
A Distributed Multi-GPU System for Fast
Graph Processing

Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, A. Aiken

Presented by Oliver Hope

1 / 11



What is Lux? / Contributions of paper

Computational Model:

2 execution models
A dynamic repartitioning
strategy
A performance model for
parameter choice

Implementation:

Working code
Benchmarked on different
algorithms
Comparisons to different
platforms

2 / 11



Motivation / Prior Work

Lux: A graph processing framework to run on multi-GPU
clusters
Prior work for:
I Single-node CPU
I Distributed CPU
I Single-node GPU

Prior work cannot be adapted easily to GPU clusters
I Data placement (heterogeneous memories)
I Optimisation interference
I Load-balancing does not map across from CPUs

3 / 11



Abstraction

Iteratively modifies subset of graph until convergence
Edges and vertices have properties
3 stateless functions to implement:
I void init(Vertex v, Vertex vold)
I void compute(Vertex v, Vertex uold, Edge e)
I bool update(Vertex v, Vertex vold)

4 / 11



Abstraction: Pull vs Push

Does not require
additional
synchronisation
Takes advantage of GPU
caching and aggregation

Better for rapidly
changing frontiers

5 / 11



Task Execution

Pull-based:
I Single GPU kernel for all steps
I Scan-based gather to resolve load imbalance

Push-based:
I Separate kernel for all 3 steps
I All updates have to use device memory to avoid races

Computation can overflow to CPU+DRAM if not enough
space

6 / 11



Graph Partitioning

Lux uses Edge partitioning
Idea: Assign equal number of
edges to each partition
Each partition holds
contiguously numbered vertices
and the edges pointing to them
So GPU can coalesce reads and
writes to consecutive memory
Very fast to compute (e.g. vs
vertex-cut)

7 / 11



Dynamic Repartitioning

Figure: Estimates of f(x) =
∑x

i=0 wi used to pick pivot vertices.

1. Collect ti per Pi, update f , calculate partitioning
2. Compare ∆gain(G) (improvement) vs ∆cost(G) (inter-node
transfer)

3. Globally repartition depending on 2
4. Local repartition

8 / 11



Performance Model

To preselect an execution model
and runtime configuration
Models performance for a single
iteration
Sums together estimates for:
1. Load time
2. Compute time
3. Update time
4. Inter-node transfer time

9 / 11



Evaluation

Different hardware used for shared memory and GPU testing.
Tried to get best attainable performance from every system.

10 / 11



Criticisms

Abstract claims up to 20x speedup over shared-memory
systems (more like 5-10)
“Most popular graph algorithms can be expressed in Lux”
Does not assess what cannot be.
“For many applications … identical implementation for
both push and pull”
Did not test the overflow processing to CPU feature
For evaluation all parameters were highly tuned. Can’t
guarantee others were as tuned as Lux.

11 / 11


