort (s) Runtime (s) Re-sort (s)
Twitter pagerank
X-Stream (1) none 397.57+1.83 -
Graphchi (32) 752.324+9.07 1175.124+25.62 969.99
Netflix ALS
X-Stream (1) none 76.74+0.16 -
Graphchi (14) 123.73 +£4.06 138.68 +26.13 45.02
RMAT27 WCC
X-Stream (1) none 867.59 £2.35 -
Graphchi (24) 2149.38 £41.35 2823.99 +704.99 1727.01
Twitter belief prop.

X-Stream (1) none 2665.64 +6.90 -
Graphchi (17) 742.424+13.50 4589.52+322.28 1717.50

Figure 22: Comparison with Graphchi on SSD with 99 %
Confidence Intervals. Numbers in brackets indicate X-
Stream streaming partitions/Graphchi shards (Note: re-
sorting is included in Graphchi runtime.)
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Figure 23: Disk Bandwidth



Strengths and Weaknesses

Strengths Weaknesses

e Utilises sequential access to effectively e If no pre-processing is required for the
maximise streaming bandwidth vertex-centric approach, performance
can be weaker
e Performs quicker in general than most
state of the art systems on some e Performance is poor on a graph with a
algorithms high diameter

e “Wasted Edges” also negatively impacts
performance



Criticism

e Little focus on running X-Stream on multiple machines
o See next slide

e Assumes graph has many more edges than vertices

e No discussion on the limitations of the programming model



Impact

e Nearly 450 citations
e Authors extended X-Stream with Chaos

o Chaos essentially is the distributed version of X-Stream



Questions



