A Distributed Multi-GPU System for Fast
Graph Processing

Z. Jia, Y. Kwon, G. Shipman, P. McCormick, M. Erez, A. Aiken

Presented by Oliver Hope

1/n

What is Lux? / Contributions of paper

Computational Model:

m 2 execution models
m A dynamic repartitioning
strategy

m A performance model for
parameter choice

Implementation:

m Working code

m Benchmarked on different
algorithms

m Comparisons to different
platforms

2/n

Motivation / Prior Work

m Lux: A graph processing framework to run on multi-GPU
clusters
m Prior work for:
> Single-node CPU
» Distributed CPU
> Single-node GPU
m Prior work cannot be adapted easily to GPU clusters
> Data placement (heterogeneous memories)
» Optimisation interference
> Load-balancing does not map across from CPUs

3/M

Abstraction

m Iteratively modifies subset of graph until convergence

m Edges and vertices have properties

m 3 stateless functions to implement:

» void init(Vertex v, Vertex v°d)

> void compute(Vertex v, Vertex u°®, Edge e)
> bool update(Vertex v, Vertex v°!?)

4/M

Abstraction: Pull vs Push

Algorithm 1 Pseudocode for generic pull-based execution.

1: while not halt do
2: halt = true

> halt is a global variable

3 for all v € V do in parallel

4 init (v, v°'4)

5: for all u € N~ (v) do in parallel
6: compute(v, u®'?, (u,v))

e end for

8: if update(v, v°'%) then

9: halt = false

10: end if

11: end for
12: end while

m Does not require
additional
synchronisation

m Takes advantage of GPU
caching and aggregation

Algorithm 2 Pseudocode for generic push-based execution.

1: while F # {} do

for all v € V do in parallel
init(v, v°'¢)
end for
> synchronize(V)
for all u € F do in parallel
for all v € N*(u) do in parallel
compute(v, u®'?, (u,v))
end for
end for
> synchronize(V)
F={}
for all v € V do in parallel
if update(v, v°'?) then
F=FuU{v}
end if
end for

18: end while

m Better for rapidly

changing frontiers

5/M

Task Execution

m Pull-based:

> Single GPU kernel for all steps

> Scan-based gather to resolve load imbalance
m Push-based:

> Separate kernel for all 3 steps

> All updates have to use device memory to avoid races
m Computation can overflow to CPU+DRAM if not enough

space

6/M

Graph Partitioning

Lux uses Edge partitioning | Eoges
m Idea: Assign equal number of |
edges to each partition
m Each partition holds
contiguously numbered vertices
and the edges pointing to them

m So GPU can coalesce reads and
writes to consecutive memory

m Very fast to compute (e.g. vs
vertex-cut)

7/1

Dynamic Repartitioning

Estimates of f

o
N
[t

0.0

r(‘).0 0.2 04 06 0.8 1000 02 04 06 0.8 1.000 0.2 04 06 0.8 1.0
Iteration = 1 Iteration = 2 Iteration = 3

Figure: Estimates of f(z) = >_7_,w; used to pick pivot vertices.

1. Collect ¢; per P;, update f, calculate partitioning
2. Compare A uin(G) (improvement) vs A, (G) (inter-node

transfer)

3. Globally repartition depending on 2
4. Local repartition

8/1

Performance Model

m To preselect an execution model
and runtime configuration

m Models performance for a single
iteration

m Sums together estimates for:
. Load time

. Compute time

. Update time

. Inter-node transfer time

AW N

Run time per iteration (seconds)

ol
%Ty=4 x=1y=8_ x=l.y=16 x=2.y=16 x=4.y=16
Configurations

(a) Pull-based executions (PR).

Run time (seconds)
c
=

X=Ly=4 x=1y=8_ x=1y=16 x=2.y=16 x=4,y=16
Configurations

(b) Push-based executions (CC).

9/M

Evaluation

m [CJ CuSha [J MapGraph [EEE Groute HEE Lux

Elapsed time (ms)

F

PR (1 iteration) CF (1 iteration)
Figure 15: Performance comparison on a single GPU (lower is better).

[Best of (Ligra, Galois, Polymer) =1 Best of (PowerGraph, GraphX) —J Medusa [Groute il Lux]

15 w1 3% 22 @ 2 9w 2 20 PRI Ty 3 0w s e 7]
8|
5|
a7
4 25
2|
' ’
4 [o 5
o 2 S
H

NF
CF (1 iteration)

Elapsed time (ms)

IWRM UK GS
SSSP

Figure 16: The execution time for different graph processing frameworks (lower is better).

W RM UK G
PR (1 iteration)

Different hardware used for shared memory and GPU testing.
Tried to get best attainable performance from every system.

10/1

Criticisms

m Abstract claims up to 20x speedup over shared-memory
systems (more like 5-10)

®m “Most popular graph algorithms can be expressed in Lux”
Does not assess what cannot be.

m “For many applications ... identical implementation for
both push and pull”

m Did not test the overflow processing to CPU feature

m For evaluation all parameters were highly tuned. Can't
guarantee others were as tuned as Lux.

1/M

